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Abstract—In SC-FDMA systems the bit error rate (BER) is
very sensitive to channel estimation errors. We propose the use
of blind (or semi-blind) subspace decomposition to estimate the
channel frequency responses between the transmitter and the
multiple antennas of the receiver in the uplink of a 4G system
employing SC-FDMA. The proposed subspace-based channel
estimation technique requires very little overhead in terms of
pilot symbols dedicated to channel estimation. Furthermore, we
show through simulations that, when applied to SC-FDMA, it
can provide a BER performance comparable to a system with
perfect channel estimates.

Index Terms—SC-FDMA, Channel Estimation, Subspace De-
composition.

I. INTRODUCTION

TO provide the high data rates of the long term evolution
(LTE) project, orthogonal frequency division multiple

access (OFDMA) is now widely employed as it can provide
high spectral efficiency by using higher order modulations over
multiple narrowband subcarriers [1]. The main drawback of
OFDMA is the high peak-to-average power ratio (PAR), which
has motivated he development of single-carrier frequency
division multiple access (SC-FDMA) systems for use in the
uplink in LTE uplinks [2,3].

In OFDMA systems, a poor estimate of the channel gain
on a particular carrier affects the detection of the symbol that
is carried over that carrier. In SC-FDMA systems, due to the
additional fast Fourier transform (FFT) at the transmitter and
inverse FFT (IFFT) at the receiver, the equalizer operates in the
frequency domain while the input/output data is specified in
the time domain. Consequently, all symbols will be affected by
a single error in the channel response at any given frequency.
Therefore SC-FDMA systems are more sensitive to channel
estimation errors than are OFDMA systems.

Significantly less research on channel estimation for SC-
FDMA systems is available compared to that done in OFDMA.
The limited work on this topic focuses mainly on using pilots
in either the time or the frequency domain to estimate the
frequency response of the channel [4,5]. In 4G uplinks, the
use of pilots for channel estimation is proposed in which a

frame made up entirely of pilots is periodically transmitted for
this purpose [6]. However, in doing so, the spectral efficiency
is reduced by the pilot symbol insertion ratio.

To reliably estimate the the subcarrier channel gains without
a corresponding loss in spectral efficiency, one can use blind
(or semi-blind) techniques, such as subspace decomposition
[7]. While subspace decomposition may entail a higher com-
putational complexity, little pilot data is required resulting in
increased spectral efficiency. For multiple receive antenna sys-
tems, the correlation matrix of the observation is sufficient to
determine the channel impulse responses between all transmit-
receive antenna pairs, up to a constant [7,8]. This ambiguity
can be resolved by the insertion of a small number of known
data points, resulting in a semi-blind approach. While there has
been many works on the use of subspace methods for blind
channel estimation in the context of OFDM, to the best of our
knowledge, these techniques have not yet been considered for
channel estimation purposes in SC-FDMA systems.

In this letter, we propose the use of subspace-based channel
estimation for a 4G wireless uplink employing SC-FDMA,
where multiple users equipped with a single transmit antenna
forward their signals to a base station (BS) equipped with
multiple antennas. We develop the necessary formalism for the
application of the subspace decomposition to the correlation
matrix of the data array and show that the channel estimate
reduces to the optimization of a simple quadratic form. We
also propose a practical recursive scheme for the estimation
of the required correlation matrix. We emphasize that since
SC-FDMA transmission is proposed for the LTE uplink, the
increased computational complexity is relegated to the BS,
thus its use does not result in any increased complexity for the
mobile units. In numerical simulations, the proposed subspace-
based estimation approach provides a BER performance com-
parable to a system using perfect channel estimates.

The rest of this letter is organized as follows: Section
II presents the multi-antenna SC-FDMA system. Subspace
decomposition for channel estimation in such systems is
presented in Section III. The performance of the channel
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estimation technique in terms of BER and normalized mean
square error (NMSE) is investigated in Section IV. In Section
V we present our conclusions.

II. SC-FDMA SYSTEM MODEL

The block diagrams of an SC-FDMA transmitter and teh
corresponding multiantenna receiver is shown in Fig. 1. For a
K user system, let

x(i)k = [x
(i)
k (0), · · · , x(i)

k (N1 − 1)]T (1)

denote the data transmitted by user k on the ith frame, where
x
(i)
k (n) is the nth independent identically distributed (iid)

MQAM symbol with zero mean and unit variance and N1

is the frame length. Let

X(i)
k = [X

(i)
k (0), · · · , X(i)

k (N1 − 1)]T (2)

be the N1-point FFT of x(i)k . The entries of X(i)
k are then

mapped to N1 of N2 different subcarriers, where N2 > N1.
This is equivalent to inserting N2−N1 zeros into X(i)

k to create
an N2 point FFT

S(i)
k = [S

(i)
k (0), · · · , S(i)

k (N2 − 1)]T . (3)

This signal is then transformed back to the time domain by
taking the N2 point IFFT, resulting in

s(i)k = [s
(i)
k (0), · · · , s(i)k (N2 − 1)]T . (4)

Finally, vector s(i)k is converted to serial format and a cyclic
prefix (CP) is added prior to its transmission.

Fig. 1. Block diagram of SC-FDMA transmitter and multiantenna receiver.

In SC-FDMA, multiple signals can be separated at the
receiver by performing subcarrier mapping so that a subcarrier
is assigned to only one user. The total number of subcarriers,
N2 =

∑K
k=1 N1,k, where N1,k is the number of subcarriers

assigned to user k. In this paper we assume all users are
assigned the same number of subcarriers, therefore N1,k = N1

for all k and we let mk,n ∈ {0, 1, . . . , N2−1} denote the sub-
carrier index to which X

(i)
k (n) is mapped.

The received signals consist of the superposition of the
transmissions from the K users. For each antenna, following
demodulation and sampling, the CP is discarded and the
remaining symbols are serial-to-parallel converted. The ith
received data block on antenna j is

r(i)j = [r
(i)
j (0), · · · , r(i)j (N2 − 1)]T =

K∑
k=1

(s(i)k ~ h(i)
kj ) + z(i)j ,

(5)
where ~ denotes circular convolution, h(i)

kj =

[h
(i)
kj,0, · · · , h

(i)
kj,M ]T is the impulse response of the wireless

channel between the kth user’s transmit antenna and
the receiver’s jth antenna, M is the channel order and
z(i)j = [z

(i)
j (0), · · · , z(i)j (N2 − 1)]T is the noise vector on

the j antenna during block interval i. The noise is zero
mean circularly symmetric white Gaussian with variance σ2

z ;
therefore E[z(i)j z(i)Hj ] = σ2

zI.
The N2-point FFT of r(i)j is denoted as

R(i)
j = [R

(i)
j (0), · · · , R(i)

j (N2−1)]T =
K∑

k=1

diag(H
(i)
kj )S

(i)
k +Z(i)

j

(6)
where H(i)

kj and Z(i)
j are the N2 point FFTs of h(i)

kj and
z(i)j , respectively, and diag(H(i)

kj ) is a N2 × N2 diagonal
matrix with the entries of H(i)

kj along its main diagonal.
Examining a particular entry from R(i)

j , say R
(i)
j (m) =∑K

k=1 S
(i)
k (m)H

(i)
kj (m) + Z

(i)
j (m), we note that S

(i)
k (m) is

zero for all values of k except for the index of the user to
which subcarrier m is assigned. Therefore, the receiver can
separate each user’s contribution to R(i)

j , producing Y(i)
kj =

[Y
(i)
kj (0), · · · , Y (i)

kj (N1 − 1)]T for k ∈ {1, 2, · · ·K} where
Y

(i)
kj (n) = X

(i)
k (n)H

(i)
kj (mk,n) + Z

(i)
j (mk,n).

For each user, the channel gains are estimated and the FFTs
on each antenna are combined. Let Ĥ

(i)
kj (mk,n) denote the

receiver’s estimate of H(i)
kj (mk,n). The output of the combiner

for user k is

Y(i)
k = [Y

(i)
k (0), · · · , Y (i)

k (N1 − 1)]T (7)

where

Y
(i)
k (n) =

Nr∑
j=1

Y
(i)
kj (n)Ĥ

(i)
kj (mk,n)

∗. (8)

An estimate of the FFT of the transmitted block of symbols,

X̂
(i)
k = [X̂

(i)
k (0), · · · , X̂(i)

k (N1 − 1)]T (9)

is then obtained by applying a frequency domain equalizer
(FDE), where

X̂
(i)
k (n) =

Y
(i)
k (n)∑Nr

j=1 |Ĥ
(i)
kj (mk,n)|2 + σ2

z

(10)

Assuming perfect channel estimates, [4] shows that (10) min-
imizes the mean square error between X

(i)
k (n) and X̂

(i)
k (n).

The estimate of each user’s ith data block is then obtained by



taking the IFFT of X̂(i)
k . Should the channel estimator produce

a poor estimate of H(i)
kj (mk,n), the error is then spread to all

data symbols through the IFFT function.

III. SUBSPACE-BASED CHANNEL ESTIMATION

The N1-point IFFT of Y(i)
kj is given by

y(i)kj = x(i)k ~ h̄
(i)
kj + z̄

(i)
kj , (11)

where h̄
(i)
kj = [h̄kj(0)

(i) · · · h̄kj(Meff)
(i)]T and z̄

(i)
kj =

[z̄kj(0), · · · , z̄kj(N1 − 1)]T are the equivalent impulse re-
sponse between the kth user that the receiver’s jth an-
tenna and the equivalent received noise vector on antenna
j affecting the kth user’s signal respectively and Meff
is the effective channel order. Their N1-point IFFTs are
H̄

(i)
kj = [H

(i)
kj (mk,0), · · · ,H(i)

kj (mk,N1−1)]
T and Z̄

(i)
kj =

[Z
(i)
j (mk,0), · · · , Z(i)

j (mk,N1−1)]
T respectively. It can be

shown that the variance of z̄kj(n) is

σ̄2
z =

N2

N1
σ2
z . (12)

In distributed SC-FDMA systems, each user’s subcarriers are
uniformly spaced throughout the N2 subcarriers, i.e. mk,n =

mk,n−1+K. In this case h̄
(i)
kj is simply a frequency modulated

version of h(i)
kj and therefore has order M provided M < N1.

When the subcarriers are not uniformly spaced, h̄(i)
kj has N1

non-zero elements in general. However, the effective order of
this impulse response is Meff < M as most of the elements
in h̄

(i)
kj are close to zero in magnitude for n > Meff [9].

Accordingly, we assume that h̄(i)
kj is a M × 1 vector.

For each user on each antenna, let L < N1 be the length
of data blocks used for the purpose of channel estimation,
which we define as a(i)kj (n) = [y

(i)
kj (n), · · · , y

(i)
kj (n−L+1)]T .

Assuming that the channel varies slowly enough for it to be
considered static over one data frame, then

a(i)kj (n) = H(i)
kj x(i)k (n) + w(i)

kj (n) (13)

where w(i)
kj (n) = [z̄

(i)
kj (n), · · · , z̄

(i)
kj (n − L + 1]T and H(i)

kj is
an L× (L+M) matrix given by

H(i)
kj =


h̄
(i)
kj 0 0 · · · 0

0 h̄
(i)
kj 0 · · · 0

...
...

. . . . . .
...

0 0 · · · 0 h̄
(i)
kj

 (14)

Next, let us define the kth user’s data matrix A(i)
k =

[A(i)
k1 A(i)

k2 · · · A(i)
kNr

] where the (N1 − L + 1) × L matrix
A(i)H

kj = [a(i)kj (L) a(i)kj (L + 1) · · · a(i)kj (N1)]. The sample
correlation matrix of block i, Φ(i)

k is then obtained by

Φ
(i)
k = A(i)H

k A(i)
k /(N1 − L+ 1). (15)

It is shown in [10,11] that Φ
(i)
k is an unbiased es-

timator of the ensemble averaged correlation matrix, i.e.

E[Φ
(i)
k ] = R(i)

k = H(i)
k H(i)H

k + σ̄2
zINrL where H(i)

k =

[H(i)T
k1 H(i)T

k2 · · · H(i)T
kNr

]T . The signal induced component of
R(i)

k is H(i)
k H(i)H

k which, assuming that NrL > L +M and
H(i)

k is full column rank, has rank L + M while the noise
induced part of R(i)

k is σ̄2
zINrL.

Let λ
(i)
k0 ≤ λ

(i)
k1 ≤ · · · ≤ λ

(i)
kNr−1 be the NrL eigenvalues

of R(i)
k with corresponding normalized eigenvectors defined

as q(i)
kl . Since the rank of H(i)

k H(i)H
k is less than the rank of

R(i)
k , we can divide these eigenvalues into two groups [10]:
1. λ(i)

kl = σ2
z , 0 ≤ l ≤ Dn − 1,

2. λ(i)
kl > σ2

z , Dn ≤ l ≤ NrL− 1.
where we define Dn = NrL − M − L. Accordingly the
space spanned by the eigenvectors of R(i)

k can be separated
into two subspaces, namely: the noise subspace is spanned by
the eigenvectors associated to the first group and the signal
subspace spanned by those associated to the second group.

For l = 0, 1, · · · , Dn − 1 we can express a NrL× 1 eigen-
vector from the noise subspace as q(i)

kl = [q(i)
kl1 · · · q(i)T

klNr
]T

where qklj(i) = [q
(i)
klj,0 q

(i)
klj,1 · · · q

(i)
klj,L−1]. Let G(i)

kl =

[G(i)T
kl1 · · · G(i)T

klNr
]T , where G(i)

klj is the N1 × (N1 + L − 1)
matrix given by:

G(i)
klj =


q
(i)
klj,0 · · · q

(i)
klj,L−1 0 · · · 0

0 q
(i)
klj,0 · · · q

(i)
k0j,L−1 · · · 0

...
...

. . . . . . . . .
...

0 0 · · · q
(i)
klj,0 · · · q

(i)
klj,L−1


(16)

Also let h̄(i)
k = [h̄

(i)T
k1 · · · h̄

(i)T
kNr

]T . Following [10], it
can be shown that h̄(i)H

k G(i)
kl G

(i)H
kl h̄(i)

k = 0 for l =

0, 1, · · ·Dn − 1. Therefore h̄(i)H
k Q(i)

k h̄(i)
k = 0, where Q(i)

k =∑Dn−1
l=0 G(i)

kl G
(i)H
kl .

In practice, only estimates of Q(i)
k and R(i)

k , respectively

denoted as Q̂(i)
k and R̂

(i)

k , are available for performing the
channel estimation. In particular, we may use Φ

(i)
k to approx-

imate R(i)
k ; however, this approximation may not be accurate

enough due to insufficient averaging to reduce the effect
of noise. Therefore, we propose to find R̂

(i)

k by employing
time-averaging over a limited number of data frames, where
an exponential window is used to account for the time-
varying nature of the unknown channels. Accordingly, we let
R̂(0)

k = Φ
(0)
k and

R̂(i)
k = µΦ

(i)
k + (1− µ)R̂(i−1)

k , (17)

where 0 < µ ≤ 1. The eigenvectors associated with the Dn

smallest eigenvalues of R̂(i)
k are then selected to approximate

the spanning vectors of the noise subspace of R(i)
k . This step

implies that the receiver knows the effective channel order,
Meff. Methods for determining Meff are discussed in [11].
We employ these eigenvectors in (16) to produce the desired
estimate.

Next, let ĥ(i) be the vector that minimizes the cost function
E [h] = hHQ̂(i)

k h subject to ∥ĥ(i)∥2 = 1. This is equivalent to



finding the eigenvector associated to the smallest eigenvalue
of Q̂(i)

k . It can be shown that when Q̂(i)
k = Q(i)

k then
ĥ(i) = ck(h

(i)
k , where h(i)

k is the kth user’s desired channel
impulse response and ck is a complex scalar representing
the ambiguity of the kth user’s channel estimate. The actual
channel estimate is produced by resolving the ambiguity, i.e.
ĥ
(i)

k = αkĥ
(i) where here αk is chosen to minimize the mean

square error between ĥ
(i)

k and h(i)
k . In practice, the ambiguity

can be resolved by inserting one or more known symbols into
the transmitted data frame [12]. In this respect, we emphasize
that the pilot symbol insertion rate of the proposed approach is
much lower than that of a non-blind, training based estimator,
resulting in increased spectral efficiency. Estimates of h̄(i)

kj are

then extracted from ĥ
(i)

k , their N1-point FFTs are computed
and then they are used in the combining and equalization
process discussed in Section II.

IV. SIMULATION RESULTS

We use Monte Carlo simulations to evaluate the per-
formance of the proposed method in terms of normal-
ized mean square error (NMSE) and bit error rate (BER)
where here the NMSE is defined as

∑N1−1
n=0 |Ĥ(i)

kj (mk,n) −
H

(i)
kj (mk,n)|2/

∑N1−1
n=0 |H(i)

kj (m)|2. We consider the perfor-
mance of our system operating on two different frequency
selective Rayleigh fading channels:
• CH1: 5 resolvable paths of equal strength
• CH2: 5 resolvable paths with power profile of [0dB, -1dB,

-2dB, -3dB , -4dB].
Additionally the channel models used in the simulation are
quasi-static and remain invariant for the duration of one FFT
frame. The time evolution of h(i)

k from one frame to the next
is controlled by a first order autoregressive model with fading
rate BdT = 0.025, where Bd is the Doppler spread and T is
the data block interval.

The SC-FDMA system under study uses 16QAM modu-
lation with the following parameter values: K = 2 users,
Nr = 4 receive antennas, FFT lengths N1 = 64 and
N2 = 128, uniform carrier spacing, CP length set to 8, L = 6.
We also define Eb/No as the energy per bit to single sided
noise spectral density ratio. We assume that ambiguity and
channel order determination are performed perfectly.

Fig. 2 shows the BER versus Eb/No for the different
channels under consideration and for different values of the
parameter µ in the recursive computation of R̂(i)

k . This is
compared to the ideal case where the channel gains are known
to the receiver. We see that the SC-FDMA system employing
subspace decomposition for blind channel estimation performs
to within roughly 1.2 and 1.7 dB of the SC-FDMA system with
perfect channel knowledge at a BER of 10−3 when operating
on CH1 and CH2 respectively. The BER of 10−3 is achieved
at the lowest Eb/No when µ = 0.4 on both channels. How-
ever the blind channel estimation technique improves spectral
efficiency by not requiring as many additional pilot symbols
as a training-based channel estimator. These additional pilot
symbols can increased the channel load by up to 15% [3].

Next we investigate the NMSE performance of the proposed
blind estimator under simliar conditions. We note that from
Fig. 3 the system with the lowest NMSE does not necessarily
provide the lowest BER. For example, from Fig. 2 we see
that µ = 0.4 has the lowest BER at Eb/No = 14dB on both
channels while from Fig. 3 µ = 0.6 provides the lowest NMSE
at the same Eb/No. Channel estimation error can be divided
into noise error and lag error. Higher values of µ experience
higher noise errors due to insufficient averaging, while lower
values of µ suffer from lag errors. The results show that it is
sometimes favorable in terms of BER to trade noise error for
an equivalent or slightly greater amount of lag error.

Fig. 2. BER of proposed SC-FDMA system operating on CH1 and CH2.

V. CONCLUSIONS

We proposed the use of subspace decomposition with
recursive covariance matrix estimation for blind (or semi-
blind) channel estimation in SC-FDMA uplink transmissions
with multiple receive antennas. Specifically, the proposed
technique requires the transmission of much less pilot symbols
compared to a training-based channel estimation approach. For
the cases presented in the paper we show that, at a BER of
10−3, the proposed SC-FDMA receiver with blind channel
estimation experiences a 1dB power loss compared to SC-
FDMA systems with perfect channel estimates. However, a
full-fledged training-based estimation approach requires that
some power be allocated to pilot symbols, which is reflected
in increased energy per bit. For instance, a typical 15% pilot
insertion rate translates into a 0.7 dB loss compared to the ideal
case. Therefore our proposed system will have similar BER
performance compared to a training based system while having



Fig. 3. NMSE of channel estimates of proposed system operating on CH1
and CH2.

an improved spectral efficiency. We additionally demonstrated
that the technqiue can estimate the unknown channel frequency
responses with NMSEs below 1% with Eb/No around 12dB.
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