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Abstract—This paper addresses the design of multiuser MI-
MO amplify-and-forward relaying within a cloud radio access
network (C-RAN) from an energy-efficiency perspective. The
aim is to jointly select remote radio heads and optimize their
transceiver in order to assist the communication between multiple
source-destination pairs. We formulate the design problem as
an interference leakage minimization subject to per-relay power
constraints along with linear signal preserving constraints at the
destinations. To obtain an energy efficient relaying solution, the
objective function is penalized with a regularization term which
promotes group-sparsity among the resultant relaying weights.
A low-complexity iterative algorithm based on the alternating
direction method of multipliers (ADMM) is then proposed to
solve the regularized problem. Simulation results demonstrate
the explicit benefits of the proposed algorithm, which results in
notably lower power consumption and computational complexity
than conventional relaying design methods.

I. INTRODUCTION

To meet the increasing demand for high data-rate applica-
tions, network densification is prescribed by current cellular
communication standards [1]. In this approach, additional
access points are deployed in hotspots, creating so-called small
cells to support ubiquitous connectivity across the network. To
fully exploit the benefits of small-cell networks, advanced in-
terference coordination and resource allocation schemes need
to be employed. To enable the low-cost implementation of
these sophisticated schemes, a novel centralized radio access
network (RAN) architecture, called cloud-RAN (C-RAN), has
been proposed for 5G networks [2].

In this new architecture, traditional base station function-
alities are apportioned between a centralized baseband unit
(BBU) pool and remote radio heads (RRHs). The BBU handles
the baseband signal processing functions while the RRHs
provide wireless connectivity to the user equipments (UE).
Besides reducing the deployment and maintenance costs, C-
RAN can improve the network spectral efficiency by exploiting
cloud computing to jointly process user data and perform
interference coordination. To this end, low-latency and high-
bandwidth optical transport links are required to enable the
exchange of large amounts of data between the BBU pool and
RRHs.The use of powerful BBU, multiple RRHs and high-
speed transport links inevitably introduces additional power
consumption [3], which has motivated various research efforts
devoted to designing energy-efficient (green) C-RAN.

Funding for this work was provided by a CRD Grant from the NSERC of
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Energy-efficient transmit solutions for C-RAN have been
extensively studied in multi-cell downlink/uplink setups. A
group sparse RRH beamforming framework was proposed
in [4] with the objective of minimizing the total power
consumption in a C-RAN downlink multicast scenario. This
approach effectively reduces the number of active RRHs, thus
leading to lower network power consumption. The effect of
imperfect channel state information (CSI) was addressed in
[5] under the same network setup and a robust version of the
group sparse beamforming method was proposed. To enhance
the group sparsity for downlink multicast beamforming, the
smoothed lp-minimization relying on the iterative reweighted
l2 minimization algorithm was developed in [6]. The joint
downlink/uplink network power minimization problem was
investigated in [7], where the duality theory was utilized
to derive the beamforming solutions. In addition, [8]–[10]
addressed the problem of optimizing some alternative network
performance metrics under a set of finite-capacity constraints
on the transport links.

While most of the prior works focus on coordinated beam-
forming design in both downlink and uplink setups, the use of
RRHs as relays for further improving network coverage and
performance, and the associated relay selection and transceiver
design algorithms, remain largely unexplored. In [11], the
design of a multiuser relaying subnetwork within C-RAN was
investigated from an energy-efficient perspective. A joint RRH
selection and relay transceiver optimization algorithm was
proposed to minimize the network power subject to a set of
mean square error-based quality-of-service (QoS) constraints.
However, the resultant block-coordinate descent type iterative
algorithm exhibits relatively high computational complexity.

In this work, inspired by [11], we investigate the problem of
joint relay selection and transceiver optimization in a multius-
er amplify-and-forward (AF) relaying subnetwork within C-
RAN, but with the additional goal of reducing computational
complexity. Specifically, we consider a subnetwork where
multiple source-destination pairs communicate with the aid of
multiple cooperative RRHs connected to a BBU. In contrast
to network power minimization, we formulate the design
problem as a regularized sparsity-inducing interference leak-
age minimization subject to a set of linear signal preserving
constraints at the destinations and per-relay power constraints.
The problem is then converted into a form that is suitable
for the application of the alternating direction method of
multipliers (ADMM) [12]. Interestingly, a simple closed-form
solution can be derived for each one of the main ADMM
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Fig. 1. Multiuser sub-network where communication between the source-
destination pairs is assisted by cooperative MIMO relays via the BBU pool.

steps, leading to a very low-complexity iterative algorithm for
relay selection and transceiver optimization. Simulation results
show that the proposed algorithm can yield a satisfactory QoS
level at all destinations with only a subset of active RRHs.
In addition, the processing time of the proposed algorithm is
significantly reduced as compared to benchmark algorithms
relying on external optimization solvers.

The rest of the paper is organized as follows. The C-
RAN-based multiuser relaying system model is introduced in
Section II. In Section III, the constrained and regularized inter-
ference leakage minimization problem is formulated, followed
by the development of the low-complexity ADMM-based
algorithm. Simulation results are presented and discussed in
Section IV. Finally, we conclude the paper in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a multiuser relaying sub-network consisting
of L RRHs serving as AF relays and K pairs of source and
destination UEs, as depicted in Fig. 1. Each source UE is
paired with a single destination UE, both modeled as single-
antenna nodes due to their limited processing capabilities and
low power budgets. By contrast, the lth RRH for l ∈ L =
{1, 2, . . . , L} is equipped with Nl ≥ 1 antennas. All RRHs
are connected to a central node, namely the BBU pool, whose
role is to select a proper subset of RRHs and design AF
transceiver matrices for these active RRHs. A narrowband
flat-fading model is assumed for the radio channels between
the UEs and RRHs. The CSI is assumed to be known and
remain constant within a given transmission interval. There is
no direct link between the source and destination UEs.

Communication is performed in a two-hop half-duplex
mode. During the first hop, the kth source UE for k ∈
K = {1, 2, . . . ,K} transmits its information symbol sk, mod-
eled as a zero-mean complex random variable with variance
E
{
|sk|2

}
= pk. Let hlk ∈ CNl×1 denote the channel vector

between the kth source UE and the lth RRH. The latter receives
the linear superposition of the transmitted information symbols
from each source UE, corrupted by additive noise. This may
be expressed as

rl =

K∑
k=1

hlksk + nl, (1)

where nl ∈ CNl×1 is a spatially white noise vector, with zero
mean and covariance matrix ΣΣΣl = σ2

l INl
. In the AF scheme,

the lth RRH applies a linear transformation to rl, as represented
by matrix Bl ∈ CNl×Nl . The relay transmission power is
constrained by an average antenna power budget Pl, i.e.,

Tr
(
Bl

( K∑
k=1

pkhlkh
H
lk + σ2

l INl

)
Bl

H
)
≤ Pl. (2)

During the second transmission hop, the kth destination UE
receives the sum of the transmitted signals from each RRH
along with additive noise, which may be expressed as

dk =

L∑
l=1

gH
klBlrl + nk

= Sk + Ik + nk, (3)

where gH
kl ∈ C1×Nl denotes the channel vector between the lth

RRH and the kth destination UE, and nk is the additive noise.
The superimposed signals from the RRHs can be expressed
as the sum of two distinct components, i.e., the desired signal
Sk and the interference leakage Ik:

Sk =

L∑
l=1

gH
klBlhlksk (4)

Ik =

K∑
j=1,
j ̸=k

L∑
l=1

gH
klBlhljsj +

L∑
l=1

gH
klBlnl. (5)

The objective of the relay transceiver optimization is to
enhance the reception quality of the desired signal Sk at each
destination UE subject to relay power constraints, as specified
by (2). Motivated by interference alignment techniques [13],
an effective means of achieving this objective is to mini-
mize the total interference leakage at all destination UEs,∑K

k=1 E{|Ik|2}, while enforcing a set of linear constraints
meant to preserve the integrity of the desired signal Sk. Using
(4), these constraints can be stated as

L∑
l=1

gH
klBlhlk = ck, ∀k ∈ K, (6)

where ck are predefined positive constants. Hence, the inter-
ference leakage minimization problem can be written as

min
{Bl}l∈L

I ,
K∑

k=1

E
{
|Ik|2

}
s.t. (2) and (6). (7)

In this work, our aim is to solve the above problem, but taking
into consideration the energy consumption of the RRHs within
the C-RAN framework.

III. PROPOSED SOLUTION

In this section, we first reformulate (7) in a more compact
matrix form, then we incorporate into the formulation a
regularization term to encourage the deactivation of a subset of
RRHs and thus obtain an energy-efficient solution. Finally, an
ADMM-based algorithm is proposed to solve the regularized
problem with low complexity.
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A. Problem Transformation

We begin by examining the closed-form expression for the
total interference leakage in (7) given by

I =

K∑
k=1

(∑
j ̸=k

pj

∣∣∣ L∑
l=1

gkl
HBlhlj

∣∣∣2+ L∑
l=1

σ2
l

∥∥BH
l gkl

∥∥2
2

)
. (8)

To obtain a more compact expression, we replace each AF
matrix by its vectorized version bl = vec{Bl} (obtained by
stacking the columns of Bl) and collect the resulting vectors
into a global vector b , [bT

1 , · · · ,bT
L]

T . From the Kronecker
product property vec(ABC) = (CT ⊗ A)vec(B), the first
term inside the outer summation in (8) can be expressed as∑

j ̸=k

pj

∣∣∣ L∑
l=1

(h∗
lj ⊗ gkl)

Hbl

∣∣∣2. (9)

Defining δδδ
(j)
k , [(h∗

1j ⊗ gk1)
T , (h∗

2j ⊗ gk2)
T , · · · , (h∗

Lj ⊗
gkL)

T ]T ∈ C
∑

N2
l ×1, we find that the above is equal to∑
j ̸=k

pj

∣∣∣bHδδδ
(j)
k

∣∣∣2 = bH∆∆∆kb, (10)

with ∆∆∆k ,
∑

j ̸=k pjδδδ
(j)
k δδδ

(j)
k

H
. Noting that INl

=
∑Nl

i=1 eie
H
i ,

where ei are the standard basis vectors, the second term in the
outer summation in (8) is equal to

L∑
l=1

Nl∑
i=1

σ2
l gkl

HBleie
H
i BH

l gkl. (11)

Applying the same Kronecker product property as before, we
find that (11) is equal to

L∑
l=1

bH
l Gklbl = bHGkb (12)

with Gkl , σ2
l

∑Nl

i=1 (ei ⊗ gkl) (ei ⊗ gkl)
H and Gk =

blkdiag{Gk1,Gk2, . . . ,GkL}.
Next, we apply the property Tr

(
ABAH

)
= vec(A)H(B⊗

I) vec(A) to (2) to obtain the following compact formulation

min
b

bHΘΘΘb (13a)

s.t. bl
HΨΨΨlbl ≤ Pl, ∀l ∈ L (13b)

ΦΦΦHb = c, (13c)

where we define

ΘΘΘ ,
K∑

k=1

(∆∆∆k +Gk) , (14)

ΨΨΨl ,
( K∑

k=1

pkhlkh
H
lk +ΣΣΣl

)
⊗ INl

, (15)

c , [c1, c2, · · · , cK ]T and ΦΦΦ , [ϕϕϕl,k] ∈ C
∑L

l=1 N2
l ×K , which

is partitioned into L×K blocks, each given by ϕϕϕl,k = h∗
lk ⊗

gkl.

We emphasize that at this stage of the formulation, nothing
prevents any of the RRHs from participating in the relay-
assisted transmission, potentially leading to a situation where
all RRHs are activated. In the following, we modify (13) by
adding a regularization term to reduce the number of active
RRHs while still providing an acceptable QoS level.

B. Relay Selection via Group-Sparsity

We first note that the lth RRH being inactive is equivalent to
∥bl∥2 = 0. Consequently, having a small set of active RRHs
implies that the solution vector b is characterized by the so-
called group-sparsity [4], that is, B ,

[
∥b1∥2, · · · , ∥bL∥2

]T
consists of a reduced number of non-zero elements. This
property can be captured by the l0-norm ∥B∥0.

Bearing in mind that our ultimate goal is to design an
energy efficient solution, a group-sparse solution is desired.
Motivated by the widely used least absolute shrinkage and
selection operator (LASSO) method in the machine learning
literature [14], an efficient way to promote the group sparsity
during the optimization is to penalize the objective function
(13a) with an l1-norm term on B, ∥B∥1 =

∑L
l=1∥bl∥2. We

may penalize the objective function (13) by the regularization
term

∑L
l=1 λl∥bl∥2 with λl > 0 being an adjustable parameter

representing the weight given to the lth RRH.
To further simplify the presentation, we define ΨΨΨ ,

blkdiag{ΨΨΨ1, · · · ,ΨΨΨL} and x ,ΨΨΨ1/2b = [xT
1 , · · · ,xT

L]
T with

xl = ΨΨΨ
1/2
l bl. Note that the sample covariance matrix ΨΨΨl in

(15) is non-singular, which implies that whether ∥xl∥2 > 0
or ∥xl∥2 = 0 depends entirely on whether ∥bl∥2 > 0 or
∥bl∥2 = 0. Hence, both vectors x and b share the same group-
sparsity structure. Based on this observation, a regularized
version of (13) can be given by

min
x

xHΘ̆ΘΘx+

L∑
l=1

λl∥xl∥2 (16a)

s.t. xH
l xl ≤ Pl, ∀l ∈ L (16b)

Φ̆ΦΦ
H
x = c, (16c)

where Θ̆ΘΘ ,ΨΨΨ− 1
2ΘΘΘΨΨΨ− 1

2 and Φ̆ΦΦ , ΨΨΨ− 1
2ΦΦΦ.

It can be seen that the above problem is convex, and
therefore can be solved with global optimality using a standard
optimization package via the interior point method [15].

C. ADMM-based Low-Complexity Algorithm

In what follows, we develop an algorithm for solving
the regularized relaying optimization problem (16) based on
ADMM [12]. In particular, we show that each step of the
ADMM admits a closed-form solution, which can significantly
reduce the computational complexity of the algorithm.

To rewrite (16) in a form amenable to the ADMM, we
introduce a synthesized copy of x, namely z, via the linear
constraint x = z. Introducing the constraint sets

C1 : Φ̆ΦΦ
H
x = c (17)

C2 : zHl zl ≤ Pl, ∀l ∈ L, (18)
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(16) can be re-expressed as

min
x,z

xHΘ̆ΘΘx+

L∑
l=1

λl∥zl∥2 (19a)

s.t. x ∈ C1, z ∈ C2, x = z. (19b)

The ADMM algorithm aims to iteratively minimize the
augmented Lagrangian given by

Lρ (x, z,y) = xHΘ̆ΘΘx+
ρ

2
∥z− x∥22 +

L∑
l=1

λl∥zl∥2

−
(
z− x

)H
y − yH

(
z− x

)
, (20)

where ρ > 0 is an algorithm parameter, which is assumed
to remain constant during the ADMM iterations, and y de-
notes the Lagrange multiplier associated with the constraint
x = z. We note that an optimal solution (xopt, zopt,yopt)
that minimizes Lρ (x, z,y) must satisfy xopt = zopt since z
is a synthesized copy of x. Therefore, solving (19) becomes
equivalent to solving the following problem,

min
x,z

Lρ (x, z,y) (21a)

s.t. x ∈ C1, z ∈ C2, x = z. (21b)

The basic idea behind ADMM is to solve the above problem
with respect to x and z separately in an alternating manner,
i.e., one variable at a time with the other fixed. After each
round of update of x and z, the dual variable y is updated
to ensure that x and z become closer to each other. In effect,
the above optimization problem can now be decoupled into
three separate steps, all of which, interestingly, admit a simple
closed-form solution, as detailed below.

1) Update x: The subproblem solving for x can be ex-
pressed as minx∈C1 Lρ(x, z,y), with z and y fixed. Using
(20), the above subproblem can further be expressed as the fol-
lowing linearly-constrained quadratic program after neglecting
all terms that are independent of x:

xopt = argmin
x

xHΘ̆ΘΘx+
ρ

2
∥z− x∥22 + yH x+xH y (22a)

s.t. Φ̆ΦΦ
H
x = c. (22b)

It is observed that the objective function (22a) is strictly con-
vex in x and Slater’s constraint qualification holds, i.e., (22)
is strictly feasible. Hence, the Karush-Khun-Tucker sufficient
conditions hold for the optimal solution xopt together with
some optimal dual variable νννopt, yielding:{

Qxopt = ρ
2z− y + Φ̆ΦΦνννopt

Φ̆ΦΦ
H
xopt = c

, (23)

where Q , Θ̆ΘΘ + ρ
2I

∑
N2

l
.

Re-arranging the first equation in (23), we obtain

xopt = Q−1
(ρ
2
z− y + Φ̆ΦΦνννopt

)
. (24)

To determine the value of the optimal dual variable νννopt, we
substitute (24) back into the second equation of (23). After
some matrix manipulations, νννopt is given by

νννopt = Q̆−1
(
c− Φ̆ΦΦ

H
Q−1(

ρ

2
z− y)

)
, (25)

where Q̆ , Φ̆ΦΦ
H
Q−1Φ̆ΦΦ. Then substituting (25) back into (24),

the following closed-form solution is obtained

xopt = Q−1
((

I−Φ̆ΦΦQ̆−1Φ̆ΦΦ
H
Q−1

)(ρ
2
z−y

)
+Φ̆ΦΦQ̆−1c

)
. (26)

2) Update z: Similarly, the subproblem solving for z can
be written as minz∈C2

Lp(x, z,y), where the values x and y
are obtained from the previous iteration. Observing that the
first term in (20) is independent of z, we write

zopt = arg min
z∈C2

L∑
l=1

λl∥zl∥2 +
ρ

2
∥z− x∥22 − yHz− zHy.

(27)

Decoupling (27) over each zl, we obtain L parallel subprob-
lems each expressed by

zopt
l = arg min

∥zl∥2
2≤Pl

λl∥zl∥2 +
ρ

2
∥zl − xl∥22 − yH

l zl − zHl yl,

(28)
where the original Lagrange multiplier may be decomposed
into L such multipliers, i.e., y = [yT

1 ,y
T
2 , . . . ,y

T
L ]

T . To find
a closed-form solution, we first present the following lemma,
whose proof is omitted due to lack of space.

Lemma 1: Consider the convex minimization problem

min
∥x∥2

2≤P
λ∥x∥2 +

ρ

2
xHx− xHa− aHx. (29)

The global minimizer xopt admits the closed-form solution

xopt =
a

∥a∥2
(
ρ
2 + ηopt

) [∥a∥2 − λ]+ (30)

where [c]+ , max{0, c} and the optimal dual variable ηopt

associated with the quadratic constraint ∥x∥22 ≤ P is given by

ηopt =

[
[∥a∥2 − λ]+√

P
− ρ

2

]
+

. (31)

�
Using Lemma 1, the optimal solution to (28) is given by

zopt
l =

al

∥al∥2
(
ρ
2 + ηl

) [∥al∥2 − λl]+ (32)

where ηl =
[
∥al∥2−λl√

Pl
− ρ

2

]
+

and al =
ρ
2 xl +yl.

In summary, both the updates of x and z are obtained in
closed-form at each iteration with the aid of (26) and (32). In
addition, the update step for z can be carried out in a parallel
fashion. The ADMM-based algorithm is now summarized in
Algorithm 1, where the primal and dual residuals are defined
as follows (see [12]),

r(j+1) = x(j+1) − z(j+1), (33)

s(j+1) = −ρ

2
(z(j+1) − z(j)), (34)

and ϵr, ϵs > 0 denote the tolerance parameters.
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Algorithm 1 ADMM for solving (16)

1: Initialization: primal variable z(0) (arbitrary non-zero
vector); dual variable y(0) = 0; set ADMM iteration
index j = 0;

2: repeat
3: Update x(j+1) using (26)
4: Update z

(j+1)
l using (32) for all l ∈ L.

5: Update the Lagrange multiplier y by

y(j+1) = y(j) +
ρ

2

(
x(j+1)−z(j+1)

)
6: j ← j + 1;
7: until ∥r(j+1)∥2 ≤ ϵr and ∥s(j+1)∥2 ≤ ϵs

D. An Improved Two-Stage ADMM Implementation

The ADMM-based algorithm is capable of selecting a subset
of active RRHs. However, similar to the LASSO problem in
compressive sensing literature, the addition of the norm-based
regularization term in the objective function [c.f. (16a)] may
lead to worse relaying performance, which can be improved
by solving for the optimal relaying AF matrices one more time
for those active RRHs selected from the previous step. This
problem can be formulated as

min
x̆

x̆HΘ̆ΘΘRx̆ (35a)

s.t. xH
l xl ≤ Pl, ∀l ∈ A (35b)

Φ̆ΦΦ
H

R x̆ = c, (35c)

where x̆ now only consists of weights from active RRHs and
A , {l ∈ L : ∥zl∥2 > 0} denotes the subset of active RRHs.
Note that Θ̆ΘΘR and Φ̆ΦΦR are reduced versions of ΘΘΘ and ΦΦΦ, where
elements related to the inactive RRHs are deleted. The two-
stage ADMM implementation is now summarized as follows:

1) Solve (16) using Algorithm 1 and determine the subset
of active RRHs A;

2) Solve (35) for active RRHs using ADMM1.

IV. RESULTS AND DISCUSSION

In all our simulations, we consider a relaying sub-network
consisting of K = 6 source-destination pairs and L = 6 RRHs.
For simplicity, we use the same number of antennas and power
budget for all RRHs, i.e., Nl = 4 and Pl = 2W for all
l. The channel coefficients are generated as independent and
identically distributed zero-mean complex circular Gaussian
variables with unit variance. The noise variances at the RRHs,
σ2
l , are set according to the desired input relay signal-to-noise

ratios (SNR), defined as γl =
Pl

Nlσ2
l

. All the simulation results
are averaged over 100 independent realizations.

Fig. 2 shows the convergence behavior of Algorithm 1 for
one specific channel realization. It can be observed from the
top-left figure that the value of the objective function, i.e.
(16a), monotonically decreases with the iteration number. In

1The development of an ADMM-based solution for this simplified problem
parallels that in Section III and is omitted due to space limitations.
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Fig. 2. Convergence behavior of the proposed ADMM-based algorithm with
γl = 15 dB, λ = 100 and ϵr = ϵs = 10−5.
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Fig. 3. Achievable average SIR at all destination versus the relay input SNR

the top-right figure, it is observed that the norm of relaying
weights, i.e. ∥zl∥2, for three RRHs approaches zero. In effect,
this means that for this specific realization, the algorithm
yields a subset of three active RRHs.

In Fig. 3, we evaluate the achieved average signal-
to-interference ratio (SIR) at all destinations (defined as
1
K

∑K
k=1(E{|Sk|2}/E{|Ik|2}), c.f. [(4), (5)]) as a function of

the relay input SNR. We vary the regularization parameter
λ to examine the tradeoff between the achievable network
performance and the energy efficiency in terms of the number
of active relays and the total network energy consumption.
It is shown that the non-sparse relay beamforming solution,
which solves (16) without the regularization term, i.e., λ = 0,
yields the best received SIR as expected since all the RRHs are
involved in the transmission. As the value of λ increases, a gap
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Fig. 4. Top figure: average number of active RRHs versus the regularization
parameter λ. Bottom figure: sum of RRH power versus the regularization
parameter λ. The front-haul power is set to Pc,l = 5.6W for all RRHs [6].

between the performance of the non-sparse solution and the
proposed group-sparse solution can be observed. For instance,
at the relay input SNR level of 15dB, selecting λ = 50 leads
to a reduction in the achieved SIR of around 3dB.

To gain more intuition behind the performance reduction
observed in Fig. 3, we show the average number of active
RRHs and their total power consumption with varying λ in
Fig. 4. It is observed that for all relay input SNR levels,
on average less than 5.5 RRHs are active for the case of
λ = 20 while less than 4.5 RRHs are active for the case
of λ = 100. The RRH individual power is defined as
Pl = 1

ηl
Pt,l + Pc,l, where ηl denotes the efficiency of the

power amplifier, e.g., ηl = 50% [16], Pt,l denotes the RRH
transmission power ([c.f., (2)]) and Pc,l denotes the front-haul
link power consumption [6], which can be saved when the
lth RRH is switched off. The proposed group-sparse yields a
17% reduction in the sum RRH power. Based on the results,
it becomes evident that the proposed solution can improve the
network energy efficiency while still providing a satisfactory
level of QoS for all the end-users.

Finally, we compare the processing time of the proposed
algorithm with two methods relying on external optimiza-
tion solvers, specifically, SeDuMi and MOSEK. The external
solver-based approaches solve (16) and (35) by directly invok-
ing the corresponding solvers. The results, listed in Table I,
show that the complexity of the proposed algorithm represents
only a small fraction of that of the solver-based solutions.

V. CONCLUSIONS

A low-complexity joint RRH selection and relay AF
transceiver optimization algorithm was proposed for a mul-
tiuser relaying network within a C-RAN. The design problem
was formulated to minimize the total interference received at
all destinations subject to a set of linear signal preservation

TABLE I
PROCESSING TIME OF DIFFERENT SOLUTIONS (IN SECONDS)

Regularization parameter λ
1 10 20 50 100

SeDuMi 0.1658 0.2992 0.2293 0.2367 0.2391
MOSEK 0.0349 0.0459 0.0473 0.0506 0.0509
Proposed 0.0056 0.0077 0.0098 0.0118 0.0130

constraints and per-relay power constraints. A regularization
term representing the group sparsity pattern associated with
the relay AF matrices was added to the objective function.
A two-stage ADMM-based algorithm was then proposed to
solve the design problem. Simulation results show that the
proposed algorithm leads to lower power consumption and
computational complexity than conventional relaying methods.
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