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Abstract— In this paper, we present a systematic study of
the subspace-based blind channel estimation method. We first
formulate a general signal model of multiple simultaneous signals
transmitted through vector channels. Based on this model, we
then propose a generalized subspace-based channel estimator by
minimizing a novel cost function, which incorporates the set of
kernel matrices of the signals sharing the target channel via a
weighted sum of projection errors. We investigate the asymptotic
performance of the proposed estimator, i.e. bias, covariance, mean
square error (MSE) and Cramer-Rao bound, for large numbers
of independent observations. We show that the performance of
the estimator can be optimized by increasing the number of
kernel matrices and by using a special set of weights in the cost
function. Finally, we consider the application of the proposed
estimator to a down-link CDMA system. The results of the
computer simulations fully support our analytical developments.

I. INTRODUCTION

Recently, blind channel estimation algorithms have received
considerable attention due to their advantages in terms of
bandwidth efficiency [1]. Of particular interest within the fam-
ily of blind algorithms are the so-called subspace-based blind
channel estimation algorithms, which derive their properties
from the second-order statistics of the received signals.

During the past decade, subspace-based channel estimation
algorithms have been developed for and applied to various
vector channels, such as: SIMO channels [2]; frequency se-
lective fading channel in DS-CDMA systems [3], [4]; mul-
tiple receiver antennae and/or multiple transmitter antennae
channels in CDMA systems [5]. Although these algorithms
were developed separately for certain specific transmission
scenarios, the similarities among them indicate that there must
exist some common features of the underlying system models,
which provide for the feasibility of the subspace channel
estimation. However, so far these common features have not
been studied in the literature.

Besides, among the existing subspace-based channel estima-
tion algorithms, a majority of them only utilize a single signal
component to estimate the target channel, e.g. [3]. However,
in many situations of interest, the target channel is shared by
multiple signal components simultaneously, as in e.g. a typical
downlink environment in cellular systems [4], time dispersive
channels [4] or space-time block coded channels [5]. Then the
problem of utilizing multiple signal components to estimate
the target channel arises naturally. A pioneering work on this
topic appeared in [2], which tackles the ISI channel estimation
problem in SIMO systems. Extension to the ISI channel in
CDMA can be found in [4]. So far, there has not been a study

that quantifies the effects of using multiple signal components
in subspace-based blind channel estimation.

Motivated by the above considerations, we present a sys-
tematic study of the subspace-based blind channel estimation
method. We first formulate a general signal model of multiple
simultaneous signals transmitted through vector channels, We
then proposed a generalized subspace-based channel estimator
by minimizing a novel cost function, which incorporates
the set of kernel matrices of the signal components sharing
the target channel via a weighted sum of projection errors.
We investigate the asymptotic performance of the proposed
estimator, i.e. bias, covariance, mean square error (MSE) and
Cramer-Rao bound (CRB) for large numbers of independent
observations. Finally, we consider the application of the pro-
posed estimator to a down-link CDMA system operating in
frequency selective fading channel with negligible ISI. The
results of the computer simulations fully support our analysis.

II. PROBLEM FORMULATION

We consider the following model of an L-dimensional
received signal vector in a communication system:

r =
N∑

i=1

γibiCihi + e (1)

where N is the number of individual symbols that comprise the
received signal vector, γi is a real-valued received amplitude,
bi is the i-th information symbol, Ci is defined as a kernel
matrix with size L× M , hi is an M × 1 normalized channel
vector (i.e. ‖hi‖ = 1), and e is an L×1 additive noise vector.
We assume that the information symbols bi, for i = 1, . . . , N ,
are independent and identically distributed with zero mean and
unit variance. The additive noise vector e is circularly complex
Gaussian with covariance matrix σ2IL and is independent
from the information symbols bi. We define

b � [b1, . . . , bN ]T (2)

Γ � diag[γ1, . . . γN ] (3)

W � [w1, . . . ,wN ] (4)

where wi � Cihi for i = 1, . . . , N is the effective signature
waveform of the i-th information symbol, i.e. combined effect
of channel and kernel matrix as seen by the receiver. Using the
above matrix notations, the signal model (1) can be expressed
more compactly as

r = WΓb + e (5)
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In the sequel, we refer to the individual products γibiCihi

(i = 1, ..., N ) in (1) as signal components. We assume that
these N signal components experience J different channels,
1 ≤ J ≤ N . Then we separate the N signal components
into J groups, such that the signal components in each group
share the same channel. We denote the number of signal
components in the m-th group as Km (m = 1, . . . , J),
so that

∑J
m=1 Km = N . In the m-th group, we use the

superscript m to denote group affiliation, as in the common
channel parameter hm, and we use the superscript l to further
distinguish among the Km signal components, as in γm,l, bm,l,
Cm,l and wm,l.

This general model is applicable to a multitude of commu-
nication systems, e.g. [2]-[5]. For details, please check [6].

Within the above framework, the goal of blind channel
estimation is to determine a target channel vectors hm, m =
1, . . . , J , using T observations of the received signal vector in
(1). In blind channel estimation, the transmitted information
symbols, as represented by vector b (2), are unknown. To
estimate the target channel vector hm, at least one kernel
matrix in the m-th group needs to be known by the estimating
algorithm. In practice, the specific available knowledge of the
kernel matrices depends on the particular system under con-
sideration. Below, we formulate a generalized cost function for
subspace-based blind channel estimation, which incorporates
the set of kernel matrices of the signal components sharing the
target channel. We then investigate the asymptotic performance
of the estimator when the number of independent observations
T is large.

III. GENERALIZED BLIND SUBSPACE CHANNEL

ESTIMATION

A. Theoretical Foundation

Let R denote the covariance matrix of received signal vector
r in (1):

R = E[rrH ] = WΓ2WH + σ2IL (6)

Blind subspace methods exploit the special structure of R to
estimate the channel parameters. Specifically, let us express
the EigenValue Decomposition (EVD) of R in the form

R = UΛUH (7)

where Λ = diag[λ1, . . . , λL] denotes the eigenvalue matrix,
with the eigenvalues in a non-increasing order, and U is a
unitary matrix that contains the corresponding eigenvectors.
Since the rank of matrix WΓ2WH (6) is N , it follows that

λ1 ≥ · · · ≥ λN > λN+1 = · · · = λL = σ2 (8)

Thus, the eigenvalues can be separated into two distinct
groups, the signal eigenvalues and the noise eigenvalues, re-
spectively represented by matrices Λs � diag[λ1, . . . , λN ] and
Λn � diag[λN+1, . . . , λL]. Accordingly, the eigenvectors can
be separated into the signal and noise eigenvectors, represented

by matrices Us and Un. With these notations, the EVD in (7)
can be expressed as

R =
[

Us Un

] [
Λs 0
0 Λn

] [
UH

s

UH
n

]
(9)

The columns of Us span the so-called signal subspace with
dimension N , while those of Un span its orthogonal comple-
ment, i.e. the noise subspace. The signal subspace is indeed
equal to the space spanned by the columns of W:

Span[W] = Span[Us] ⊥ Span[Un] (10)

To estimate the target channel vector hm, which is shared by
the signal components in the m-th group, we select 1 ≤ P ≤
Km effective signature waveforms from the m-th group, say
wm,j (j = 1, . . . , P ) without loss of generality, and construct
a matrix W̄ � [wm,1, . . . ,wm,P ]. Then

Span[W̄] ⊆ Span[W] ⊥ Span[Un] (11)

Consequently, UH
n W̄ = 0. Defining

Us � IP ⊗ Us (12)

Un � IP ⊗ Un (13)

CT � [(Cm,1)T , . . . , (Cm,P )T ] (14)

where ⊗ represents the Kronecker product, and applying
vectorization operation on UH

n W̄, we obtain

vec[UH
n W̄] = UH

n vec[W̄] = UH
n Chm = 0 (15)

B. The Algorithm

In practice, the covariance matrix R is usually unknown and
must be estimated from the observed data via time averaging.
Assuming a locally stationary environment, one such estimate
based on a rectangular window of T samples is given by
R̂ = 1

T

∑T
j=1 rjrH

j , where rj now denotes the received signal
vector at the j-th time instant (with similar modifications for
other quantities of interest b → bj , e → ej), for j = 1, . . . , T .
In practice, the EVD is applied to R̂, resulting in the noisy
estimates of Us,Un, Λs and Λn, respectively denoted as
Ûs,Ûn, Λ̂s and Λ̂n. Consequently, the noisy estimates of
Us (12) and Un (13) are defined as Ûn � IP ⊗ Ûn and
Ûs � IP ⊗ Ûs.

In this work, we consider the following optimization crite-
rion for the blind estimation of channel vector hm:

ĥm = arg min
||t||=1

tHDt (16)

where D � CH ÛnÛH
n C =

∑P
i=1(C

m,i)HÛnÛH
n Cm,i. Ide-

ally, if Ûn = Un and the identifiability condition (see [3])
is satisfied, all the eigenvalues of CH ÛnÛH

n C in the above
criterion are positive except the smallest one, which is equal
to 0. However, in practice, the estimation error in Ûn may
result in a positive perturbation in the smallest eigenvalue so
that the matrix CH ÛnÛH

n C is positive definite. In this case, (15)
does not have a (non-trivial) solution, but the target channel
vector still can be estimated by minimizing the cost function
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TABLE I

GENERALIZED BLIND SUBSPACE CHANNEL ESTIMATION ALGORITHM

R̂ = 1
T

∑T
j=1 rjr

H
j

R̂ = [ Ûs Ûn]

[
Λ̂s 0

0 Λ̂n

] [
ÛH

s

ÛH
n

]

P is user specified
Ûn � IP ⊗ Ûn

CT � [(Cm,1)T , . . . , (Cm,P )T ]

αi, i = 1, . . . , P , are user specified

A � diag[
√

α1, . . . ,
√

αP ]

A � A ⊗ IN

Construct the matrix CH ÛnAAÛH
n C

ĥm is the smallest eigenvector of CH ÛnAAÛH
n C

in (16). Thus, we conclude that the optimization criterion in
(16) is more robust to the perturbation of Un than (15).

The choice of kernel matrices Cm,i included in the proposed
criterion (16) is specified by the user, allowing a generalization
of previous works. For example, the single signal algorithm
in [3] can be viewed as a special case of (16) with P = Km =
1, while the multiple signals algorithms in [2] corresponds to
P = Km. Here we can use any value of 1 ≤ P ≤ Km.

A further modification to the above criterion is motivated
by the consideration of performance (see Sections IV and V).
Specifically, we shall allow the assignment of different weights
to the different terms (Cm,i)HÛnÛH

n Cm,i, i.e.

ĥm = arg min
||t||=1

tH [
P∑

i=1

αi(Cm,i)HÛnÛH
n Cm,i]t (17)

where αi > 0 are user-specified weight parameters. Defining
A � diag[

√
α1, . . . ,

√
αP ] ⊗ IL−N , criterion (17) can be

expressed in matrix form as:

ĥm = arg min
||t||=1

tHCH ÛnAAH ÛH
n Ct (18)

From an algorithmic viewpoint, the solution ĥm of (18) can
be calculated as the eigenvector corresponding to the small-
est eigenvalue of CH ÛnAAH ÛH

n C. The resulting estimation
algorithm is summarized in Table I; we call it the generalized
blind subspace channel estimation algorithm.

IV. ASYMPTOTIC PERFORMANCE ANALYSIS

In this section, we investigate the asymptotic performance
of the proposed generalized blind subspace channel estimator
(see Table I). We define the estimation error as ∆hm � ĥm−
hm, where ĥm and hm respectively denote the estimated and
true target channel vector for the m-th group. The performance
criteria of interest are the bias, covariance and mean square
error of the proposed estimator, respectively defined as

Bias � E[∆hm] (19)

Cov � E[(∆hm − E[∆hm])(∆hm − E[∆hm])H ](20)

MSE � E[||∆hm||2] (21)

We assume that the number of time samples T is large, so that
1
T

∑T
j=1 bjbH

j ≈ IN . Thus, the algorithm performance shall
not depend on the specific transmitted sequence {bj}.

Theorem 1 The proposed generalized estimator ĥm is asymp-
totically unbiased (i.e. Bias = 0) with the covariance

Cov =
σ2

T
[(CHUnA)†]HAHΥ−2A(CHUnA)† (22)

where Υ � diag[γm,1, . . . , γm,P ] ⊗ IL−N , and mean square
error MSE = Tr[Cov].

Due to the space limitation, the proofs of the Theorems is
omitted in this paper, The detailed proofs can be found in [6].

Theorem 1 indicates that the performance of the proposed
estimator depends on the user specified parameters, i.e. the
weight matrix A and the compounded kernel matrix C (14),
which is determined by the set of kernel matrices utilized in
the estimator, i.e. S � {Cm,1, . . . ,Cm,P }.

We next investigate the optimal choice of parameters A and
S that minimizes the mean square error and the covariance
of the estimator. To this end, it is convenient to explicitly
indicate the functional dependence of these measures on A
and S, i.e. MSE(A, S) and Cov(A, S). We begin with the
minimization of MSE(A, S), which proceeds in two steps.
Firstly we minimize this measure by adjusting the weight
matrix A in the case of a fixed set S; secondly we search for an
optimal S to minimize MSE(A, S) when the optimal weight
matrix determined in the first step is used. Then the resulting
choice on the parameters A and S minimizes MSE(A, S).

Theorem 2 cΥ is the optimal weight matrix minimizing
MSE(A, S) for a fixed set S:

MSEo(S) � min
A

MSE(A, S) = MSE(cΥ, S) =
σ2

T
Tr[Q†]

(23)
where c is an arbitrary constant and Q � CHUnΥ2UH

n C.

Theorem 2 shows that the optimal weights αi (i = 1, . . . , P )
are proportional to the corresponding received powers (γm,i)2.

Next we consider the set of kernel matrices S utilized in
the estimator with optimal weight matrix.

Theorem 3 For any proper subset Sq of S, we have

MSEo(S) < MSEo(Sq) (24)

The above theorem implies qualitatively that enlarging the set
of kernel matrices S in the estimator will decrease its mean
square error. Consequently the minimum mean square error is
achieved when the estimator utilizes the kernel matrices of all
the signal components in this group:

MSEo � min
S⊆U

MSEo(S) = MSEo(U) =
σ2

T
Tr[(Qm)†] (25)

where U � {Cm,1, . . . ,Cm,Km} and Qm is defined as Q
with P = Km

Theorem 4 Given an arbitrary partition of S into Q non-
empty subsets Sq (q = 1, . . . , Q), we have

MSEo(S) ≤
∑Q

q=1 c2
qMSEo(Sq)

(
∑Q

q=1 cq)2
(26)

where cq is an arbitrary positive integer for q = 1, . . . , Q.
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As a special case of Theorem 4, assume that for q = 1, . . . , Q,
cq = 1, and subset Sq only has one element, i.e. Sq = {Cm,q},
and consequently Q = P . Then MSEo(Sq) represents the
mean square error of the single signal estimator (e.g. [3])
applied on Cm,q. Thus according to Theorem 4

MSEo(S) ≤ 1
P 2

P∑
q=1

MSEo(Sq) =
MSE
P

(27)

where MSE � 1
P

∑P
q=1 MSEo(Sq) denotes the average mean

square error of single signal estimators over the set S.
Based on the above considerations, we suggest the following

principles for minimizing MSE(A, S):
1) Choose the weights proportional to the received powers;
2) Include the maximum number of kernel matrices.

We now turn our attention to the optimization of the
covariance of the proposed estimator, as defined in (20). So far,
we have not been able to extend the results of Theorems 2 to 4
to the covariance matrix so that they remain valid in the form
of matrix inequalities. Fortunately, we can use the Cramer-Rao
bound (CRB) to judge the optimality of the parameter choice
previously obtained in the case of mean square error. That is:
if the covariance matrix with the parameters A = cΥ and
S = U achieves the CRB, this parameter setting is considered
the optimal one to minimize the covariance of the estimator.

We notice that some constraints are usually imposed on
the estimated channel vector, e.g. unit norm. In this case, the
traditional CRB is no longer applicable. The CRB for param-
eter estimation under constraints was recently given in [7],
where a so-called constrained CRB is derived which depends
on the specific algebraic constraints imposed on the estimated
parameters. In [8], the concept of minimal constrained CRB is
further introduced, which corresponds to the CRB matrix with
the smallest trace (i.e. MSE) among the various constrained
CRB matrices within the constraint class.

Theorem 5 The minimal constrained CRB for the channel
vector of interest is given by

CRBC,hm =
σ2

T
(Qm)† (28)

From the previously derived expression (22) for the covariance
matrix of the target channel, we find that the proposed general-
ized subspace estimator ĥm achieves the minimal constrained
CRB when A = cΥ and S = U . Therefore, we conclude
that the choice of parameters A = cΥ and S = U not
only minimizes the mean square error, but also minimizes the
covariance of the estimator.

V. COMPUTER EXPERIMENTS

Consider a down-link DS-CDMA connection from a base
station to N remote users. The information bit to the i-th user
bi is spread by a unique spreading code ci � [ci

1, . . . , c
i
Lc

]H ,
where Lc is the processing gain. The frequency-selective chan-
nel is modelled as an FIR filter. The normalized coefficient
vector of the filter is represented by h with size M × 1. The
kernel matrix of the i-th user Ci is an (Lc − M + 1) × M

Toeplitz matrix with the first column [ci
M , . . . , ci

Lc
]T and the

first row [ci
M , . . . , ci

1] [3]. Assuming the received amplitude
of the i-th user is γi and the signal of all the users are
synchronized, the received signal can be represented as

r = (
N∑

i=1

γiCibi)h + e (29)

The algorithm in Table I was specialized to this situation,
resulting in a novel blind channel estimator that utilizes
multiple signal components. Computer experiments were then
conducted to verify the theoretical performance results derived
in the last Section.

In the simulations, the following parameter values are used:
number of active users N = 4, processing gain Lc = 12 and
length of the channel vector M = 4. The binary spreading
codes were randomly generated and stored for later use. We
assume that some power control technique is applied so that
the received amplitudes [γ1, γ2, γ3, γ4] are proportional to
[1, 2, 3, 4], respectively. The following sets of kernel matrices
were considered in the evaluation: S1 = {C1} ⊂ S2 =
{C1,C2} ⊂ S3 = {C1,C2,C3} ⊂ S4 = {C1,C2,C3,C4}.
We use the average value of the square error in 104 indepen-
dent experiments to approximate the mean square error.

According to the analysis in Section IV, we consider the
asymptotic MSE performance of the proposed estimator. From
(23), (24) and (27), it respectively follows that

MSEo(S4) = MSE(Υ, S4) ≤ MSE(I4(L−N), S
4) (30)

MSEo(S4) < MSEo(S3) < MSEo(S2) < MSEo(S1) (31)

MSEo(S4)≤ 1
42

4∑
i=1

MSEo({Ci}) (32)

where Υ � diag[γ1, . . . , γ4]⊗ I4(L−N) and L = Lc −M +1.
Both the theoretical and experimental results simulation

results are presented in Fig. 1 to 4. Fig. 1 to 3, respectively,
show the MSEs in (30), (31) and (32) plotted as a function
of SNR, with a number of observed samples T = 104.
Fig. 4 shows the MSEs in (31) plotted as a function of the
number of observed samples T , with the SNR set to 10dB.
Clearly, the theoretical performance properties in (30), (31)
an (32) are verified in our simulations. Generally, we find
that all the experimental results match the theoretical results
well, especially in the case of high SNR and large T . The
former is because our theoretical results are derived from a
first-order perturbation analysis, which is accurate for small
perturbations (i.e. high SNR); the latter is because in the
asymptotic analysis we assume a large number of samples
T . Our results thus support the performance analysis of the
general model presented in Section IV.

VI. CONCLUSION

We presented a systematic study of the subspace-based
blind channel estimation method. We first introduced a general
signal model of multiple simultaneous signals transmitted
through vector channels, which can be applied to a multitude
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of modern digital communication systems. Based on this
model, we formulated a generalized cost function for the
purpose of subspace-based blind channel estimation, which
incorporates the set of kernel matrices of the signals sharing
the target channel via a weighted sum of projection errors. We
investigated the asymptotic bias, covariance, MSE and CRB
of the proposed estimator when the number of observations is
large. We showed that the performance of the estimator can be
optimized by using the maximum number of available kernel
matrices and a special set of weights in the cost function. The
results of the computer simulations fully support our analysis.
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