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ABSTRACT

We develop a least mean-squares (LMS) diffusion strategy for
sensor network applications where it is desired to estimate pa-
rameters of physical phenomena that vary over space. In par-
ticular, we consider a regression model with space-varying
parameters that captures the system dynamics over time and
space. We use a set of basis functions such as sinusoids or
B-spline functions to replace the space-variant (local) param-
eters with space-invariant (global) parameters, and then apply
diffusion adaptation to estimate the global representation. We
illustrate the performance of the algorithm via simulations.

Index Terms— Diffusion adaptation, Distributed adap-
tive estimation, sensor networks, space-varying parameters,
population dispersal, fluid-flow.

1 Introduction
Adaptive diffusion strategies were shown to serve as efficient
and powerful learning mechanisms for solving estimation
problems in a distributed manner and in real-time over net-
works [1, 2]. These strategies were used in [3–5] to model
several instances of organized behavior encountered in nature,
such as bird flight formations, fish schooling, bee swarming,
and bacteria mobility.

In these articles and other related works in the area of
distributed optimization, the parameters of interest were as-
sumed to be space-invariant. There are, however, important
applications where the underlying parameters of interest vary
over space, such as in the monitoring of fluid flow in under-
ground porous media [6], the tracking of population disper-
sal [7], and the estimation of distributed sources and processes
in physical phenomena [8].

In this paper, we present a system model with space-
varying parameters that can adequately capture the behavior
of such phenomena, and propose a distributed adaptive strat-
egy of diffusion type to estimate and track the corresponding
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parameters. The proposed algorithm differs from previous
approaches [9–11] in that it is both adaptive and distributed.
The adaptive feature of the algorithm is instrumental in situ-
ations where the space-varying parameters change over time,
and its distributed feature is attractive for networking and
decentralized system models. Compared with previous works
in distributed adaptive filtering, this work extends diffusion
strategies to models with space-dependent parameters, and
rank-deficient local correlation matrices.

Notation: Boldface font is used for random variables and
normal font is used for deterministic quantities. For complex
vectors and matrices, (·)∗ denotes complex conjugate trans-
position. IM denotes the identity matrix of size M ×M .

2 Problem Formulation
We consider a connected network with N nodes where each
node k measures data {dk(i),uk,i} that satisfy a linear re-
gression model of the form:

dk(i) = uk,ih
o
k + vk(i) k ∈ {1, 2, . . . , N} (1)

In this model, the indices k and i represent space and time,
respectively, dk(i) ∈ C is the measurement signal, uk,i ∈
C1×M is the regressor, hok ∈ CM×1 represents the unknown
space-dependent parameter, and vk(i) ∈ C is measurement
noise. This regression model is useful enough to describe the
behavior of physical phenomena whose parameters are space-
varying. For this model, we assume the regression data {uk,i}
are temporally white and independent over space with covari-
ance matrices Ru,k = E[u∗k,iuk,i] > 0. The noise vk(i) is a
zero-mean random process with variance σ2

vk
, independent of

v`(j) for ` 6= k or j 6= i, and also independent of u`,j for all
i, j and k, `.

Our objective is to propose a distributed and adaptive al-
gorithm that can estimate the space-dependent parameters hok,
for k ∈ {1, 2, . . . , N}. To achieve this objective, the global
cost function of the network is taken as:

J(h1, · · · , hN ) =

N∑
k=1

Jk(hk) (2)

where
Jk(hk) = E|dk(i)− uk,ihk|2 (3)
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is the cost function at node k. To proceed, we express themth

component of hk as a linear combination of a set of Nb basis
functions {bj(k) : j = 1, · · · , Nb}, i.e.,

hk(m) =

Nb∑
j=1

Wmjbj(k), for k ∈ {1, · · · , N} (4)

where Wmj are combination (expansion) coefficients. Ob-
serve that the basis functions can depend on the space vari-
able, k. These functions can be chosen, e.g., as sinusoids or
B-splines. Equation (4) can be expressed in matrix form by
introducing

bk = [b1(k), . . . , bNb
(k)]T (5)

Then, hk = Wbk, where

W ,


W11 W12 . . . W1Nb

W21 W22 . . . W2Nb

...
... . . .

...
WM1 WM2 . . . WMNb

 (6)

For computational convenience, we rearrange W as a column
vectorw by stacking the columns ofWT on top of each other,
i.e., w = vec(WT ). In this way, we can write:

hk = Bkw, for k ∈ {1, 2, . . . N} (7)

where Bk ∈ RM×MNb is the block diagonal matrix and com-
puted as

Bk , IM ⊗ bTk (8)

and ⊗ is the Kronecker product. We substitute (7) into (2)
to replace the space-dependent parameter hk with the global
parameter w. Thus, we get:

J(w) =

N∑
k=1

E|dk(i)− uk,iBkw|2 (9)

Now, the goal is to determine the optimal global parameter
wo that minimizes (9) in a distributed manner and arrive at
hok = Bkw

o.

3 Distributed Adaptive Optimization
Let Nk , {νk,1, νk,2, . . . νk,nk

} denote the neighborhood of
node k, where νk,` ∈ {1, . . . , N} denote the indices of the
neighbors, and nk = |Nk| is the cardinality of set Nk. We
also introduce combination matrices C and A ∈ RN×N with
nonnegative entries, such that

c`,k = a`,k = 0, if l /∈ Nk, and C1 = AT1 = 1 (10)

where 1 ∈ RN×1 is a column vector with unit entries. That
is, C is a right-stochastic matrix andA is a left-stochastic ma-
trix. Following the technique developed in [2], we can derive
the diffusion algorithm (listed below) where nodes cooperate

locally to estimate wo. In this algorithm, µk > 0 is the step-
size parameter, and ψk,i is an intermediate estimate at node
k at time i. In this implementation, at every iteration i, every
node k first uses data {d`,i,u`,i} from its neighborhood to
update its existing estimate wk,i−1 to an intermediate value
ψk,i. Subsequently, the intermediate estimates from across
the neighborhood of node k are combined to yield wk,i, from
which the space-dependent parameter hk,i is determined. In
this algorithm, the weighting and combination coefficients
{c`,k, a`,k} can be chosen according to different rules, e.g.,
Metropolis or relative degree rules [2]. They can also be com-
puted adaptively to improve the estimation quality [12].

Diffusion LMS for models with space-varying parameters

ψk,i = wk,i−1 + µk
∑
`∈Nk

c`,k [u∗`,id`,i ⊗ b`

−(u∗`,iu`,i ⊗ b`)B`wk,i−1]

wk,i =
∑
`∈Nk

a`,kψ`,i

hk,i = Bkwk,i

4 Performance Analysis
For space limitations, we only comment here on the conver-
gence of the algorithm in the mean sense. We note that com-
pared to the analysis in [1,2], we now need to account for the
fact that the correlation matrixRu,k = (Ru,k⊗ bk)Bk can be
rank-deficient even when Ru,k is full rank.

4.1 Mean Convergence

We define the local error vectors

w̃k,i = wo −wk,i (11)

ψ̃k,i = wo −ψk,i (12)

and the global error vectors

ψ̃i = col{ψ̃1,i, · · · , ψ̃N,i} (13)

w̃i = col{w̃1,i, · · · , w̃N,i} (14)

where in this representation, col{·} stacks its arguments into
a column vector. In addition, we introduce the extended
weighting matrices A = A⊗ IMNb

and C = C ⊗ IMNb
. We

also define

M = diag
{
µ1IMNb

, · · · , µNIMNb

}
(15)

gi = C
T · col

{
(u∗1,i ⊗ b1)v1(i), · · · , (u∗N,i ⊗ bN )vN (i)

}
(16)

Di = diag
{ N∑

`=1

c`j(u
∗
`,iu`,i ⊗ b`)B` : j = 1, · · · , N

}
(17)

Then, it can be verified that the weight-error vector across the
network evolves according to the recursion:

w̃i = AT (INMNb
−MDi)w̃i−1 −ATMgi (18)
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Taking the expectation of both sides yields:

E[w̃i] = AT (INMNb
−MD)E[w̃i−1] (19)

where D = E[Di] and is given by:

D = diag
{ N∑
`=1

c`,1Ru,`, . . . ,
N∑
`=1

c`,N Ru,`
}

(20)

Considering the fact that the matrices Ru,` can be rank-
deficient, it can be verified that if the step-sizes are chosen to
satisfy:

0 < µk <
2

λmax

( ∑
`∈Nk

c`,kRu,`
) , for k = 1, . . . , N

(21)
then the mean weight-error vector, E[w̃i], would remain
bounded as i→∞.

5 Simulation Results
Example 1 (Source Estimation): In this example, we
demonstrate the application of the algorithm for process esti-
mation in PDE systems. We consider a network with N = 10
sensors that are uniformly placed over an oil reservoir with
L = 1 normalized distance. Assume the dimensionless fluid
pressure distribution can be described as [10]:

∂f(x, t)

∂t
=

∂

∂x

(
θ(x)

∂f(x, t)

∂x

)
+ h(x, t) (22)

where (x, t) ∈ [0, L]× [0, T ] denote the space and time vari-
ables, respectively, f(x, t) represents the fluid pressure distri-
bution, and θ(x) is the known transmissivity parameter. The
objective is to estimate the space-varying process h(x, t). The
boundary and initial conditions of the reservoir are

f(x, t)|t=0 = f(x, t)|x=0 = f(x, t)|x=L = 0 (23)

We employ the finite difference method (FDM) to discretize
the PDE over time and space. Let ∆x = L/N and xk = k∆x
for k ∈ K , {0, 1, 2, . . . , N}. Similarly, let ∆t = T/P and
ti = i∆t for i ∈ I , {0, 1, 2, . . . , P}. We further intro-
duce the sampled value of the pressure distribution fk(i) ,
f(xk, ti), sampled input hk(i) , h(xk, ti)(∆t), and define
θk , θ(xk). In this way, we can express the measurement
samples as

zk(i) = fk(i) + vk(i) (24)

For estimation of hk(i) in the discretized model, we arrive
at the optimization problem given by (2) with Jk(hk(i)) =
E|dk(i)−hk(i)|2 and M = 1 where dk(i) = zk(i)− pk,igk.
In this equation, gk and pk,i, for k = 1, . . . , N , are defined
as:

gk , [gk(1), gk(2), gk(3)]T (25)

pk,i , [fk−1(i− 1), fk(i− 1), fk+1(i− 1)] (26)
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Fig. 1. Performance of diffusion LMS in process estimation.

where the entries of gk are gk(1) = ρ( 1
4θk−1 + θk − 1

4θk+1),
gk(2) = 1 − 2ρθk and gk(3) = ρ(− 1

4θk−1 + θk + 1
4θk+1)

with ρ , ∆t
∆x2 and θk = k/N . For this example, suppose the

unknown input hk(i) comprises of a sink h1,k and a source
h2,k that are independent of time. We therefore can omit the
time index in hk(i) and write hk = h1,k + h2,k. Moreover,
assume the distribution of the sink and the source over space
are given as

h1,k = 0.25e−0.1(k−4)2 , h2,k = −0.125e−0.1(k−8)2 (27)

To represent hk as a constant global vector over the network,
we use equation (4) with Nb = 16 sinusoidal basis func-
tions, i.e., bj(k) = cos (j−1)kπ

2N for odd j, and sin jkπ
2N oth-

erwise. Now, the objective is to estimate the parameter vector
wo = [w1, . . . , wNb

] by using the developed diffusion algo-
rithm. For this, we select C and A according to the Metropo-
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Fig. 2. Performance of the algorithm in the estimation of hk.

lis and relative degree criteria [2]. All nodes are initialized at
zero and operate with step-size of µk = 0.05. The SNR at
each node is randomly chosen from the interval [25, 30]dB.

Fig.1(a), compares the estimated and the true values of the
pressure and the locations of the source and sink in steady-
state. As it is shown, the estimated and the true value of hk
coincide well. Fig. 1(b) shows the network transient behav-
ior in terms of MSD, and compares the results of diffusion
LMS with that of the average of stand-alone LMS filters over
the network. Evidently, the performance of diffusion-LMS is
superior.

Example 2 (Parameter Estimation): We consider a net-
work as in Example 1, with the same topology and same pa-
rameters N , C, A and µk. However, for this example, we use
the system model given in (1), and choose

hk =
[
− 0.5 sin(2πk∆x), 4e−10k∆x, (1.5k∆x− 0.5)

]T
(28)

where ∆x = 1/N . Here, we consider quadratic spline basis
functions withNb = 20 controlling points, and initialize each
filter at zero. For k ∈ {1, · · · , N}, we choose Tr(Ru,k) as

[1, 1.4, 4, 1.9, 1, 2.4, 2.8, 2, 3.2, 3.9] (29)

and the network SNR= [18, 16, 15, 24, 22, 20, 15, 22, 19, 23]dB .
The SNR at each that is computed by using

SNR(k) = E‖ukhk‖2/σ2
vk

(30)

For this example, the results are presented in Fig. 5. From
this figure, we observe that the estimated system parameters
coincide well with the true values.

6 Conclusion
We proposed a diffusion strategy for the distributed estima-
tion of space-varying parameters. We illustrated the operation
of the algorithm by considering two examples.
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