
SUBSPACE APPROACH FOR THE SUPPRESSION OF THE NONLINEAR ACOUSTIC
ECHO INTRODUCED BY LOUDSPEAKERS

Xiaojian Lu and Benoı̂t Champagne

Department of Electrical & Computer Engineering, McGill University
3480 University Street, Montreal, Quebec, H3A 2A7, Canada

{xlu,champagne}@tsp.ece.mcgill.ca

ABSTRACT

In this paper, a new nonlinear acoustic echo canceller (AEC)
based on the subspace approach is proposed for the applica-
tion of hands-free telephony when the loudspeaker nonlin-
earities cannot be neglected. The new AEC decomposes the
microphone signal and the estimated echo produced by an
FIR adaptive filter into orthogonal subspaces, where both
the acoustic echo and the background noise are attenuated
according to Wiener filter scheme. Furthermore, the recon-
structed signal is synthesized by the components in the sig-
nal subspace, resulting in more suppression of the unwanted
signals (i.e. noise and echo). Experiments show that, com-
pared to a conventional AEC, the proposed AEC signifi-
cantly suppresses the nonlinear echo signal caused by the
loudspeaker and the background noise in the near-end.

1. INTRODUCTION

Acoustic echo canceller (AEC) is a very important device
for hands-free telephones, and has been extensively studied
in the past decades. Most AECs employ a linear adaptive
filter to estimate the acoustic echo since the acoustic echo
path is assumed to be modelled as a slowly time-varying
linear system. The estimated echo is then subtracted from
the microphone signal, resulting in an ‘echo-cancelled’ sig-
nal which is sent to the far-end. Indeed, this is a reason-
able approximation when the loudspeaker has a good qual-
ity (e.g. negligible non-linear distortion) and plays at a mod-
erate volume for the use of the hands-free terminals.

In practice, low-cost loudspeakers are preferably used in
hands-free equipments to minimize the system cost. Some-
times the volume of the loudspeaker has to be high in a
noisy environment, e.g. a hands-free telephone is used in
a running vehicle. In these cases, the non-linearities of the
loudspeakers cannot be neglected [1]. Consequently, a con-
ventional AEC that mainly employs a purely linear adap-
tive filter cannot suppress the acoustic echo to a satisfac-
tory level. Recently, some non-linear adaptive filtering algo-
rithms such as polynomial adaptive filters, neural networks,
and specific saturation models have been tried to compen-

sate the non-linearities of loudspeakers in the application of
acoustic echo cancellation [2, 3, 4]. However, our simula-
tion shows that these algorithms suffer from slow conver-
gence rate and instability when excited by coloured signal
such as speech. Furthermore, the difficulty in accurately
modelling the characteristics of loudspeakers which present
complex non-linearities [5], limits the attenuation amount
of the nonlinear echo in the practical application.

We introduce a new AEC based on the subspace ap-
proach in this paper. Our experiments show that the pro-
posed AEC significantly attenuates the acoustic echo, as
well as remarkably reduces the near-end background noise.

2. AEC BASED ON SUBSPACE APPROACH

The proposed AEC consists of an echo estimator and a sub-
space echo processor, as shown in Fig. 1. The estimated
acoustic echo ŷ(n) is obtained by the echo estimator, then
subtracted from the microphone signal d(n) with percep-
tual suppression gains in the signal subspace, resulting in
an echo-suppressed and noise-reduced signal e(n).

2.1. Echo estimator in the new AEC

The purpose of the echo estimator in AEC is to produce a
replica of the acoustic echo signal by estimating the echo
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Fig. 1. The acoustic echo cancellation.



path between the far-end speech x(n) and the microphone
signal d(n). From the viewpoint of system identification, an
adaptive FIR filter can fulfill this task. Actually, this is the
case with most conventional AECs.

Due to the nonlinearities of the loudspeaker, the acoustic
echo path cannot be precisely estimated by a linear adaptive
filter. However, from a practical viewpoint, we may regard
the non-linear acoustic echo path as a fast-varying linear
system, at least approximately. When a linear adaptive filter
is used to identify the loudspeaker-enclosure-microphone
system, it tries to track the change of the acoustic echo path
by minimizing the mean-square error (MSE) between the
acoustic echo and the estimated one. Accordingly, the per-
formance of an adaptive filter in the presence of loudspeaker
nonlinearities depends on its tracking behaviour: the better
the tracking capability, the lower MSE it achieves.

In the excitation of the speech signal, our experiments
suggest that the affine projection (AP) algorithm [6] achieves
a lower MSE than some other conventional algorithms such
as NLMS and RLS in the presence of loudspeaker nonlin-
earities. This is consistent with our research result that the
former tracks the change of the echo path faster.

Based on this consideration, we choose AP as the es-
timator to roughly estimate the acoustic echo ŷ(n) in the
proposed AEC. When the acoustic echo path is linear, the
tracking speed of AP is proportional to the projection order,
i.e. higher projection order results in a better tracking prop-
erty, although with higher computational complexity. How-
ever, when the non-linearities of the loudspeaker need to be
considered, it can be verified that the lower bound of MSE
is nearly reached even if the projection order is only set to 2
or 3, and no obvious improvement is observed with higher
projection order. Consequently, a low-order AP is suitable
to estimate the acoustic echo in terms of the low MSE it
achieves and of an acceptable computational requirement.

2.2. Subspace echo suppression

The most important component of the proposed AEC is the
subspace echo processor, illustrated in Fig. 2. The sub-
space approach has been widely used in the signal process-
ing field, including remarkable applications in speech en-
hancement [7]. Here, we derive an algorithm for subspace
echo suppression.

2.2.1. Karhunen-Loeve transform (KLT)

Referring to Fig. 1, the microphone signal is expressed as a
K-dimensional vector, defined by

d(n) = [d(n), d(n − 1), . . . , d(n − K + 1)]H , (1)

and we have

d(n) = y(n) + s(n) + w(n), (2)
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Fig. 2. The subspace processing for AEC.

where, y(n), s(n) and w(n) denote the echo signal, near-
end speech and background noise vectors, respectively. Un-
der the assumption that the signals y(n), s(n) and w(n)
are mutually uncorrelated, the covariance matrix of d(n) is
obtained as

Rd(n) = Ry(n) + Rs(n) + Rw(n). (3)

The eigendecomposition of Rd(n) can be written as

Rd(n) = Q(n)Λd(n)Q(n)H , (4)

where
Q(n) = [q1(n),q2(n), . . . ,qK(n)] (5)

is an orthonormal matrix of eigenvectors of Rd(n), and

Λd(n) = diag{λ(1)
d (n), λ(2)

d (n), . . . λ(K)
d (n)} (6)

is a diagonal matrix of eigenvalues of Rd(n), where the di-
agonal elements are in descending order, i.e.

λ
(1)
d (n) > λ

(2)
d (n) > . . . > λ

(K)
d (n) (7)

Hence, Q(n)Hd(n) is the KLT of d(n), which projects
the microphone signal d(n) into the noisy signal subspace
spanned by qi(n), i = 1, 2, . . . ,K. Similarly, the esti-
mated echo signal ŷ(n) can be decomposed into the same
subspace by KLT, resulting in Q(n)H ŷ(n).

2.2.2. Echo subtraction in KLT domain

The estimated echo and the microphone signal are decom-
posed into the subspace by KLT, resulting in Q(n)H ŷ(n)
and Q(n)Hd(n). Subtracting the estimated echo from the
microphone signal, the residual signal in the transform do-
main is obtained by subtract the estimated echo from the
microphone signal

Q(n)Hε(n) = Q(n)Hd(n) − βQ(n)H ŷ(n) (8)



where the underestimation matrix β = diag(β1, β2, . . . , βK),
0.8 ≤ βm ≤ 1, m = 1, 2, . . . , K, is introduced to reduce
the distortion of the near-end speech signal. As mentioned
earlier, the ŷ(n) is not an ideal estimator of y(n), due to the
loudspeaker non-linearities. Thus, the coefficients that are
less than 1 can reduce the effect of estimation error which
is serious during the double-talk period when the adaptation
of the AEC device is stopped.

Hence, the residual signal ε(n) in the time domain is

ε(n) = s(n) + δy(n) + w(n) (9)

where, δy(n) denotes the residual acoustic echo in ε(n),
defined by

δy(n) = y(n) − Q(n)βQH(n)ŷ(n). (10)

2.2.3. Echo suppression filter

Let H(n) be a K ×K matrix which is the echo suppression
filter, and let ŝ(n) = H(n)ε(n) be the estimator of the near-
end speech signal s(n), then the estimation error es(n) is
written as

es(n) = ŝ(n) − s(n)
= [H(n) − I]s(n) + H(n)[δy(n) + w(n)](11)

where, the first term in (11) is the distortion of the near-
end speech, and the second term is further suppression of
the echo and reduction of the background noise. The ideal
case is es(n) = 0, which means both terms in (11) should
be 0. Because the signals, i.e. s(n), δy(n) and w(n), may
not be 0, to have es(n) = 0 requires that H(n) − I = 0
and H(n) = 0 simultaneously. This is obviously impos-
sible. In other words, we cannot find a way to attenuate
the echo without any near-end speech distortion. Hence we
minimize the speech distortion in terms of mean-squared
error under the constraints of suppressing the acoustic echo
and the background noise to a certain level. By employing
Kuhn-Tucker necessary conditions [8], we obtain the opti-
mal filter

Hopt(n) = Q(n)G(n)QH(n) (12)

where G(n) = diag{g(1)(n), g(2)(n), . . . , g(K)(n)} with

g(m) =
λ

(m)
s

λ
(m)
s + µ[λ(m)

δy
+ λ

(m)
w ]

(13)

where µ is the Lagrange multiplier. In the derivation of (12)-
(13), the approximation has been made that the off-diagonal
elements in matrix Q(n)Rs(n)QH(n) were omitted, and
λ

(m)
s represents the diagonal elements of Q(n)Rs(n)QH(n).

Similarly, λ
(m)
δy

and λ
(m)
w denote the diagonal elements of

Q(n)Rδy
(n)QH(n) and that of Q(n)Rw(n)QH(n), re-

spectively.

Unfortunately, it is difficult to apply (13) in practice, be-
cause we have to find Rs(n) and Rδy

(n) which can be used

to respectively compute λ
(m)
s and λ

(m)
δy

, and we also need a

voice activity detector to determine Rw(n) for λ
(m)
w . Let

Rŷ(n) be the covariance matrix of ŷ(n), and λ
(m)
ŷ a diago-

nal element of matrix Q(n)Rŷ(n)QH(n). In order to sim-
plify the structure of the subspace processor and based on a
reasonable assumption that λ

(m)
δy

is proportional to λ
(m)
ŷ , we

propose a suboptimal acoustic echo suppression filter gain
to replace (13)

g(m) =
λ

(m)
d

λ
(m)
d + µλ

(m)
ŷ

, m = 1, 2, . . . , K (14)

where, the Lagrange multiplier µ controls the echo suppres-
sion and the near-end speech distortion: larger µ implies
higher echo attenuation but more signal distortion.

2.2.4. Dimension of signal subspace

As is known, the K-dimensional microphone signal sub-
space is the noisy (i.e. signal plus noise) subspace. Assum-
ing that the dimension of the signal subspace is M where
M < K, one can write Q(n) as

Q(n) = [Qs(n),Qn(n)] (15)

where Qs(n) constitutes the signal subspace

Qs(n) = [q1(n),q2(n), . . . ,qM (n)] (16)

and the noise subspace is spanned by Qn(n)

Qn(n) = [qM+1(n), . . . ,qK(n)] (17)

Since it is very difficult to find an accurate rank of the
signal subspace, M , a fixed value based on empirical data is
used as the dimension of signal subspace in our work to sim-
plify the algorithm of the subspace echo processor. Hence,
only the signals projected in the signal subspace are consid-
ered, illustrated in Fig. 2.

2.2.5. Estimation of the covariance matrix Rd(n)

According to the definition, the covariance matrix of the mi-
crophone signal d(n) is

Rd(n) = E{d(n)dH(n)} (18)

where, E[·] denotes the expectation operator. Practically,
empirical data are used to estimate the covariance matrix
Rd(n). Differing from the approach in [7], much more past
samples than future samples are used to estimate Rd(n) in
order to reduce the potential delay which is an important
issue in acoustic echo cancellation. Referring to (1) and let



n represent the index of the current frame, we estimate the
covariance matrix from the samples in the past T − 1 and
current frames

Rd(n) =
1

TK

nK∑

i=(n−T )K+1

d(i)dH(i). (19)

The estimation of covariance matrix Rd(n) is performed
frame by frame with a rectangular window, which maintains
the second order statistics of the samples in the window. Af-
ter the estimation of the covariance matrix, the Q(n) and
Λd(n) can be obtained by applying eigendecomposition to
Rd(n).

3. EXPERIMENTAL RESULTS

In the experiments carried out in an office room with 4(L)×
3.5(W)×2.7(H), a 1.3GHz Pentium-IV PC was used as the
host, associated with the Delta 1010 Digital Recording Sys-
tem which has 10-input and 10-output full-duplex recording
interface, made by Midiman company. A common ampli-
fied PC loudspeaker was used to play the far-end speech.
The microphone signal was amplified by Tascam MX-80
microphone/line mixer before it was sent to the recording
system. The computer fans were the main contributors of
background noise.

The third-order AP algorithm was employed to estimate
the acoustic echo, where the filter length was 1600 taps, cor-
responding to 200ms with 8kHz sampling rate. The step-
size was set to 0.9.
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For the subspace echo processor, the dimensions of the
noisy signal subspace and the signal subspace were set K =
40 and M = 32, respectively. A Hanning window and a

rectangular window were respectively used in the synthesis
and analysis procedures, with 50% frame overlap. There
were T = 10 frames used to estimate the covariance ma-
trix Rd(n). The parameter µ was set to 10 for compromise
between echo suppression and signal distortion.

The experimental results are shown in Fig. 3, where a
result from a conventional AEC which only employed a lin-
ear adaptive filter with AP is also plotted for comparison.
The proposed AEC outperforms the conventional AEC in
terms of extra 10-20dB echo suppression and about 8dB
background noise reduction. Since the frame size is 40 sam-
ples, corresponding to 5ms, the delay is acceptable in most
acoustic echo cancellation applications.

4. CONCLUSION

A new nonlinear AEC has been proposed in this paper. Com-
pared to conventional AECs, this subspace-based AEC sig-
nificantly suppresses the nonlinear acoustic echo produced
by loudspeakers and remarkably reduces the background
noise, which has been verified by our experiments.

Furthermore, the subspace echo processor in the pro-
posed AEC has an open-loop structure, which shows a pre-
dictable behaviour. Accordingly, it is much more robust
than other nonlinear adaptive algorithm such as Volterra fil-
ter and neural networks. Considering that the eigendecom-
position operation in the new AEC leads to high compu-
tational complexity, an appropriate subspace tracking tech-
nique may be used to reduce the computational burden.
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