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Abstract—Cognitive radio (CR) is an important tech-
nology that allows to deal with spectrum congestion,
where secondary applications (users) attempt to access
a frequency band that is reserved for a primary appli-
cation. A challenging function for a CR is to sense a
frequency band and detect the absence or presence of
a licensed user, a task referred to as spectrum sensing.
In this paper, we investigate the performance of the
Rao-test based detector for wideband spectrum sensing
under non-Gaussian noise in a multi-carrier transmission
framework. Specifically, we incorporate this detector into
the universal filtered multicarrier (UFMC) modulation
scheme envisaged for 5G systems. Through numerical
simulations, we show that the Rao-test based detec-
tor combined with UFMC outperforms the traditional
OFDM based system in a realistic non-Gaussian noise
environment.

I. INTRODUCTION

Cognitive radio (CR) has emerged as an innova-

tive solution to the spectrum congestion problem by

enabling opportunistic usage of frequency bands that

are not heavily used by licensed users [1]-[2]. In the

context of CR, primary users (PU) are defined as

licensed users who have a higher priority on the usage

of a specific part of the spectrum. Secondary users
(SU) are unlicensed CR users who can exploit the

spectrum in a non-interfering manner to PUs. Within

this context, spectrum sensing refers to the task of

detecting PUs and determining spectrum availability

for SUs in the CR network.

Several modern spectrum sensing techniques have

been developed that exploit various properties of the

PU and noise signals to allow one or more SUs to

detect the presence of PUs. The authors in [3] present

a matched filter detection approach while a cyclo-

stationary detection method that exploits periodicity

features of PU signals is presented in [4]. Although
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these and other related methods can achieve good

detection performance under low signal-to-noise ratio

(SNR), they make strong assumptions about available

a priori knowledge of the PU signal shape or features.

Spectrum sensing based on energy detection is the

most recurrent technique in practice because of its low

computational complexity and minimal use of a priori
information [5]. However, a detector based on energy

detection is optimized with respect to a Gaussian noise

environment. Consequently, when non-Gaussian noise

impairments are present, the detector’s performance is

reduced considerably. These impairments may include

man-made impulse noise, co-channel interference from

other SUs, out of band spectral leakage, etc. Recently,

a Rao-test based detector optimized for non-Gaussian

noise environments was introduced in [6] which yields

an improved performance.

Wideband spectrum sensing aims to sense a fre-

quency band that exceeds the coherence bandwidth

of the wireless channel [7]. A simple approach is

to divide the wideband spectrum into a series of

contiguous narrower subbands, through the application

of Fourier transform or filter bank techniques on the

received signal. Subsequently, narrowband sensing is

applied in each subband to identify individual spectral

opportunities. A more sophisticated approach consists

in combining test statistics from multiple subbands

and performing an (optimal) joint detection of the

PU signals over the larger frequency spectrum, as

presented in [8]-[9]. Within this context, the use of

a proper filtering scheme for separating the PU and

SU signals in the frequency domain is of paramount

importance.

Multicarrier modulation (MCM) techniques remain

the favored option for wideband signal transmission in

the physical layer of existing and future wireless sys-

tems, such as 4G and upcoming 5G networks. Among

the MCM techniques, OFDM has been largely adopted

in many pre-4G and 4G systems due to its simplicity

of implementation. Nevertheless, OFDM suffers from
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several limitations and the study of improved MCM

schemes for 5G has thus attracted great interest [10].

Several filterbank multicarrier (FBMC) methods, such

as filtered multitone (FMT) [11], cosine modulated

multitone scheme (CMT) [12], and OFDM with offset

QAM (OFDM-OQAM) [13], in which well-designed

filters are used to extract the subcarrier information,

have been proposed to address the shortcomings of

OFDM. However, these techniques can be very com-

plex and the required filter lengths can be very large.

An alternative and promising scheme called universal

filtered multicarrier (UFMC) combines the simplicity

of OFDM and the advantages of FBMC [14]-[15].

Specifically, and unlike OFDM, UFMC includes a

filtering operation to minimize intercarrier interference

(ICI).

In this paper, we investigate the advantages of

the Rao test based detector over the traditional en-

ergy detector for wideband spectrum sensing subject

to non-Gaussian noise impairments in a multicarrier

framework. Specifically, we extend the Rao test based

detector to the wideband framework by incorporating it

into the UFMC modulation scheme. We subsequently

demonstrate through numerical simulations that the

Rao-test based detector combined with UFMC out-

performs the traditional OFDM-based detectors in a

realistic non-Gaussian noise environment. Overall, the

Rao detector incorporated in UFMC offers a suitable

solution for wideband spectrum sensing in CR appli-

cations for future 5G networks.

The rest of this paper is organized as follows. In

section II, we present the system model and review

the optimal Rao-test based detector for non-Gaussian

noise. In Section III, the integration of this detector

within the UFMC filtering framework is decribed in

details. In section IV, the detection performance of

the resulting scheme for wideband spectrum sensing

in non-Gaussian noise is evaluated via simulations

and compared to other benchmark approaches. Finally,

conclusions are drawn in Section V.

II. OPTIMAL DETECTORS

In this section, we briefly review spectrum sens-

ing detectors optimal for Gaussian and non-Gaussian

additive noise environments. We consider a generic

multicarrier framework where the wideband spectrum

is divided into B non-overlapping narrow subbands.

Some of these subbands might not be used by PUs and

are therefore available for opportunistic SU access. Fig.

1 illustrates the spectrum availability for a wideband

communication channel, where at a given time, some

of the subbands (depicted as white rectangles) can be

used opportunistically by SUs.

Secondary UserSpectrum HolePrimary User

1 B

Fig. 1: Illustration of opportunistic spectrum access

A. Gaussian Noise Environment

We first consider the spectrum sensing model within

a Gaussian noise environment. The decision of a partic-

ular SU on the presence or absence of a PU in subband

j ∈ {1, ..., B} can be formulated as a binary hypothesis

testing problem as follows [8]:

H0,j : Rj(n) = Wj(n) (1)

H1,j : Rj(n) = Sj(n) +Wj(n) (2)

where n = 0, ..., N−1 is the discrete-time index, N is

the total number of symbols in the observation window,

Rj(n) is the received signal sample at time n, Sj(n)
is the PU signal component, Wj(n) is the complex

additive white Gaussian noise (AWGN) with zero mean

and variance σ2
w. The SU has to decide between two

hypotheses, that is: H0,j representing the presence of

only noise in the jth subband, implying that it is vacant

and thus available for opportunistic access; and H1,j

representing the presence of a PU signal with noise,

implying that the jth subband is occupied.

The decision on the occupancy of the jth subband

based on energy detection is accomplished by compar-

ing the test statistic, denoted as TE , against a fixed

threshold λj which depends on the noise level. The

test statistic can be expressed as follows [8]:

TE{Rj(n)} =

N−1∑
n=0

|Rj(n)|2 (3)

while the decision rule is formulated as:

TE{Rj(n)}
H1,j

≷
H0,j

λj (4)

The above test statistic, which amounts to computing

the energy of the observed signal Rj(n), is optimum

when AWGN is present and the signal has an unknown

form. However, if non-Gaussian noise impairments are

present, the detector’s performance is significantly re-

duced. Therefore, we must consider a new test statistic

that can account for the non-Gaussianity of the noise.
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B. General Gaussian Distributed (GGD) Noise Envi-
ronment

The performance of an energy based detector opti-

mized for additive Gaussian noise may demean consid-

erably in the presence of non-Gaussian noise impair-

ments due to the heavier tail characteristics of their

probability density function (PDF) [17]. Indeed, the

simple Gaussian noise model is not appropriate in such

cases because the tail of the PDF of non-Gaussian

impairments generally tend to decay at a lower rate.

Here, we assume that non-Gaussian noise can be

modeled as a complex generalized Gaussian distri-
bution (GGD), thereby allowing to control the tail

characteristics by means of an adjustable parameter.

Specifically, the PDF of a GGD with mean μ and

variance σ2
w is expressed as follows:

fGGD(w;β) =
β

2A(β, σ2
w)Γ(1/β)

e
−
(

|w−μ|
A(β,σ2

w)

)β

(5)

where

A(β, σ2
w) =

(
σ2
w

Γ(1/β)

Γ(3/β)

)1/2

(6)

Γ(ν) is the standard gamma function, i.e.,

Γ(ν) =

∫ ∞

0

xν−1e−xdx (7)

and β > 0 is a shaping factor that controls the
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Fig. 2: PDF of GGD random variable for different β
values and σ2

w = 1

exponential decay rate of the PDF tail, allowing to

model different noise behaviors. The PDF of the GGD

is plotted in Fig. 2, showing the tail characteristics for

different β values. The GGD reduces to the Gaussian

distribution when β = 2 and to the Laplacian distri-

bution when β = 1. Several types of noise sources

found in practice tend to produce samples with higher

magnitudes than what the Gaussian noise model would

predict, i.e. corresponding to the case β < 2 in (5).

The non-linear detector in [6], based on the Rao test,

is optimized for GGD noise environments. As such, it

can reduce the influence of high magnitude samples on

the test statistic making it more reliable to indicate the

presence or absence of a signal. The Rao test statistic

can be formulated as:

TR{Rj(n)} = φ(β)

N−1∑
n=0

(|RRe
j (n)|β′

+ |RIm
j (n)|β′

)

(8)

where RRe
j (n) and RIm

j (n) represent the real and

imaginary parts of the receiver signal respectively, i.e.,

Rj(n) = RRe
j (n) + jRIm

j (n), β′ = 2(β − 1), and

φ(β) =
βΓ( 3β )

β−1

(β − 1)(
σ2
w

2 )β−1Γ( 1β )
β−2βΓ(1− 1

β )
(9)

Similar to (4), the decision rule is given by:

TR{Rj(n)}
H1,j

≷
H0,j

λj (10)

where λj is the decision threshold for the jth subband.

The test statistic TR{Rj(n)} is only a function of

the shaping factor β, thereby requiring no a priori
knowledge of the PU’s signal, channel gains, or noise

variance.

III. INCORPORATION INTO MULTICARRIER

STRUCTURE

In this section, we incorporate the above detector

for GDD noise environments into the UFMC scheme.

To this end, we first describe the UFMC operation,

and then explain how to implement the Rao-test based

detection at the receiver end.

A. UFMC Operation

UFMC has recently attracted considerable attention

due to its higher spectral efficiency and reduced in-

tercarrier interference (ICI). In this approach, unlike

OFDM, a filtering operation is applied to a group

of consecutive subcarriers to minimize the potential

interference from subcarriers of adjacent subbands. In

the recent literature, slightly different implementations

of the UFMC concept have been proposed [14]-[16].

The UFMC transceiver model that will be used in our

work follows that of [14].

As seen from Fig. 3, at the transmitter, a group of

K incoming complex data symbols are mapped into

B subbands with index j = 1, . . . , B, where each

subband consists of M = K/B tones with index

k = 0, . . . ,M − 1. The symbol affected to the kth

tone of the jth subband is denoted as Xj,k. For each
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Fig. 3: System model of UFMC-based PU detection

subband, the corresponding time domain symbols xj(l)
are obtained by applying a K-point IDFT spreader on

Xj,k. More specifically, the group of tones in the jth

subband is offset by inserting θj zeros at the beginning;

similarly, zeros are inserted at the end to account for

unallocated subcarriers. In effect, this operation can be

expressed as:

xj(l) =
1

K

M−1∑
k=0

Xj,ke2πjl(k+θj)/K (11)

where the index l = 0, ...,K − 1 and θj = (j − 1)M .

Each subband sequence xj(l) is passed through a

corresponding finite impulse response (FIR) filter fj(l)
of length L to reduce out-of-band leakage. Filter fj(l)
is modulated to the proper frequency by multiplying

a prototype impulse response f(l) with an exponential

sequence, that is: fj(l) = f(l)e2πjl(θj+(M−1)/2)/K . In

this work, similar to [14], the f(l) is obtained from

a Dolph-Chebyshev window with adjustable sidelobe

attenuation [18]. The output of the jth subband after

FIR filtering is expressed as:

yj(l) = xj(l) ∗ fj(l) =
K−1∑
l′=0

xj(l
′)fj(l − l′) (12)

where ∗ denotes the discrete-time convolution and the

index l = 0, . . . ,K + L − 2. The different subband

signals yj(l) are then summed, resulting into

y(l) =

B∑
j=1

yj(l) (13)

Finally, the discrete-time baseband signal y(l) is con-

verted to an analog passband signal for transmission,

via analog pulse-shaping and RF up-conversion.

Let r(l) denote the baseband signal at the UFMC

receiver front-end after RF down-conversion and sam-

pling. For each one of the B subbands, the received

signal r(l) is convolved with the time reversal and

complex conjugate of the corresponding subband filter

fj(l). The resulting time-domain signal, denoted as

rj(l), can be expressed as:

rj(l) = r(l) ∗ f∗
j (−l) =

K+L−2∑
l′=0

r(l′)f∗
j (l

′ − l) (14)

where only the samples with index l = 0, ...,K − 1
are retained [14]. For each subband, the signal rj(l)
is mapped to the frequency domain by applying a

K-point DFT despreading operation. Specifically, the

estimated symbol corresponding to the kth tone of the

jth subband is expressed as:

Rj,k =

K−1∑
l=0

rj(l)e
−2πjl(k+θj)/K (15)

where the index k = 0, . . . ,M − 1.

B. Incorporation of Rao Detector

For the wideband spectrum sensing model, we con-

sider a multipath fading environment where h(l) rep-

resents the baseband equivalent discrete-time impulse

response of the radio channel between the PU and SU.

That is, the signal at the UFMC receiver front-end of

the SU can be written as:

r(l) = h(l) ∗ y(l) + w(l) (16)

where y(l) is the PU signal component and w(l) is

the additive complex white noise with zero mean and

variance σ2
w. We note that the specific transmission

scheme for the PU signal component y(l) need not be

known by the SU; that is, the PU may not necessarily

employ UFMC or OFDM for transmission.

Following Section A, for a SU equipped with a

UFMC-based receiver, the discrete-time signal r(l) at

the baseband front-end is filtered by subband filters

f∗
j (−l) for j = 1, . . . , B. In the frequency domain,

following the despreading operation, the received sig-

nal on the kth tone of the jth subband is then given

by Rj,k in (15).
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We test the following binary hypotheses to decide

whether the jth subband, which consists of M tones

with index k = 0, 1, . . . ,M − 1, is accessible or not:

H0,j : Rj,k(n) = Wj,k(n) (17)

H1,j : Rj,k(n) = Hj,kF
∗
j,k(n)Yj,k(n) +Wj,k(n)

(18)

for n = 0, 1, . . . , N − 1, where N is the total number

of UFMC symbols in the given observation window.

Here, Rj,k(n) denotes the nth estimated symbol on the

kth tone of the jth subband, Hj,k is the corresponding

complex channel gain between the PU and SU, F ∗
j,k(n)

is the K-point DFT of f∗
j (−n), Yj,k(n) is the unknown

PU signal component, and Wj,k(n) is a GGD noise.

For each subband j, we compute the test statistic

of the Rao detector over an interval of N symbols.

Since a subband in UFMC consists of multiple tones

or subcarriers, the test statistic for the jth subband is

obtained as the sum of the contributions from each

symbol affected to the various tones with index k in

that subband, assuming independent symbol sequences,

and is formulated as:

TR{Rj,k(n)} = φ(β)

M−1∑
k=0

N−1∑
n=0

(|RRe
j,k(n)|2(β−1)

+|RIm
j,k(n)|2(β−1)) (19)

for k = 0, ...,M − 1. The decision rule is chosen as:

TR{Rj,k(n)}
H1,j

≷
H0,j

λj (20)

where RRe
j,k(n) and RIm

j,k(n) represent the real and

imaginary parts of Rj,k(n), and λj is the decision

threshold for the jth subband.

IV. NUMERICAL SIMULATIONS

In this section, we first describe the methodology

used to simulate the UFMC-based wideband system

for PU detection. We then show the sidelobe behavior

for the UFMC and OFDM schemes to motivate the

assumption that subband filtering improves detection

performance. We obtain the ROC curves for UFMC

with the Rao detector and energy detector and compare

them to that of the OFDM system with both detectors.

We also evaluate the effect of the non-Gaussianity

level (shaping factor β) and the SNR on the detection

performance.

A. Methodology

We consider a wideband spectrum sensing system

with a PU transmitting OFDM symbols over 256
tones each carrying random QPSK data symbols. For

simplicity, the transmitted signal has unit power, that

is E[|y(l)|2] = 1. We assume that the SU is equipped

with a UFMC-based receiver, also with K = 256
tones. The signal at the receiver front-end is filtered

by B = 8 subband Dolph-Chebyshev (DC) FIR filters

of length L = 74 and with 35dB sidelobe attenua-

tion. The filter coefficients f(l) are chosen such that∑L−1
l=0 |f(l)|2 = 1. For the purpose of comparison, we

also implement a system where the SU is equipped

with an OFDM receiver with K = 256 tones.

In our experiments, we assume a Rayleigh fading

channel consisting of 5 channel taps that does not

vary over one observation window of N multicarrier

symbols. The channel impulse response is normalized

such that its energy
∑4

n=0 |h(l)|2 = 1.

The noise in (16) is modeled as GGD with zero

mean, variance σ2
w, and parameter β. The samples are

generated using the following procedure [19]:

• simulating a Gamma random variable Z ∼
Gamma (a,b) with parameter a = β−1 and

b = (A(β, σ2
w))

−β ;

• applying the transformation Y = Z1/β ;

• setting w(l) to ±Y with probability of 0.5.

Under the previous normalization assumptions for the

PU signal and channel, the SNR in dB is given as:

SNR = −10 log10(σ
2
w) (21)

At the receiver of the system, data are collected over

N = 25 vector symbols. Comparison of the detection

performance is performed over the second subband (i.e.

j = 2) where interference from neighboring subbands

is present. In this way, we can compare UFMC and

OFDM in terms of their robustness to out-of-band

interference. The performance of the various detection

algorithms under comparison is evaluated in terms of

the probability of detection Pd and the probability of

false alarm Pfa, as shown through parametric ROC

curves. The ROC curves are obtained through Monte-

Carlo simulations over 104 iterations.

B. Results and Discussion

We first show, in Fig.4, the sidelobe behavior of the

second subband for the UFMC and OFDM receivers.

As we expect, with added subband filtering at the

receiver, UFMC has a better out of band rejection due

its lower sidelobes. OFDM has high sidelobe levels

resulting from the rectangular shape in time domain.

This would indicate that the SU will be able to confine

the spectral content of the transmitted signal within a

subband when using UFMC.

We now show the simulated ROC curves of the Rao

and energy detectors when integrated in the UFMC

system and the OFDM system in presence of non-

Gaussian noise with parameter β = 1.1. It can be

observed, from Fig.5 that the Rao detector outperforms
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Fig. 4: Sidelobe behavior of UFMC and OFDM

the energy detector when the background noise is non-

Gaussian, and this for both UFMC and OFDM receiver

schemes. Indeed, given a Pfa of 0.1, there is a 55%

increase of Pd for the Rao detector over the energy

detector in the OFDM system and 37% in the UFMC

scheme. Moreover, it can be seen that with the use

of filters in the UFMC scheme, SUs detect better the

presence of a PU in a given band over the OFDM

scheme. We can observe from the figure that given

a Pfa of 0.1, the Rao detector in the UFMC system

surpasses the Rao detector in the OFDM system by

14%.
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Fig. 6 shows the effects of the noise shaping factor

β on the ROC curves of the energy and Rao detectors

integrated in the UFMC system. We can see that, as β

decreases or the non-Gaussianity of the noise increases,

the Pd rises. This is not the case for the energy detector,

where as β decreases or the non-Gaussianity of the

noise increases, the Pd drops. This means that SUs

will be able to detect the PU signal more effectively,

when using the Rao detector over the energy detector,

in practical non-Gaussian noise environments which

tend to exhibit probability density functions with tails

decaying at lower rates than the traditional Gaussian

density tails (i.e. shaping factor β < 2).
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In Fig. 7, the ROC curves of the Rao and energy

detectors incorporated in the UFMC system for dif-

ferent SNRs are shown. As expected, the detection

performance of the Rao detector is reduced as the SNR

is reduced and is much better than with the energy

detector for all values of SNR.

V. CONCLUSION

In this paper, we investigated the performance of the

Rao-test based detector for wideband spectrum sensing

under non-Gaussian noise in a multi-carrier trans-

mission framework. Specifically, we incorporated this

detector into the universal filtered multicarrier (UFMC)

modulation scheme envisaged for 5G systems. Through

numerical simulations, we showed that the Rao-test

based detector combined with UFMC outperforms the

traditional OFDM based system in a realistic non-

Gaussian noise environment. An interesting avenue for

future work will be to investigate the optimal threshold

selection for all subbands in a joint manner as in [8].
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