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Abstract— In this paper, we propose and study a generalized
criterion for the canonical correlation decomposition (CCD)
based estimation of multiple vector channels in ambient colored
noise. In this approach, it is assumed that the desired signals are
received by two separated antenna clusters, so that the output
noise is spatially uncorrelated. The proposed criterion exploits
multiple signal codes through a weighted sum of projection
errors, which incorporate the kernel matrices of the signals
sharing the same target channel. Through computer simulations,
we study the effects of using multiple codes in the blind CCD-
based channel estimation and we show that the new criterion
may indeed lead to quite significant performance improvements
in the estimation of the multipath vector channels.

I. INTRODUCTION

Channel estimation is a critical element in many wire-
less communications systems. Indeed, to optimally recombine
signal components transmitted through multipath channels,
knowledge of the relative delays, amplitudes and phases of the
various propagation paths is needed. Examples include RAKE
receivers and multiuser detectors in code division multiple
access (CDMA) communications [1], as well as multiple-
input multiple-output (MIMO) space-time coded systems [2].
In recent years, blind estimation of wireless channels has
received considerable attention because of its advantages in
terms of bandwidth efficiency. Blind algorithms only rely on
the received signal to carry out estimation, so that precious
bandwidth resources need not be used for the transmission of
training sequences and/or pilot signals.

Of particular interest is the class of blind subspace-based
methods for multipath vector channel estimation. These meth-
ods exploit the second-order statistics of the received signals
to define a signal and a noise subspaces; the vector channel
of interest is then estimated by exploiting the orthogonality
property between the coded waveform signatures and the noise
subspace. This way, the multi-user channel estimation problem
is decomposed into a series of lower dimensional single user
problems. Recent examples of blind subspace based methods
can be found in [3]–[7].

In most of the literature on subspace channel estimation,
it is generally assumed that the ambient noise is temporally
white. In practice, this assumption is often violated due to,
e.g., interference from narrowband sources. Wang and Poor [8]
have proposed a blind method for the estimation of multiple

channels in wireless CDMA systems in the presence of corre-
lated ambient noise. Their approach is based on the practical
assumption that the desired signals are received by two well
separated antennas, so that the output noise is spatially uncor-
related. A new estimation algorithm is then proposed based
on the concept of canonical correlation decomposition (CCD)
[9]. The effectiveness of this approach is well supported by
computer experiments.

The CCD approach proposed in [8] only makes use of a
single independent signal (i.e. a single code) to estimate the
target channel. However, the target channel is often shared by
multiple simultaneous independent signals. This is the case
for instance in a typical downlink environment, or on the
uplink of some Third Generations cellular systems such as
UTRA/TDD where mobiles are allowed to use multiple codes
simultaneously for efficient bandwidth utilization. In a recent
work, the use of multiple signal codes in subspace-based blind
channel estimation has been studied [10]. In particular, it
was shown that under very general conditions, increasing the
number of codes leads to a more accurate channel estimation.
Using multiple codes for the channel estimation may also
bring performance improvements with the CCD approach in
the presence of spatially correlated noise.

In this paper, we propose to extend the CCD approach in [8]
to exploit the multiple codes for the channel estimation. We
introduce and study a generalized criterion for the CCD-based
estimation of multiple vector channels in ambient colored
noise. The new criterion uses multiple signal codes through
a weighted sum of projection errors, which incorporate the
kernel matrices of the signals sharing the target channel.
Through computer simulations, we study the effects of us-
ing multiple codes in the blind CCD-based multipath vector
channel estimation under colored noise and we show that the
criterion indeed leads to performance improvements that may
be quite significant.

The paper is organized as follows: Section II describes the
signal model and reviews the CCD method of [8]. The gen-
eralized criterion is presented in Section III, along with some
motivations. The results of supporting computer experiments
are presented in Section IV. This is followed by conclusions
in Section V.
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II. SIGNAL MODEL

We consider the generalized received signal model in [10]
for an L-dimensional received signal vector at one antenna or
antenna cluster of a communication system:

r =
N∑

i=1

γibiCihi + v, (1)

where N is the number of individual symbols that comprise
the received vector, γi is a real-valued received amplitude, bi

is the i-th information symbol, Ci is defined as a channel-
independent kernel matrix with size L × P , hi is a P × 1
normalized channel vector (i.e. ‖hi‖ = 1), and v is an
L × 1 additive noise vector. We assume that the information
symbols bi, for i = 1, . . . , N , are independent and identically
distributed with zero mean and unit variance. The additive
noise vector v is circularly complex Gaussian with covariance
matrix Σ and is independent from the information symbols bi.
We define

b � [b1, . . . , bN ]T , (2)

Γ � diag[γ1, . . . , γN ], (3)

W � [w1, . . . ,wN ], (4)

where wi � Cihi for i = 1, . . . , N is the effective signature
waveform for the i-th information symbol, i.e. combined effect
of channel and kernel matrix as seen by the receiver. Using the
above matrix notations, the signal model (1) can be expressed
as

r = WΓb + v. (5)

In the sequel, we refer to the individual products γibiCihi

(i = 1, . . . , N ) in (1) as signal components. For generality, we
assume that the N signal components experience M different
channels, 1 ≤ M ≤ N . Then we separate the N signal
components into M groups, such that the signal components in
each group share the same channel. We denote the number of
signal components in the m-th group as Km (m = 1, . . . ,M ),
so that

∑M
m=1 Km = N . We use the superscript m to denote

group affiliation, as in the common channel parameter hm,
and we use the superscript l to further distinguish among the
Km signal components, as in γm,l, bm,l, Cm,l, and wm,l.

We now extend the model and assume that the signal is
received at two different clusters of antennas, well separated
so that the noise components from each cluster are mutually
uncorrelated. A typical example for a specific case of this
generalized formulation consists of the downlink of a DS-
CDMA system, where the mobile terminals have two well
separated received antennas, i.e. two clusters of one antenna.

Denote the individual antenna cluster noise covariance ma-
trix Σj � E[vjvH

j ], j = (1, 2), where v1 and v2 are the noise
vector at antenna cluster 1 and 2, respectively. Subscripts in
the sequel will denote antenna cluster index, unless indicated
otherwise. Since the noise is spatially uncorrelated across an-
tenna clusters, we also have E[v1vH

2 ] = 0. Let the combined

received signal vector include the signals from the two clusters
of antennas:

r̃ � [rT
1 rT

2 ]T , (6)

where rj is the received signal as in (1) for antenna cluster j.
The corresponding signal covariance matrix takes the form:

R̃ � E[r̃r̃H ] =
[
R11 R12

R21 R22

]
, (7)

where the constituent covariance matrices are defined by

Rjj � E[rjrH
j ] = WjΓ2

jW
H
j + Σj (8)

Rjk � E[rjrH
k ] = WjΓjΓkWH

k , (9)

and Wj and Γj are the effective signature and amplitude
matrices for the j-th antenna cluster, respectively.

Within the above framework, the goal of blind channel
estimation is to determine the target common channel vector
for group m to antenna cluster j denoted here by hm

j , using T
observations of the combined received signal vector in (6). In
blind channel estimation, the transmitted information symbols,
as represented by vector b in (5), are unknown. To estimate
the target channel vector hm

j , at least one kernel matrix in the
m-th group needs to be known by the estimating algorithm.
In practice, the specific available knowledge of the kernel
matrices depends on the particular system under consideration.

In the next section, we formulate a cost function for a blind
CCD-based channel estimation for the communication system
model described above. The cost function incorporates the set
of kernel matrices of the signal components sharing the same
target channels.

III. BLIND CCD-BASED CHANNEL ESTIMATION WITH

MULTIPLE SIGNATURE WAVEFORMS

A. Classical single signature approach

Consider classical subspace-based blind channel estimation
in pure white noise, which only requires a single antenna clus-
ter and does not exploit common channels. Let us temporarily
denote the covariance matrix in (8) as R = WΓ2WH + Σ
where Σ ≡ Σj = σ2IL. Its eigenvalue decomposition (EVD)
can be expressed in the form

R = UΛUH (10)

where Λ = diag[λ1, . . . λL] is a diagonal matrix with the
eigenvalues in a non-increasing order, and U = [u1, . . . ,uL] is
a unitary matrix that contains the corresponding eigenvectors.
Since the rank of signal matrix WΓ2WH is N , we can
separate the eigenvalues into two distinct groups: the signal
and noise eigenvalues. The corresponding signal and noise
eigenvalues matrices are given by Λs = diag[λ1, . . . , λN ]
and Λn = diag[λN+1, . . . , λL], respectively. Similarly, the
eigenvectors can also be separated into the signal and noise
eigenvectors, represented by Us = [u1, . . . ,uN ] and Un =
[uN+1, . . . ,uL], respectively. The EVD in (10) can then be
conveniently expressed as

R = [Us Un]
[
Λs 0
0 Λn

] [
UH

s

UH
n

]
. (11)
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The columns of W span the signal subspace, and consequently
they are orthogonal to the columns of Un, which span the
noise subspace, i.e.:

Span[W] = Span[Us] ⊥ Span[Un]. (12)

Consequently, the noise subspace is orthogonal to the effective
signature of the individual signal components. Therefore the
following equation holds for hi, the vector channel associated
to the ith signal component:

UH
n wi = UH

n Cihi = 0. (13)

The normalized channel estimate can be obtained up to a phase
ambiguity by solving (13) for hi, given the kernel matrix Ci

and the noise subspace Un, which is usually estimated from
the received signal.

B. Blind CCD-based channel estimation in colored noise

We now consider the case of a signal corrupted by ambient
colored noise, received by two separated clusters of antennas
with mutually uncorrelated noise, i.e.: the situation described
by equations (6) to (9) above. Again here, the common
channels are not exploited.

In [8], it was proposed to use the canonical correlation
decomposition of the covariance matrix R12 in (9) to properly
estimate the null subspace Null(WH

j ) which is orthogonal to
the signal subspace Range(Wj). It is argued that the CCD
provides superior estimate of the noise subspace compared to
the singular value decomposition of R12 alone since the CCD
uses the information in both R11 and R22 together with R12,
and creates the maximum correlation between the two data
sets.

Assume that the matrices R11 and R22 are both positive
definite. Then the CCD of the matrix R12 leads to [9]:

R−1
11 R12R−1

22 = R−1/2
11 V1︸ ︷︷ ︸

L1

ΠVH
2 R−1/2

22︸ ︷︷ ︸
LH

2

, (14)

where the L×L matrix Π = diag(π1, . . . , πN , 0, . . . , 0) with
π1 ≥ . . . ≥ πN > 0 and Vj is a unitary matrix. We further
partition the matrix Lj = [Ls

j Ln
j ] where Ls

j and Ln
j contain

the N first and L − N last columns of Lj , respectively. We
then have that Ln

j spans the noise subspace of Rjj [9], i.e.:

Null(WH
j ) = Range(Ln

j ), j = 1, 2. (15)

Finally, the channel coefficient for each signal component can
be estimated as in (13) by solving

Ln H
j Cihi,j = 0, j = 1, 2, (16)

where hi,j represents the channel vector for the ith signal
component to antenna cluster j.

C. Multiple signatures in CCD-based channel estimation

In a recent work [10], a generalized subspace-based channel
estimation model that exploits all the signal components that
are subject to the same channel was proposed. It was shown
that the channel estimates are more reliable when multiple
kernel matrices of the same group are used for the estimation.

Based on this work, we extend the CCD algorithm in [8]
for the case of multiple signatures. To this end, we propose a
new cost function that includes a weighted sum of projection
errors for the case of ambient colored noise vector channel
estimation. This is in contrast to the suboptimum algorithm of
[8] presented in section III-B, where common channels are not
exploited and all signal components and their corresponding
channels are processed independently.

The channel coefficient hm
j is shared by signal components

of the mth group. Let wm,l
j be the effective signature for

the lth signal components (l = 1, . . . , K, where K ≡ Km

for notational convenience) of group m to antenna cluster j.
Without loss of generality, let W̄j � [wm,1

j , . . . ,wm,K
j ] and

thus
Span[W̄j ] ⊆ Span[Wj ] ⊥ Span[Ln

j ], (17)

and consequently Ln H
j W̄j = 0. Defining

Ln
j � IK ⊗ Ln

j (18)

CT � [(Cm,1)T , . . . , (Cm,K)T ] (19)

where ⊗ represents the Kronecker product, and applying
vectorization operation on Ln H

j W̄j , we finally obtain

vec[Ln H
j W̄j ] = Ln H

j vec[W̄j ] = Ln H
j Chm

j = 0. (20)

In practice, the covariance matrix R from which the noise
subspace is obtained is unknown and must be estimated from
the observed data via time averaging. Assuming a locally
stationary environment, one such estimate based on a rectangle
window of T samples is given by R̂ = 1

T

∑T
k=1 r̃[k]r̃[k]H ,

where r̃[k] is the combined received vector at time instant k.
The CCD in (14) applied to the estimates of the submatrices of
R̂ will also in practice give noisy estimates of the subspaces.
Consequently, we define the noisy estimate of Ln

j in (18) by
L̂n

j � IK ⊗ L̂n
j .

In this work, and because of the presence of noisy estimates,
we consider the following optimization criterion to obtain the
blind channel estimates in (20):

ĥm
j = arg min

‖t‖=1
tHDt, (21)

where D � CHL̂n
j L̂n H

j C =
∑K

l=1(C
m,l)HL̂n

j L̂n H
j Cm,l. For

the noiseless case L̂n
j = Ln

j and if the identifiability condition
(see [5]) is met, all of the eigenvalues of D are positive
but the smallest one, which is zero. However in practice, the
estimation errors may result in a positive perturbation in the
smallest eigenvalue so that the matrix D is positive definite
and no (non-trivial) solution of (20) exists. In this case, the
target channel vector can still be estimated by minimizing the
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cost function in (21). Thus, the optimization criterion in (21)
is more robust to perturbations in Ln

j than (20).
A further modification to the optimization criterion is mo-

tivated by the development of the generalized subspace based
blind channel estimator in [11]. Specifically, we allow the
assignment of different real-valued weights for each of the
different terms (Cm,l)HL̂n

j L̂n H
j Cm,l, i.e.

ĥm
j = arg min

‖t‖=1
tH [

K∑
l=1

αj,l(Cm,l)HL̂n
j L̂n H

j Cm,l]t, (22)

where αj,l > 0 are user-specified weight parameters. Let Aj �
diag[

√
αj,1, . . . ,

√
αj,K ] ⊗ IL−N , so that the optimization

criterion in (21) can be expressed in matrix form as

ĥm
j = arg min

‖t‖=1
tHCHL̂n

j AjAH
j L̂n H

j Ct. (23)

The solution of (23) can be calculated as the eigenvector cor-
responding to the smallest eigenvalue of CHL̂n

j AjAH
j L̂n H

j C.
The multiple signature waveforms are thus incorporated di-
rectly in the optimality criterion. The overall “CCD-MS”
algorithm presented here is detailed in Table 1.

Table 1 Blind CCD-based channel estimation algorithm in
colored noise using multiple signature waveforms (CCD-MS)
K is user specified
αj,l, l = 1, . . . , K, j = 1, 2, are user specified
Aj = diag[

√
αj,1, . . . ,

√
αj,K ], j = 1, 2

Aj = Aj ⊗ IL−N , j = 1, 2
C = [(Cm,1)T , . . . , (Cm,K)T ]T

R̂ = 1
T

∑T
k=1 r̃[k]r̃[k]H

R̂ =

[
R̂11 R̂12

R̂21 R̂22

]
R̂−1

11 R̂12R̂−1
22 = L̂1 Π̂ L̂H

2 (see CCD alg. in [9])

For j = 1, 2:
L̂j = [L̂s

j L̂n
j ], where L̂s

j is L × N and L̂n
j is L × (L − N)

L̂n
j = IK ⊗ L̂n

j

Construct the matrix CHL̂n
j AjAH

j L̂n H
j C

ĥm
j is the smallest eigenvector of CHL̂n

j AjAH
j L̂n H

j C

IV. COMPUTER EXPERIMENTS

Consider a DS-CDMA downlink connection from a base
station to N users. The information symbol bi ∈ {±1} for
user i is spread by a unique complex spreading code ci =
[ci

1, . . . , c
i
Lc

]T , where Lc is the processing gain. The frequency
selective channel is modeled as a FIR filter. The normalized
coefficient vector h is of dimension P×1. Adopting the model
in [5], the kernel matrix Ci of the i-the user is a (Lc − P +
1)×P Toeplitz matrix with the first column [ci

P , . . . , ci
Lc

]T and
first row [ci

P , . . . , ci
1]. The effective signature corresponding to

this kernel matrix consists of the part of the received signal
free from the ISI caused by previous symbols and since in

general P 
 Lc, this ISI can be neglected. The received signal
amplitude for the i-th user is γi at both antennas and the signal
of all the users are synchronized, a common assumption for
downlink transmission. The received signal at the mobile is
expressed as in (1), for each antenna.

In the simulations, the following specific values are used:
number of active users N = 6, processing gain Lc = 12
and length of channel vector P = 4. The binary signature
sequences are randomly generated and constant throughout the
simulation. For each antenna cluster, the colored noise vector
vj is obtained by applying a normalized correlation matrix to
a complex white Gaussian noise vector.

The performance metric is the mean square error (MSE)
obtained by averaging over 103 independent runs. It is assumed
that the phase ambiguity has been resolved so that the MSE
for the channel to antenna j becomes:

MSEj =
1

Ko

Ko∑
k=1

2 − 2|ĥH
j (k)hj |2

‖ĥj(k)‖‖h‖ , (24)

where ĥH
j (k) is the kth sample vector channel estimate and

Ko is the number of sample estimates or independent runs.
For the first two experiments, the covariance matrix is esti-

mated for each run from the received signal of 104 transmitted
symbols. The channel is estimated for different set of kernel
matrices. The first set consists of S1 = C1, S2 = {C1,C2}
and so on up to S6 = {C1, . . . ,C6}.

Figure 1 shows the MSE of the channel estimates for
different values of signal to noise ratio (SNR). For that first
experiment, it is assumed that power control is used so that the
received amplitude for all users are equal to unity, i.e. γ1 =
1, . . . , γ6 = 1. Similarly, the user specified weights, are also
all set to one (αj,i = 1, ∀i, j = 1, 2).

The results clearly shows the advantage of the CCD-MS
method over the EVD approach of section III-A and the
single waveform CCD approach of section III-B; the MSE
decreases as we increase the number of kernel matrices in the
estimation algorithm, indicated by the number in the legend.
There is a gain of approximately 10dB when using only
two kernel matrices (CCD-MS 2) and 20dB when using six
kernel matrices (CCD-MS 6), instead of a single one (CCD)
for the channel to antenna 1. The gain for the channel to
antenna 2 when using two kernel matrices is approximately
5dB for antenna1 and more than 12dB when using all six
kernel matrices (CCD-MS 6). The improvement varies with
channel realization but in general, it can be observed that the
gain increment is significant at first, and seems to taper as we
increase the number of kernel matrices.

For the second experiment, the users’ received amplitudes
are set to be proportional to their respective index, i.e. γ1 =
1, γ2 = 2, . . . , γ6 = 6. Two sets of user-specified weights are
used in (23) for the channel estimation. The first set, named
unity, consists of all ones i.e. αj,l = 1, ∀l, j = 1, 2, as
in the first experiment. The second set, named proportional,
consists of weights proportional to the power of the received
contributions, i.e. αj,l = γ2

l , ∀l, j = 1, 2. In Fig. 2, the MSE
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Fig. 1. MSE of channel estimates for equal amplitude signals (γl =
1, αj,l = 1, ∀l, j = 1, 2).
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Fig. 2. MSE of channel estimates for different amplitude signals (γl =
i, αj,l = γ2

l , ∀l, j = 1).

for the channel estimates obtained using CCD-MS 6 with a
unity and proportional set of user specified weights are shown
along with the MSE for the traditional CCD approach for
reference purposes. It can be observed that the “proportional”
choice of weights improves the MSE with a measured gain
of approximately 5dB. This choice of weights is motivated by
the findings in [11].

Finally, we study the effect of imperfect covariance matrix
estimation by varying the length of the observation window
T . Figure 3 shows the MSE for different observation time.
The MSE improves rapidly at first and tapers at larger values
of T . More importantly, the gain in MSE for using CCD-
MS over CCD and SVD estimation algorithms is actually
more important in the presence of errors in the covariance
matrix estimate. For antenna 2 it can be seen for example that
for the same MSE, CCD requires an observation window of
approximately 60 samples whereas CCD-MS 2 only requires
20 samples; a considerable improvement. This gain is even
larger for antenna 1.

V. CONCLUSION

We have presented a generalized criterion for the CCD-
based estimation of multiple vector channels in ambient
colored noise. The proposed method, which uses multiple
signature waveforms for the channel estimation shows signif-
icant improvement when compared to the method in [8] that
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Fig. 3. MSE vs. Covariance estimation length (T ) (γl = 1, αj,l =
1, ∀l, j = 1, 2).

uses a single signature. In future work, we will investigate
the optimization of the MSE as a function of the user-
specified weights and develop the Cramér-Rao bound (CRB)
to complete the study.
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