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Abstract—In this paper, we propose and study the distributed
blind adaptive algorithms for wireless sensor network appli-
cations. Specifically, we derive distributed forms of the blind
least mean square (LMS) and recursive least square (RLS)
algorithms based on the constant modulus (CM) criterion.
We assume that the inter-sensor communication is single-hop
with Hamiltonian cycle to save the power and communication
resources. The distributed blind adaptive algorithm runs in the
network with the collaboration of nodes in time and space to
estimate the parameters of an unknown system or a physical
phenomenon. Simulation results demonstrate the effectiveness of
the proposed algorithms, and show their superior performance
over the corresponding non-cooperative adaptive algorithms.

Keywords: Distributed adaptive algorithms, Wireless sensor
networks, Incremental network topology, Constant modulus
criterion

I. INTRODUCTION

Decentralized signal processing offers significant advan-
tages over its centralized counterpart [1]. In a centralized
approach, in order to reach a consensus on the underlying
signal parameters of interest, each sensor must communicate
with the fusion center. This causes network congestion and
result in a waste of communication resources, such as power
and bandwidth. More importantly, any malfunction in the
fusion center may cause a network breakdown. By developing
robust decentralized signal processing algorithms, we can
distribute the computation between the local nodes, reduce
the amount of communications overhead in the exchange of
information, and remove the dependence of the network on the
fusion center. Within the above framework of cooperative, in-
network distributed processing, there has been much interest
lately in the study of new distributed adaptive algorithms
for the solution of parameter estimation problems in which
the underlying signal statistics are unknown or time-varying.
Clearly, adaptivity can help the network to track variations in
the desired signal parameter over time as new measurements
become available. More importantly, as a result of distributed
adaptive processing, a sensor network becomes robust against
changes in the network environment, network topology and
node failure.

Recently, there have been some advances in distributed
adaptive signal processing for sensor network applications. In
[2], [3] and [4], distributed adaptive LMS and RLS algorithms

are proposed for parameter estimation in networks with incre-
mental or diffusion topology. These techniques are developed
based on ideal (i.e. distorsionless) inter-sensor channel for
the exchange of information in the distributed cooperation.
In [5] and [6] the authors have proposed distributed LMS
and RLS algorithms, respectively, for non-ideal inter-sensor
wireless channels by incorporating additive noise.

These algorithms which were initially developed for pa-
rameter estimation, can be applied more generally to obtain
distributed solutions to various problems of adaptive filtering.
When used in this way, these algorithms are classified as non-
blind, or training-based, since they require a reference signal to
drive the adaptation process. In practice, the use of a reference
signal might entail significant costs (especially reduced band-
width efficiency) and in many cases, it is physically infeasible.
Therefore, developing blind distributed adaptive algorithms is
somehow indispensable and will be the next logical step in
the research trend. Generally, the use of blind adaptation is
possible in scenarios where there exists side information about
the transmitted signal, also called signal restoration properties.

In this work, we develop new adaptive algorithms for
distributed blind equalization that use the constant energy
envelope property of the received signals. Specifically, we
focus on a basic signal model in which each sensor has access
to a filtered copy of a constant envelope signal contaminated
by additive noise. We assume that the unknown filtering
applied to the desired signal is identical for each sensor, up
to an independent phase shift. We derive distributed forms of
the blind LMS and RLS algorithms which allow the sensors
to cooperate over wireless to identify the common adaptive
equalizer weights needed for envelope restoration. To save
power and bandwidth, the new distributed algorithms use an
incremental approach for inter-sensor communications, i.e.
single-hop Hamiltonian cycle. The effectiveness of the pro-
posed algorithms is demonstrated by simulations, which show
a significant performance gain in signal restoration compared
to the non-cooperative algorithms.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model under consideration is shown in block
diagram form in Fig. 1. We consider a sub-network of N
neighboring sensors (nodes) geographically distributed over
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Fig. 1: System model for distributed blind adaptive equaliza-
tion

an area where a physical phenomenon of interest is being
monitored. Each sensor measures the distorted signal coming
from the output of an unknown system, modeled as a linear,
(possibly) time-varying filter with constant envelope source
signal s(i) as input. We assume that the unknown filtering
applied to the desired signal is identical for each sensor, but
that the measurements are made in the presence of independent
phase shift and additive measurement noise at each sensor.
Specifically, the measured signal by sensor k at discrete-time
i, denoted uk(i), bears the following relation with the system’s
parameters and input s(i)

uk(i) =
L∑
l=0

ejφkβ(i, l)s(i− l) + vk(i) (1)

where β(i, l), l = 0, . . . , L denote the impulse response
coefficients of the unknown system for lag l at time i,
L is the assumed system order, vk(i) is an additive noise
component at the kth sensor while φk represents the phase
shift of the measured signal by the kth sensor. These unknown
phase shifts, which are assumed to remain constant over the
integration time of the adaptation process, are modeled as
independent and identically (i.i.d.) random variables uniformly
distributed between [0, 2π]. The additive noise terms {vk(i)}
are modeled as i.i.d. white noise sequence, with each sample
having a complex circular symmetric Gaussian distribution,
i.e. vk(i) ∼ C(0, σ2

k) where σ2
k denotes the measurement noise

power at the kth sensor. The above system model formulation
is suitable for adaptive system modeling, system identification
and channel equalization.

Because of the distortion induced by the unknown system
and the additive noise, the measured signal uk(i) at the kth
sensor will generally not exhibit the constant modulus property
of the input. The problem of interest here is to devise a
blind adaptive equalizer, in the form of a time-varying finite
impulse response (FIR) filter with the global coefficient vector
w(i) = [w(i, 0), w(i, 1), . . . , w(i,M − 1)]T ∈ CM×1 where

M denotes the filter length, that can be used at each sensor
to restore the constant modulus property in its measurement
uk(i). Assuming slow time-variations in the unknown system
and adaptive process, we can represent them in terms of
their corresponding time-varying system functions Bi(z) =∑L
l=0 β(i, l)z−l and Wi(z) =

∑M−1
l=0 w(i, l)z−l, respectively,

where z denotes the unit delay operator. To perform the
desired equalization task adequately, the adaptive solution
should ideally satisfy the condition Wi(z) = 1/Bi(z).

In practice, because of measurement noise and lag in the
adaptive process, this condition can only be approximately
satisfied. In a traditional, i.e. non-cooperative approach, each
sensor would run its own copy of a standard blind adaptive
algorithm for constant modulus restoration, such as the LMS-
CMA [7] or the RLS-CMA [8]. However, this approach does
not exploit available means of communication between the
sensors and is therefore sub-optimal. In this paper, we seek
a distributed solution to the above blind adaptive equalization
problem in which each sensor maintains and locally update
its own copy of the adaptive equalizer weights (that can be
used to filter its measurement signal), but cooperates through
exchange of information over wireless links in seeking a
globally optimal solution (i.e. across the set of N sensors).

Let ψk(i) ∈ CM×1 denote local adaptive equalizer weight
vector of sensor k at time i. To save power and bandwidth,
we assume an incremental approach for inter-sensor commu-
nications, i.e. single-hop pre-defined Hamiltonian cycle, as
shown by the dashed line in Fig. 1. At each step in this
cycle, repeated once per iteration over the adaptation time
index i, the kth sensor recursively updates its weight vector,
i.e. ψk(i− 1)→ ψk(i), by making use of the updated weight
vector ψk−1(i) from its predecessor in the cycle, and then
communicates the result of this update to its successor. The
choice and definition of the sequence of sensors visited in a
cycle is based on link and availability considerations that fall
outside the scope of this work. Here, the wireless channels
used in inter-sensor communication are perfect (noise-free
and distortionless), but generalization in the style of [5] and
[6] can be envisaged. In the following sections, we develop
the proposed distributed blind adaptive LMS-CMA and RLS-
CMA.

III. DISTRIBUTED LMS-CMA

The new distributed algorithms for blind adaptation will
be derived by breaking down the centralized CM-based op-
timization problem into a set of local optimization problems,
in which the only coupling is through the exchange of a node’s
updated weight vector to its successor in the Hamiltonian
cycle. This approach will be first applied to derive a distributed
LMS-CMA in this section, and then extended to derive RLS-
CMA in the next section.

We begin by considering a centralized LMS formulation for
the CM-based adaptation in a sensor network. With reference
to Fig. 1, the output of the equalizer at node k at time instant
i is given by:

yk(i) = uk(i)ψk(i) (2)



where, uk(i) = [uk(i), uk(i − 1), . . . , uk(i −M + 1)] is the
local data vector at node k. By collecting the local data vectors
in the central processor, we form a global data matrix U(i) ,
[u1(i)T ,u2(i)T , . . . ,uN (i)T ]T for further processing. In the
expanded form, the latter can be written as:

U(i) ,


u1(i) u1(i− 1) . . . u1(i−M + 1)
u2(i) u2(i− 1) . . . u2(i−M + 1)

...
...

...
...

uN (i) uN (i− 1) . . . uN (i−M + 1)

 (3)

For the CM criterion, the global cost function at the central
processor is formulated as:

J(w) = E[‖δ − |y(i)|p‖q], (4)

where p and q are positive real numbers, y(i) ,
[y1(i), y2(i), . . . , yN (i)]T and δ , [δ1, δ2 . . . δN ]T . The kth
entry of δ, δk, is a positive real number that represent the
desired constant modulus value to be restored at the kth
node. For the sake of generality, we keep the subscript k in
our derivation, although we shall later assume δk = 1 for
k = 1, . . . , N when presenting simulation results in Section V.
The use of the parameters p and q allows additional flexibility
in the problem solution (see e.g. [8]). The traditional mean
square error (MSE)-based CM cost function corresponds to
the choice p = 1 and q = 2. Here, the use of q = 2 (i.e.
MSE-based CM) is favored, since as we explain below, it
enables a partial decomposition of the cost function as a sum of
simple terms, which in turn is amenable to distributed adaptive
processing.

The global equalizer’s coefficients, denoted by wo ∈ CM×1,
can be found by minimizing the above cost function; i.e.,

wo = min
w∈CM

J(w) = min
w∈CM

E[‖δ − |U(i)w|p‖q] (5)

In (4), the use of absolute value in |U(i)w|p
must be interpreted element-wise, i.e. |U(i)w|p =
[|u1(i)w|p, |u2(i)w|p, . . . , |uN (i)w|p]T . By expanding
the squared Euclidean norm of (4) when q = 2, we can write:

J(w) = E[‖δ − |U(i)w|p‖2]

=
N∑
k=1

Jk(w)

where Jk(w) = E‖δ − |uk(i)w|p‖2 can be interpreted as the
the local objective function at node k. In a centralized scheme,
the steepest descent iterative solution to the above optimization
can be expressed based on the partial derivative of the local
objective functions as:

w(i) = w(i− 1)− µ∇J(w(i− 1))

= w(i− 1)− µ
N∑
k=1

∇Jk(w(i− 1)) (6)

where 0 < µ ≤ 1 is the step size of the steepest descent
iteration. After calculating the partial derivative, we obtain:

w(i) = w(i−1)+µ
N∑
k=1

E[uHk yk(i) |yk(i)|p−2(δk−|yk(i)|p)]

(7)
Proceeding as in [2], the steepest descent update formula in
(7) can be implemented in a distributed manner by cooperation
of the local nodes as given in the algorithm below :

ψ0(i)← w(i− 1)

ψk(i) = ψk−1(i) + µE[uHk yk(i) |yk(i)|p−2(δk − |yk(i)|p)],
k = 1, 2 . . . N

w(i)← ψN (i) (8)

In the distributed steepest descent algorithm (8), we need to
perform N iterations over the spatial dimension k, i.e. node
k = 1 to node k = N in a predefined cycle. During the ith
such cycle, node k uses the updated estimate received from
its predecessor in the cycle, i.e. ψk−1(i), to update its current
estimate ψk(i), which is then transmitted to its successor.
That is, update 7 is realized via a sequence of N single hop
wireless information exchange between adjacent nodes in the
cycle. The final distributed LMS-CMA can now be obtained by
approximating the gradient in (8) with its stochastic version by
using instantaneous data at the time instant i. For compactness
in presentation, we introduce the error function at node k,
defined as ek(i) = yk(i) |yk(i)|p−2(δk − |yk(i)|p). The

Algorithm 1 Distributed LMS-CMA

ψ0(i)← w(i− 1)
for k = 1 : N do
yk(i) = uk(i)ψk(i)
ek(i) = yk(i) |yk(i)|p−2(δk − |yk(i)|p)
ψk(i) = ψk−1(i) + µuHk ek(i)

end for
w(i)← ψN (i)

results are summarized in algorithm 1, which is somewhat
similar in structure to the non-blind distributed LMS algorithm
developed in [2]. The effectiveness of the algorithm above will
be demonstrated through numerical simulations in Section V.
In the next Section, we derive an incremental distributed RLS-
CMA by using a similar approach.

IV. DISTRIBUTED RLS-CMA

The general form of the weighted least squares (WLS) cost
function for CM signal restoration at a central processor can
be expressed as:

J(w, i) =
i∑
l=0

λi−l‖δ − |U(l)w|p‖2 (9)

where 0 < λ ≤ 1 is the forgetting factor, U(l) is the data
matrix given in (3), and w is the global equalizer’s weights.
This cost function provides a weighted sum of the modulus



errors at the different nodes, from time l = 0 to current time
l = i, with past errors weighted by λi−l. In this work, based on
the value of the parameter p, we derive two different versions
of the distributed RLS-CMA. In the first case, we set p = 1
and then develop a first version of the distributed RLS-CMA
without making any assumption about the signal environment;
whereas for the second version, p can take any arbitrary real
positive value, but in this case, we need to assume that the
signal environment is slowly varying or stationary.

A. Distributed RLS-CMA for p = 1

In this case, the global objective function in (9) can be
written based on the local data as:

J(w, i) =
N∑
k=1

i∑
l=0

λi−l|δk − |uk(l)w| |2 (10)

The stationary point of this cost function can be found by
computing its partial derivative and equating it to zero, which
yields:∑

k,l

λi−luHk (l)uk(l)w =
∑
k,l

λi−lαk(l)uHk (l)δk (11)

where the summation
∑
k,l is over the range 1 ≤ k ≤ N and

0 ≤ l ≤ l, and we have introduced

αk(i) =
yk(i)
|yk(i))|

. (12)

Equivalently, (11) can be expressed in matrix form as

R(i)w = r(i) (13)

where we define

R(i) =
i∑
l=0

λi−lUH(l)U(l), r(i) =
i∑
l=0

λi−lUHα (l)δ(l),

(14)
and UHα (i) = [α1(i)uH1 (i), α2(i)uH2 (i), . . . , αN (i)uHN (i)].
Therefore, the WLS solution at current time i can be computed
as w(i) = R−1(i)r(i). Alternatively, the optimal weight
vector in (13) can be recursively updated by means of the
following relation:

w(i) = w(i− 1) +R−1(i)[UHα (i)δ − UH(i)U(i)w(i− 1)]
(15)

As a first step towards the derivation of a distributed
RLS solution for the CM problem, we focus on the efficient
updating of the required inverse correlation matrix R−1(i) in
(15). Indeed, to avoid costly matrix inversion, we can compute
R−1(i) recursively, in a distributed and incremental manner as
explained below. Using the definition of the sample correlation
matrix in [9], we know that R(i) = λR(i− 1) + UH(i)U(i).
Equivalently, by expanding the product UH(i)U(i) in terms
of the local sensor observations, we obtain:

R(i) = λR(i− 1) +
N∑
k=1

uHk (i)uk(i) (16)

Equation (16) can be iteratively updated in time and space
using only the local data at sensor k, by proceeding as follows:

R0(i)← λR(i− 1)
Rk(i) = Rk−1(i) + uHk uk(i),
k = 1, 2 . . . N

R(i)← RN (i)
(17)

We note that there is no physical sensor corresponding to the
index k = 0; the latter is introduced only for convenience in
joining both ends of the incremental cycle of spatial updates
over index k as time is incremented from i − 1 to i, i.e.,
R0(i) ≡ λRN (i− 1).

Note that each update in (17) only invoke a rank one
additive term. Therefore, the inverse of the sampled correlation
matrix given in (17) can be computed locally according to
Woodbury’s identity. As a result, the inverse of the global
correlation matrix can be calculated in distributed fashion by
using the set of local data as:

R0(i)−1 ← λ−1R−1(i− 1)

R−1
k (i) = R−1

k−1(i)−
R−1

k−1(i)u
H
k (i)uk(i)R−1

k−1(i)

1+uk(i)Rk−1(i)uH
k

(i)
,

k = 1, 2 . . . N

R−1(i)← R−1
N (i)

(18)

We note that to update its local estimate of the inverse
correlation matrix with this approach, sensor k only makes
use of its local observation vector uk(i) along with the
inverse correlation matrix estimate of its predecessor in the
incremental cycle, i.e. R−1

k−1(i).
The recursive formula given in (15) can also be updated in

a distributed manner based on the local data at the kth sensor,
for k = 1, . . . , N . Indeed, by expanding the term {UHα (i)δ −
UH(i)U(i)w(i − 1)}, we can obtain the following recursion
formula:

w(i) = w(i− 1) +R−1(i)
N∑
k=1

uHk (i)ek(i) (19)

where we define the modulus error at node k as

ek(i) = αk(i)δk − uk(i)w(i− 1). (20)

Equation (19) can be implemented in a distributed manner as:

ψ0(i)← w(i− 1)
ek(i) = αk(i)δk − uk(i)w(i− 1),
ψk(i) = ψk−1(i) +R−1(i)uHk (i)ek(i),
k = 1, 2 . . . N

w(i)← ψN (i)

(21)

Finally, we can arrive at a fully distributed, incremental
algorithm by substituting w(i− 1) and R−1(i) with ψk−1(i)
and R−1

k (i), respectively, with the latter quantity being up-
dated in a distributed manner as in (18). Similar to [10],
the substitution of w(i − 1) by ψk−1(i) leads to better



adaptive performance, whereas substituting R−1(i) with the
local update R−1

k (i) causes some performance degradation. By
applying these modifications, we obtain the first version of the
distributed RLS-CMA given in Algorithm 2. In this algorithm,
during the ith cycle time, sensor k − 1 forwards its updated
local weight vector estimate ψk−1(i) and inverse correlation
matrix estimate R−1

k−1(i) to sensor k where the corresponding
estimates are updated using only the local observation uk(i).

Algorithm 2 Distributed adaptive RLS-CMA when p = 1

ψ0(i)← w(i− 1);R−1
0 (i)← λ−1R−1(i− 1)

for k = 1 : N do
R−1
k (i) = R−1

k−1(i)−
R−1

k−1(i))u
H
k (i)uk(i)R−1

k−1(i)

1+uk(i)Rk−1(i)uH
k

(i)

ek(i) = αk(i)δk − uk(i)ψk−1(i)
ψk(i) = ψk−1(i) +R−1

k (i)uHk (i)ek(i)
end for
w(i)← ψN (i);R−1(i)← R−1

N (i)

B. Distributed RLS-CMA for general value of p

In this case, the global objective function (9) takes the
following form:

J(w, i) =
N∑
k=1

Jk(w, i) (22)

where

Jk(w, i) =
i∑
l=0

λi−l|δk − |uk(l)w|p|2, (23)

is the local cost function at node k. Here, each local cost
function can be transformed into the conventional RLS cost
function by applying the suggested technique in [8]. According
to this letter, if we assume the signal environment is stationary
or slowly varying, then the difference between uk(i)w(i− 1)
and uk(i)w(i) is negligible. Hence, the local cost function in
(23) can be rearranged as:

Jk(w, i) =
i∑
l=0

λi−l|δk − |uk(l)w(l − 1)|p−2

× wH(l − 1)uHk (l)uk(l)w|2 (24)

This can be expressed more compactly as:

Jk(w, i) =
i∑
l=0

λi−l|δk − zk(l)w|2 (25)

where we define

zk(l) = |uk(l)w(l − 1)|p−2wH(l − 1)uHk (l)uk(l) (26)

As a result of this approximation, the global cost function
takes the following form:

J(w, i) =
i∑
l=0

λi−l‖δ − |Z(l)w|p‖2 (27)

where Z(i) = [zT1 (i), zT2 (i), . . . , zTN (i)]T is the modified data
matrix. Computing the partial derivative of (27), and equating
it to zero yields:

i∑
l=0

λi−lZH(l)Z(l)w =
i∑
l=0

λi−lZH(l)δ (28)

The solution of (28) can be given as w(i) = R−1
z (i)rz(i),

where Rz(i) =
∑i
l=0 λ

i−lZH(l)Z(l) and rz(i) =∑i
l=0 λ

i−lZH(i)δ. In the same way as we have shown in
IV-A, the optimal weights w(i) can be updated by the recur-
sive formula given below:

w(i) = w(i− 1) +R−1
z (i)ZH(i)[δ − Z(i)w(i− 1)] (29)

By following the same procedure as in IV-A, this calculation
can be performed in a distributed mean as follow:

ψ0(i)← w(i− 1)
zk(i) = |uk(i)w(i− 1)|p−2wH(i− 1)uHk (i)uk(i)
ek(i) = δk − zk(i)w(i− 1)
ψk(i) = ψk−1(i) +R−1

z (i)zHk (i)ek(i)
k = 1, 2 . . . N

w(i)← ψN (i)

(30)

Again, the global autocorrelation matrix R−1
z (i) can be up-

dated based on the local data, say:

R0(i)−1 ← λ−1R−1
z (i− 1)

R−1
k (i) = R−1

k−1(i)−
R−1

k−1(i)z
H
k (i)zk(i)R−1

k−1(i)

1+zk(i)Rk−1(i)zH
k

(i)
,

k = 1, 2 . . . N

R−1
z (i)← R−1

N (i)

(31)

Finally, in the recursion part of (30), we can substitute

Algorithm 3 Distributed adaptive RLS-CMA, p general

ψ0(i)← w(i− 1);R−1
0 (i)← λ−1R−1

z (i− 1)
for k = 1 : N do

zk(i) = |uk(i)ψk−1(i)|p−2ψHk−1(i)u
H
k (i)uk(i)

R−1
k (i) = R−1

k−1(i)−
R−1

k−1(i)z
H
k (i)zk(i)R−1

k−1(i)

1+zk(i)Rk−1(i)zH
k

(i)

ek(i) = δk − zk(i)ψk−1(i)
ψk(i) = ψk(i) +R−1

k (i)zHk (i)ek(i)
end for
w(i)← ψN (i);R−1

z (i)← R−1
N (i)

w(i− 1) and R−1
z (i) with ψk−1(i) and R−1

k (i), respectively,
to attain the second version of distributed RLS-CMA, which
is summarized in Algorithm 3.

V. SIMULATION RESULTS

In our simulations, we use the system model described in
section II. In particular, we consider a quadrature amplitude
modulation (QAM) communication framework with indepen-
dent source signal samples s(i) uniformly distributed over a
unit magnitude QAM constellation [11] ;accordingly, the value
of δk is set to 1 for k = 1, . . . , N . The unknown system in



Fig.1 is modeled as a time-invariant FIR filter with length
M = 10 and randomly generated parameter vector β, where
each entry is derived from an i.i.d. complex circular Gaussian
distribution with zero-mean and variance one. We consider a
network of N = 5 distributed sensors with identical value of
the signal-to-noise ratio (SNR) set to 20dB.

In our simulations, we compare the proposed distributed
versions of the LMS-CMA and RLS-CMA to their non-
distributed counterparts, i.e. in which the sensor nodes individ-
ually attempt to process their inputs without benefiting from
any exchange of information with other nodes in the network.
The performance of the developed algorithms is evaluated
based on mean square error (MSE) criterion. Both distributed
and non-distributed LMS-CMA run with equal step size of
µ = 0.0001. In the RLS-based algorithms, the forgetting factor
is set to λ = 0.96, and R−1

0 (0) = βI with the parameter
β = 0.01. Both the LMS and RLS-based algorithms are
initialized with the weight vector w(−1) = [1, 0, . . . , 0].

The results shown in Fig. 2 and 3 are drawn over 500
independent runs, with different system parameter β selected
as above for each run. The graphs in Fig. 2 indicate that,
following an initial period of rapid learning, the distributed
LMS-CMA and RLS-CMA achieve their steady-state level of
residual error faster than the non-distributed LMS-CMA and
RLS-CMA, respectively. Moreover, as a result of the spatial
diversity introduced by the local nodes, the distributed LMS-
CMA and RLS-CMA offer better steady state performance
(i.e. lower residual error) as compared to the non-distributed
algorithms. Note that for the Fig. 2, the values of p and q are
set to two. Finally, the effect of the choice of the parameter p
is illustrated in Fig. 3, where we observe that for this particular
scenario, the best performance is obtained with p = 1.5.

Fig. 2: MSE of distributed and non-distributed adaptive blind
algorithms

VI. CONCLUSION

In this paper, we develop distributed LMS-CMA and RLS-
CMA for wireless sensor network applications. In our model,
the developed blind algorithm runs in the network in a
distributed and adaptive manner over the joint time and
space domains to estimate and track the parameters of an

Fig. 3: MSE of the distributed RLS-CMA for different value
of p

unknown underlying system. Simulation results demonstrate
the effectiveness of the proposed algorithms, and show their
superior performance over the corresponding non-distributed
adaptive algorithms.

In this work, we have used a system identification example
to develop the proposed algorithms. However, the estimation
scenario under consideration can be generalized to more com-
plex situations by modifying the underlying system model and
making changes to the adaptive process running on individual
nodes; this avenue is currently under investigation.

REFERENCES

[1] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,”
in Int. Symp. on Inf. Proc. in Sensor Networks, 2004, pp. 20–27.

[2] A. Sayed and C. Lopes, “Adaptive processing over distributed networks,”
IEICE Trans. Fund. of Elect. and Comm. Comp. Sci., vol. 90, no. 8, pp.
1504–1510, 2007.

[3] C. Lopes and A. Sayed, “Diffusion least-mean squares over adaptive
networks,” in Proc. IEEE Int. Conf. on Acoust., Speech, Signal Process.,
vol. 3, 2007, pp. 917–920.

[4] F. Cattivelli, C. Lopes, and A. Sayed, “Diffusion recursive least-squares
for distributed estimation over adaptive networks,” IEEE Trans. Signal
Process., vol. 56, no. 5, pp. 1865–1877, 2008.

[5] I. Schizas, G. Mateos, and G. Giannakis, “Distributed LMS for
consensus-based in-network adaptive processing,” IEEE Trans. Signal
Process., vol. 57, no. 6, pp. 2365–2382, 2009.

[6] G. Mateos, I. Schizas, and G. Giannakis, “Distributed recursive least-
squares for consensus-based in-network adaptive estimation,” IEEE
Trans. Signal Process., vol. 57, no. 11, pp. 4583–4588, 2009.

[7] R. Johnson, P. Schniter, T. Endres, J. Behm, D. Brown, and R. Casas,
“Blind equalization using the constant modulus criterion: A review,”
Proceedings of the IEEE, vol. 86, no. 10, pp. 1927–1950, 1998.

[8] Y. Chen, T. Le-Ngoc, B. Champagne, and C. Xu, “Recursive least
squares constant modulus algorithm for blind adaptive array,” IEEE
Trans. Signal Process., vol. 52, no. 5, pp. 1452–1456, 2004.

[9] S. Haykin, Adaptive filter theory. Prentice-Hall Information Systems
Science, 1996.

[10] A. Sayed and C. Lopes, “Distributed processing over adaptive networks,”
in Proc. IEEE Int. Symp. on Signal Proc. & and Its App., 2007, pp. 1–3.

[11] J. Proakis and M. Salehi, Digital communications. McGraw-hill New
York, 1995.


