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Abstract— The increase in the demand for voice and data
wireless services creates a need for a more efficient use of the
available bandwidth. Current and future generations cellular
systems based on DS-CDMA are known to be interference-
limited. Several approaches exist to mitigate the multiple access
interference including multiuser detection (MUD). Group-based
techniques have been proposed to reduce the complexity of the
MUD and have been shown to provide a performance-complexity
tradeoff between match filtering and full MUD. In this work, we
propose to reduce the inter-group interference (IGI), a limiting
factor in group-based systems, using linear parallel interference
cancellation (PIC). The complete equivalent matrix filter is
derived and conditions for its convergence are discussed. The
numerical results show that the proposed technique is effective
against IGI, at a reduced computational cost.

I. INTRODUCTION

Most of the current and future cellular wireless systems
based on direct-spread code-division multiple access (DS-
CDMA) are interference-limited. Several techniques exist for
interference reduction; in particular for DS-CDMA systems,
where multiple access interference (MAI) is known to limit the
system capacity, multiuser detection (MUD) and beamforming
(BF) with antenna arrays have been widely studied [1]–[3].

Optimal MUD takes the form of trellis decoding and is
very complex due to the size of the search space which
increases exponentially with the number of users and sequence
length [4]. Solving with the Viterbi algorithm would represent
a considerable challenge for real-time operations. Several
reduced complexity suboptimal techniques for MUD have
been proposed, including linear filtering approaches [5], and
iterative techniques [6], [7].

Alternatively, to reduce the complexity of the MUD and
at the same time reduce the co-channel interference, it has
been proposed in [8], [9] to cluster users in mutually exclusive
groups of spatial equivalence. The data symbols from each
group are jointly detected using reduced dimension MUD
while the inter-group interference (IGI), i.e. the interference
created by the users outside of the group of interest, is reduced
by using spatial filtering or beamforming, a concept illustrated
in Fig. 1. The total complexity associated to the reduced di-
mension multiuser detectors is potentially significantly smaller
than the full MUD complexity.

In the existing literature on group-based MUD, beamform-
ing is generally used for separating the signal among the
groups [10]–[13]. As indicated in [13], BF reduces the dimen-
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Fig. 1: Group-based space-time multiuser detection conceptual diagram.

sion of the observation space seen by the MUD filters. Thus
the number of degrees of freedom for designing the filters is
decreased, reducing at the same time their effectiveness. In this
work, we propose to accomplish IGI reduction using parallel
interference cancellation (PIC) among the groups, after MUD.
The approach we propose provides significant advantages over
the existing techniques. In particular, the independent BF units
that are used for signal separation (e.g.: [10]) are removed,
reducing the numerical complexity of the design. Also, since
IGI is to be reduced at each PIC iteration, it can be ignored
in the design of the MUD filter. Finally, the performance of
this new structure is shown to be very close to that of the full
MUD algorithm, at half its computational cost.

The remainder of the paper is organized as follows. Back-
ground information and system model are presented in Sec-
tion II. In Section III the new structure is developped. Numer-
ical simulation results are shown in Section IV, and finally
some conclusions are drawn in Section V.

II. BACKGROUND

A. Signal model

Consider the uplink of a synchronous DS-CDMA commu-
nication system with K users transmitting blocks of N infor-
mation symbols simultaneously through a dispersive channel
to a common multi-antenna receiver. At each antenna, the
received signal is converted to baseband, matched filtered to
the transmission pulse and sampled at the “chip” rate of 1/Tc,
where Tc denotes the chip duration. The observed signal at
the receiver therefore consists of a complex-valued vector of
length NQ+W−1, where Q = Ts/Tc is the symbol expansion
factor (or spreading factor), Ts is the symbol duration, and W
is the finite impulse response channel length in units of Tc.

Let M denote the number of antennas and x(m) ∈
C

NQ+W−1 for m = 1, . . . , M , be the received signal vector
for the mth antenna element. Following the linear model de-
scribed in [5], it is convenient to represent the complete set of
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observations in vector form as x = vec([x(1) . . . x(M)]T ) ∈
C

M(NQ+W−1), where T denotes matrix transposition and
vec(·) is an operation that sequentially concatenates the
columns of a matrix into a column vector of appropriate
dimension. Similarly, the vector of NK information symbols
transmitted by the K users can be represented in vector form
as d = vec([d(1) . . . d(K)]T ) ∈ ANK , where d(k) ∈ AN

is the vector of information symbols for user k and A is the
symbol alphabet of NA elements (e.g.: for BPSK A = {±1}).
The symbols are assumed to be independent, identically dis-
tributed and normalized such that E[ddH ] = INK , where H
represents Hermitian transposition, IN is the identity matrix
of dimension N and E denotes statistical expectation.

Let vk ∈ C
M(Q+W−1) be the kth user space-time effective

signature vector, i.e. the space-time response to a unit pulse
excitation sequence δ = [1, 0, . . . , 0] as observed by the multi-
antenna receiver after demodulation, sampling and vector
formatting as described above. Define V = [v1 . . . vK ] ∈
C

M(Q+W−1)×K to be the effective signature matrix for the set
of K users. Then the total received vector may be conveniently
expressed as

x = Td + n, (1)

where T ∈ C
M(NQ+W−1)×NK is a block-Toeplitz matrix. In

particular, assuming a relatively short channel delay-spread so
that symbols interfere only with their adjacent neighbors, i.e.
W < Q, the matrix T takes the special form [5]

T =

V

V

V

MQ

(N-1)MQ

. (2)

In this work the matrix T is assumed to be known by
the receiver, as it is commonly presumed. The vector n ∈
C

M(NQ+W−1) in (1) contains white circular complex Gaus-
sian noise samples with covariance matrix E[nnH ] =
σ2IM(NQ+W−1), where σ2 is the noise power. The above
model and ensuing results can be generalized as well to
account for colored noise and the case W > Q.

B. Space-time MUD

In multi-user detection, the symbols transmitted from all K
users are jointly estimated, based on the space-time observa-
tion vector x. In a linear receiver, the soft symbols estimates
are obtained from the output of the estimator M ∈ C

NK×NK .
For BPSK, the actual symbols estimates are taken as the sign
of the real part of the soft estimates, i.e.:

d̂ = sgn{�(MHy)}, y = THx, (3)

where y is the match filter (MF) output, sgn(·) is a function
that returns the sign of its argument and �(·) is its real part.
The linear filter minimizing the mean square error Jo(M) =
E‖d − MHy‖2 can be shown to take the form

Mo = (THT + σ2I)−1. (4)

The complete operation thus consists of a match filter (TH )
followed by a minimum mean square error (MMSE) filter of
dimension NK×NK. If inverted using traditional techniques,
the operation has complexity order O(K3); a considerable
difficulty for real-time operations. We shall refer to the MUD
filter in (4) as the full space-time MUD (STMUD).

III. ITERATIVE GROUP-BASED STMUD

A. Group-based STMUD

In a group-based MUD receiver, the data symbols from
each of the G groups are jointly detected using a reduced
dimension MUD [8]. The grouping is based on spatio-temporal
correlation; users with large correlation are said to be “close”
and are placed in the same group for better detection.

Because beamforming reduces the dimension of the obser-
vation space through a non-invertible linear transformation,
we choose here to apply the group-STMUD (GRP-STMUD)
weights on the complete observation vector x, as illustrated
in the receiver block diagram of Fig. 2. Each pre-determined
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Fig. 2: Block diagram for the proposed GRP-STMUD receiver.

group has its own STMUD unit, represented by estimation
matrices MH

j TH
j , and the symbols estimates are obtained

through a non-linear decision device Q(·) (e.g. for BPSK
Q(·) = sgn(·)).

We assume, without loss of generality, that the symbols in
d are ordered according to the grouping. Thus if we let dj

be the NKj symbols associated to users of group j, then
we have d = [dT

1 , . . . ,dT
G]T , and the columns in T are re-

ordered accordingly. In addition, we define Pj ∈ R
NK×NKj

as a matrix that selects the symbols associated to users of
group j such that dj = PT

j d. It is expressed as

Pj =



0NK−

j ×NKj

INKj

0NK+
j ×NKj


 , (5)

where 0A×B is a matrix of dimension A × B that contains
only null entries, K−

j �
∑j−1

l=1 Kl and K+
j �

∑G
l=j+1 Kl are

the total number of users in the groups before and after group
j, respectively. The complement of (5) is defined as P̄j , so
that d̄j = P̄T

j d contains the N(K − Kj) symbols associated
to the users outside of the group j. It takes the form

P̄j =




INK−
j

0NK−
j ×NK+

j

0NKj×NK−
j

0NKj×NK+
j

0NK+
j ×NK−

j
INK+

j


 . (6)
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Finally, let Tj � TPj ∈ C
M(NQ+W−1)×NKj and T̄j �

TP̄j ∈ C
M(NQ+W−1)×N(K−Kj) be the matrices containing

the columns related to the users of group j and its complement,
respectively.

To derive the group-based linear filter we begin with the
group match filter output, given by yj = TH

j x. Assuming a
pre-determined and fixed grouping, the proposed optimal cost
function for the MMSE linear estimator of group j becomes

Jo
j (M) = E‖dj − MHyj‖2, (7)

where the dimension of the matrix M is now NKj × NKj ,
and the optimal MMSE linear weights for the so-called GRP-
STMUD-MMSE receiver are obtained by solving

Mj,o = arg min
M

Jj(M). (8)

Let Rj � TH
j Tj and Cj � TH

j T̄j , then it can be shown that
the solution to the group MMSE linear weights optimality
criterion of (8) is given by

Mj,o = (RjRH
j + CjCH

j + σ2Rj)−1RH
j . (9)

The complete group-based linear MUD filter, including the
MF and the MMSE filter is given by TjMj,o, as shown in
Fig. 2, and the soft output for group j is zj � MH

j,oT
H
j x.

The filter in (9) takes into consideration the interference
from the other groups. In the context of group PIC, it is rea-
sonnable to expect that the IGI will be reduced after each step.
Under this assumption, it is computationally advantageous to
reduce the complexity of the filter in (9) and introduce a
suboptimal filter that neglects IGI. The new cost function can
be expressed as

Jj(M) = E‖dj − MH(yj − Cjd̄j)‖2,

= E‖dj − MH(Rjdj + TH
j n)‖2.

(10)

Solving for the filter that minimizes (10) the same way as in
(7)-(9), it can be shown that the new suboptimal filter becomes

Mj = (TH
j Tj + σ2I)−1. (11)

This linear filter, referred to here as GRP-STMUD, also takes
the form of a MF followed by a MMSE filter of reduced
dimensions NKj × NKj . The cost for inverting the matrix
in (11) is in the order of O(K3

j ) so that the total cost
becomes

∑G
j=1 O(K3

j ) instead of O(K3) if (4) is used.
Thus the proposed structure allows for potentially significant
complexity reduction.

B. Parallel interference cancellation with GRP-STMUD

Inter-group interference can be a factor for significant per-
formance degradation in group-based receivers. The proposed
parallel interference cancellation structure reduces the IGI at
each stage, based on sucessive symbol estimates, starting with
the output of the GRP-STMUD.

Let s represent the PIC stage index and define î(s)j as the
inter-group interference term estimate at stage s for group
j. Furthermore, let z(s) ∈ C

NK be the vector symbol soft
estimate at stage s and z(s)

j � PT
j z(s) be the symbol vector

symbol soft estimate of dimension NKj for group j. Then
the vector symbol estimate after interference cancellation for
group j at stage s can be expressed for 1 ≤ s ≤ S, where S
is the total number of PIC stages, as

z(s)
j = MH

j TH
j x − î(s)j

= MH
j TH

j x − MH
j TH

j T̄j z̄
(s−1)
j

(12)

where z̄(s)
j = P̄T

j z(s) is the vector symbol soft estimate for
the users outside of group j at stage s.

Figure 3 illustrates the GRP-STMUD-PIC receiver in block
diagram form. As shown, the first stage takes its input, z(0)

j

for j = 1, . . . , G, directly from the (soft) output of a GRP-
STMUD receiver. So the GRP-STMUD-PIC receiver can be
interpreted as an extension of the GRP-STMUD receiver
shown in Fig. 2 above. In short, the S-stages GRP-STMUD-
PIC receiver can be summarized by the following two equa-
tions: firstly, the soft symbol estimation update equation, given
here for s ≥ 1 by

z(s) =



MH

1 TH
1

...
MH

GTH
G




︸ ︷︷ ︸
FH

x −




MH
1 TH

1 T̄1P̄T
1

...
MH

GTH
G T̄GP̄T

G




︸ ︷︷ ︸
G

z(s−1), (13)

with z(0) = FHx, and secondly, the decision equation follow-
ing stage S, that can be expressed as

d̂ = Q(z(S)). (14)

In practice, the number of stages S is fixed by the hardware
or determined in real-time by some convergence measure.

C. PIC Convergence

In this section, the convergence of the GRP-STMUD-PIC is
studied. It can be shown that the recursive equation (13) can
be expressed compactly as

z(S) =
S∑

s=1

(−G)(s−1)FHx. (15)

Because of the exponential, the structure of G determines the
convergence properties of (15).

The term MH
j TH

j T̄j in (15) consists of the response of
the interfering users effective signatures to the linear GRP-
STMUD filter for group j and is referred to as the attenuated
interference term. It can also be seen that P̄T

j simply trans-
forms the product from a NKj × N(K − Kj) matrix to a
full NKj × NK matrix, by inserting columns of zeros at
the location where the groups of interest’s response should
be located. Thus the matrix G is Hermitian and takes the
following form:

G =

NKGNK1 . . .

0

. . .

0

. (16)
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Fig. 3: Block diagram for the proposed GRP-STMUD-PIC receiver.

As S → ∞, the convergence of the sum in (15) depends
entirely on the eigenvalues of G. If λp denotes the pth

eigenvalue of G, then it can be shown that the geometric sum
will converge if and only if |λp| < 1, ∀p [14].

To bound the eigenvalues in G, we make use of the
Geršgorin discs. According to this theorem, each eigenvalues
of G satisfies at least one of the inequalities

|λ − gpp| ≤ rp, where rp =
NK∑
q=1
q �=p

|gpq|, (17)

where gpq is the element at position (p, q) in matrix G and
(p = 1, . . . , NK). Notice that rp can be interpreted as the sum
of the attenuated interference magnitudes for a given symbol.
Since gpp = 0 in (16), to guarantee the convergence of (15)
we require rp < 1, ∀p.

Provided that the convergence condition is met and using
a known fact of geometric series for matrices (see e.g. [14]),
the sum in (15) can be shown to converge as S → ∞ to

z(∞) = (I + G)−1FHx. (18)

Asymptotically as the noise power decreases, i.e. σ2 → 0,

FHx = FHTd

= (diag(MH
1 TH

1 T1, . . . ,MH
GTH

GTG) + G)d.
(19)

Combining (11) with σ2 = 0 into (19) and replacing the result
in (18), we finally find

lim
S→∞
σ→0

z(S) = d. (20)

What we conclude from these observations, and particularly
from the structures of (16) and (18), is that the PIC implements
decorrelation among groups only, and leaves the filtering
within the groups to the individual GRP-STMUD filters.

IV. COMPUTER EXPERIMENTS

We consider the received signal model of (1) for the uplink
of a DS-CDMA system. The K = 12 users have orthogonal
spreading codes of length Q = 16 and transmit BPSK data
symbols in blocks of N = 50. The signals are received by
M = 6 antennas in a standard linear array configuration. The
channel consists of W = 6 equal power multipaths, with the

main path having DOA θ0 uniformly distributed within the
sector width of 120◦, and all other paths uniformly distributed
within [θ0 + ∆θ, θ0 − ∆θ], with ∆θ = 30◦. The hardware
resources are assumed limited so that the grouping structures
can support up to Gmax = 4 groups of a maximum of Kmax =
4 users each.

A. Performance results

Figure 4 shows the BER for a given typical user distribution
and channel condition scenario. Ideal power control is assumed
and the SNR is thus given by P/σ2, where P ≡ Pj = ‖vj‖2 is
the received power of each user. As expected, the full STMUD
outperforms the other algorithms and the MF or conventional
receiver performs poorly; at a BER of 10−3, there is a 3dB
difference between the two approaches.

We also observe in this scenario an improvement over
the MF of approximately 2dB at BER of 10−3 when using
the grouping approaches (without PIC). The GRP-STMUD-
MMSE performs slightly better than GRP-STMUD but the
difference is negligible. When using PIC, the difference at
BER of 10−3 between GRP-STMUD and the full STMUD
reduces to a negligible 0.3dB, approximately.
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Fig. 4: BER comparison between match filter (MF), full STMUD, GRP-
STMUD-MMSE, GRP-STMUD, and GRP-STMUD-PIC.

As shown in Fig. 5, only a few PIC iterations are necessary
to nearly reach the lower bound for PIC (achieved by GRP-
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STMUD-PIC ∞), making this approach very appealing. Recall
that the convergence rate will depend on the interference seen
from each group and thus different grouping may lead to
different convergence rates.
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BER vs PIC stage

PIC Stage (S)

B
E

R

GRP−STMUD−PIC
GRP−STMUD−PIC ∞
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Fig. 5: BER convergence of GRP-STMUD-PIC versus S at 12dB SNR.

B. Complexity

The expressions for the optimal MMSE linear estimators in
(4), (9) and (11) include a matrix inversion and several matrix
multiplications. Fortunately, the structure of the data matrix
T in (2) can be exploited extensively, leading to significant
complexity reduction. The most important reduction results
from the structure in the THT matrix product [13].

To compare the complexity between the two approaches,
the number of complex floating point operations (CFLOPS) is
counted for the different parts of equations (4), (11) and (13)
by taking advantage of the symmetries.

The total complexity is classified in three distinct parts:
overhead (the different matrix products and sums to obtain the
matrices to invert in (4) and (9)), linear system solution (lss)
and the cost for each stage (PIC). Figure 6 shows the numerical
complexity in terms of CFLOPS for solving a system with
N = 50 data symbols. The STMUD hardware can support
K = 16 users simultaneously and the GRP-STMUD-PIC
structure has Gmax = 4 groups of Kmax = 4 users with
S ∈ {0, 1, 2} stages or iterations (S = 0 corresponds to the
GRP-STMUD case). The results show that the total complexity
associated to the full STMUD for K = 12 is approximately
two times that of the proposed GRP-STMUD-PIC system with
S = 2, for approximately the same BER performance.

The results also demonstrate that due to the added complex-
ity in the system solution and overhead associated to equation
(9), the GRP-STMUD-MMSE structure is more complex than
GRP-STMUD. Since the BER performances are essentially the
same, GRP-STMUD-MMSE is not advantageous compared to
GRP-STMUD.

V. CONCLUSION

In this work, we have proposed a new group-based space-
time receiver structure for DS-CDMA systems that uses
parallel interference cancellation to reduce the problematic
interference among groups. We have shown that the new

0 0.1 0.2 0.3 0.4

full STMUD

GRP−STMUD−MMSE

GRP−STMUD−PIC

GRP−STMUD

Numerical complexity

Complexity (CFlops× 106)

ovh.
lss
PIC 1
PIC 2

Fig. 6: Numerical complexity of the full STMUD, GRP-STMUD-MMSE and
GRP-STMUD-PIC for K = 12, Gmax = 4, and Kmax = 4.

structure provides BER performance close to the full STMUD
at a fraction of the complexity.
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