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Abstract— To improve the bandwidth efficiency of current and
future generations of wireless cellular systems, several techniques
exist such as beamforming (BF) and multiuser detection (MUD).
To reduce the complexity of the MUD, it has been proposed
to separate users within a cell into mutually exclusive groups
and perform MUD independently in each group. Inter-group
interference (IGI) is reduced by using beamforming. In this work,
the group optimal MMSE linear receiver for BF based space-time
multiuser detector (ST-MUD) receivers (BF-STMUD) is derived.
The complexity of this structure is compared to that of the full
ST-MUD. It is shown through computer simulations that with
proper grouping, an important reduction in complexity can be
achieved with almost insignificant loss of performance.

I. INTRODUCTION

Current and future generations of wireless cellular systems
require efficient use of the expensive and scarce available
bandwidth. Multi-user detection (MUD) and the use of smart
antennas (SA) to exploit the spatial domain are known to
help reduce the interference significantly, and thus improve
the system’s efficiency.

To reduce the complexity of the MUD and at the same
time reduce the co-channel interference, it has been proposed
in [1], [2] to cluster users in mutually exclusive groups of
spatial equivalence. The data symbols from each group are
jointly detected using a reduced dimension MUD, while inter-
group interference (IGI) is reduced by using spatial filtering
or beamforming with SA, as illustrated in Fig. 1.

When implemented as a matrix inversion, the complexity
associated to linear MUD is proportional to K3, where K is
the total number of users taken into account. Grouping has the
potential to considerably reduce the total complexity compared
to the full MUD complexity. Indeed, the total complexity when
using MUD with grouping is proportional to

∑
j K3

j < K3,
where Kj is the number of users in group j and K =

∑
j Kj .
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Fig. 1. User grouping

Although the idea of combining antenna arrays with multi-
user detection is not new (e.g. [3]), it is only more recently

that the concept of grouping closely located users in the spatial
domain prior to joint detection has appeared [1], [2], [4]–[6].

In [1], [2], [5], [6], the groups are determined by thresh-
olding on a normalized cross-correlation function based on
the user spatial signature modeled as a single plane wave.
A conventional beamformer is then used for each user in
the system, prior to MUD in [1], [5] whereas [2], [6] use
adaptive RLS beamforming weights for each user. In all those
cases, a set of beamforming weights is assigned to every user.
In contrast, [7] uses multiple switched beams and MUD is
applied independently on each beam.

In the existing literature, it is generally assumed that the BF
provides sufficient separation and the IGI is neglected in the
development of the MUD expression; an assumption that may
be violated in practice due to e.g. closely separated clusters. In
this work, we develop and study a new group-optimal MMSE
space-time multiuser detector (ST-MUD) receiver structure
that incorporates the IGI in the derivation as a random signal
contribution. Expressions for the signal to interference plus
noise ratio (SINR) and the computational complexity in terms
of number of complex floating point operations are also de-
rived. Two different beamforming (BF) algorithms for spatial
filtering are considered. Through computer simulations, it is
shown that with proper grouping, the proposed structure has
the potential to provide important complexity reduction with
minimal performance loss.

The rest of the paper is organized as follows. The system
model is presented in Section II. In Section III the optimum
reduced complexity group-based BF-STMUD is derived and
beamforming algorithms are discussed. Simulation results are
shown in Section V. Finally, some conclusions are drawn in
Section VI.

II. BACKGROUND

We consider the uplink of a time-division duplex syn-
chronous CDMA system (TD-CDMA). Each of the K mobiles
transmits a sequence d(k) ∈ {±1}N of N data symbols, where
the superscript k is the mobile index. The symbols are spread
using a signature sequence c(k) ∈ R

Q, Q = Ts/Tc where Ts

and Tc are the symbol and chip durations, respectively. The
data is then synchronously transmitted through a dispersive
channel, assumed fixed for the duration of the data block of
N symbols. The space-time receiver at the base station is
equipped with a standard linear antenna array of M elements.

Based on the linear system model described in [8], the
received signal at the antenna array for a block of N data
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symbols can be expressed in matrix-vector form. Let the
channel coefficients from user k to the base station mth

antenna be h(k,m) ∈ C
W , where W is the length of the

channel impulse response in number of chips. Assuming a
plane wave propagation through a FIR channel, the channel
matrix for user k can be defined by

Hk = [h(k,1) h(k,2) . . . h(k,M)]T

= [v(θk,1) v(θk,2) . . . v(θk,W )] Ak, 1 ≤ k ≤ K,
(1)

where v(θ) is the array manifold vector in direction θ, θk,l

is the direction of arrival (DOA) for the lth path of user k,
Ak = diag(ak,1, . . . , ak,W ) is the amplitude matrix where ak,l

is the complex amplitude for user k’s lth path, and T denotes
transposition.

Let the corresponding effective signature sequence b(k,m) ∈
C

Q+W−1 be the convolution of the signature sequence and
channel coefficient b(k,m) = h(k,m) ∗ ck, 1 ≤ k ≤ K,
1 ≤ m ≤ M . Also let b(k) ∈ C

M(Q+W−1) be the combined
effective signature for all antenna elements, i.e.:

b(k) � vec{[b(k,1) b(k,2) . . . b(k,M)]T }, 1 ≤ k ≤ K, (2)

where the vec(·) operation forms a column vector from the
elements of its argument matrix by concatenating the columns
of that matrix, starting from the left. The effective signatures
for all users can then be compactly combined in a matrix V:

V = [b(1) b(2) . . . b(K)] ∈ C
M(Q+W−1)×K . (3)

Similarly, the data vectors for the K users are combined
in one large vector of length NK such that data symbols
corresponding to the same time interval are grouped together,
i.e.:

d � vec{[d(1) d(2) . . . d(K)]T } ∈ {±1}NK . (4)

The observations measured from the antenna array for each
time instant are also grouped in a vector, where data samples
from the same time instant are grouped together:

x = vec{[x(1) x(2) . . . x(M)]T } ∈ C
M(NQ+W−1), (5)

where x(m) ∈ C
NQ+W−1 is the received vector for antenna

m. Combining equations (4) and (5), the total received vector
becomes

x = Td + n, (6)

where T ∈ C
M(NQ+W−1)×NK is a block-Toeplitz matrix

containing the matrix V . Assuming W < Q, T takes the
form:

T =

V

V

V

MQ

(N-1)MQ

. (7)

Finally, n ∈ C
M(NQ+W−1) is the vector of independent

circular complex Gaussian noise samples arranged the same

way as x in (5) and E[nnH ] = σ2
wIM(NQ+W−1), where σ2

w

is the noise variance at each antenna element, H represents
Hermitian transposition, and IN is the identity matrix of
dimension N .

In multi-user detection, the symbols transmitted from all K
users are jointly estimated, based on the observations vector
x. For a linear detector, the estimated binary symbols are
obtained by taking the sign of the real part of the output of
the estimator M ∈ C

NK×M(NQ+W−1), i.e.:

d̂ = sgn{�(MHx)}, (8)

where sgn(·) is a function that returns the sign of its argument
and �(x) is the real part of x. Based on the matrix model (6),
it can be shown that the minimum mean square error (MMSE)
linear estimators MH

MMSE takes the form:

MH
MMSE = (THT + σ2

wI)−1TH . (9)

Notice that the estimator consists of a match filter (TH )
followed by a decorrelator. The decorrelator matrix has dimen-
sions NK ×NK. If inverted using traditional techniques, the
operation has complexity in terms of number of users of order
O(K3); a considerable difficulty for real-time operations.

III. OPTIMAL GROUP-BASED BF-STMUD

The receiver structure illustrated in Fig. 2 is considered. It
consists of G independent parallel space-time multiuser pro-
cessor “cards” (j ∈ {1, . . . , G}) containing one beamformer
with weight vector wj,i ∈ C

M for each user i ∈ {1, . . . , Kj},
and a group ST-MUD for data symbols estimation. Let
W(j) � [wj,1 . . . wj,Kj

], then the input to the group ST-
MUD becomes yj = WH

j x, where Wj = INQ+W−1⊗W(j),
and ⊗ denotes the Kronecker product. Next we derive the
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Fig. 2. Group-based BF-STMUD receiver diagram

optimal MMSE ST-MUD weights for a given group and set of
beamformer weights. We then discuss two different approaches
for obtaining the beamforming weights.

A. Optimal BF-based receiver

To derive the optimal MMSE group ST-MUD weights, the
received vector after beamforming is first expressed as a sum
of three signal contributions: the signal from the users within
the group of interest, the so-called inter-group interference
(IGI) which comes from the users outside of the group and the
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additive white Gaussian noise. The IGI is considered random
for the development of the MMSE estimator.

Let P(j) ∈ R
K×Kj be the matrix that consists of Kj

elementary vectors {ei} of dimension K, where ei is a vector
containing zeros except at position i, where it contains the
value 1. Also, let Pj � (IN ⊗ P(j)) ∈ R

NK×NKj such that

dj = PT
j d (10)

represents the NKj data symbols transmitted by users in group
j only. Similarly, define Pj̄ as the complement of Pj such that
PT

j̄
Pj = 0 and dj̄ = PT

j̄
d ∈ R

N(K−Kj) is the vector of all
symbols transmitted from the users outside the group j. The
beamformer output yj can now be expressed in this form:

yj = WH
j x (11)

= WH
j (TPjPT

j d + TPj̄P
T
j̄ d + n) (12)

= Tjjdj + Tjj̄dj̄ + nj , (13)

where Tjj ≡ (WH
j TPj) ∈ C

Kj(NQ+W−1)×NKj contains
only the columns related to the users in the group j, Tjj̄ ≡
(WH

j TPj̄) ∈ C
Kj(NQ+W−1)×N(K−Kj) contains only the

columns related to the users outside group j, and nj ≡
WH

j n is the correlated noise vector (after beamforming) with
E[njnH

j ] = σ2
wWH

j Wj ≡ Rn. Notice that the first term in
(13) corresponds to the signal part for group j, the second and
third terms to the IGI and noise, respectively.

Following the method in [9], it can be shown that the MMSE
linear estimator, solution to the linear optimization problem

M(j)
BF-MMSE = arg min

M
E‖dj − MHyj‖2, (14)

can be expressed as

M(j)H
BF-MMSE = R(RRH + CCH + TH

jjRnTjj)−1TH
jj (15)

where R ≡ TH
jjTjj and C ≡ TH

jjTjj̄ . Notice that the right-
most element in (15) corresponds to a match filter to the users
in group j and that the matrix inversion has now reduced
dimension NKj×NKj . Depending on the grouping, this may
represent a considerable reduction in complexity.

It is important to realize here that the optimality of (15)
is only with respect to the pre-determined grouping and
beamforming weights. Joint optimization for grouping, beam-
forming, and linear weight design for data estimation would
be very costly and is not considered in this work.

B. Beamforming algorithms

The linear estimator in (15) is optimal given the weight
vectors for each user in the group (W(j)). Several beamform-
ing algorithms exist and two of the common approaches are
presented next.

1) Conventional BF: In this method, the beamforming
weight vectors are designed based on the estimated DOA of
the user of interest’s main or strongest path. Thus

wj,i = v(θ̂(j)
i ), (16)

where θ̂
(j)
i is the estimated main path DOA for the user i in

group j. The advantage of this technique is its simplicity; it

only requires the DOA estimate for the main path of each user.
The underlying assumption here and for the next beamforming
algorithm also is that the multipaths are closely concentrated
around the main path.

2) MPDR: Conventional beamforming is simple but is not
optimal with respect to the interference and noise. A better
choice in this case is to use the well known minimum power
distortion-less response (MPDR) beamformer, since it only
requires the array covariance matrix Sx in addition to the
users’ DOA [10]. The array covariance matrix is given by
Sx = E[x(n)xH(n)], where x(n) ∈ C

M is the array output
at time n, and it can be estimated using the sample matrix:

Ŝx � 1
No

No−1∑

n=0

x(n)xH(n), (17)

where No is the number of data observations. The beamform-
ing weight vector for the user i in group j then becomes:

wj,i =
Ŝ−1

x v(θ̂(j)
i )

vH(θ̂(j)
i )Ŝ−1

x v(θ̂(j)
i )

. (18)

As in the case of conventional beamforming, the DOA for the
main path must be estimated from the received signal.

IV. COMPLEXITY ANALYSIS

The expressions for the optimal MMSE linear estimators in
(9) and (15) include a matrix inversion and several matrix mul-
tiplications; a challenge for real-time operations. Fortunately,
the structure of the data matrix T in (7) can be exploited
extensively, leading to significant complexity reduction.

The most important complexity reduction results from the
inherent structure in the THT matrix product. Indeed, for
W ≤ Q, and because of Hermitian symmetry, only two K×K
blocks need to be computed for the complete matrix product.
This observation can be extended to the other matrix products
in (15). Also, because of the structure of T, the Hermitian
matrix to be inverted in (9) is block multi-diagonal. This can
be exploited in the Cholesky factorization to solve the exact
inverse problem. Similarly, the Hermitian matrix to be inverted
in (15) also has a block multi-diagonal structure that can also
be exploited in the same way.

To compare the complexity between the two approaches,
the number of complex floating point operations (flops) is
counted for the different parts of equations (9) and (15).
Table I shows the dominant terms for the match filtering (MF),
overhead (OH), linear system solution operations (Sol.) and the
beamforming (BF) (not including weight design) complexity
expressions. The overhead includes matrix products that do
not belong to any of the previously mentioned category.

Notice that the complexity for solving the linear system is
O(NK3) compared to O(N3K3) if the Cholesky algorithm
did not take into consideration the structure in T. For large N ,
most of the saving in complexity comes from linear system
solution; indeed, for Kj � K,

∑
j K3

j � K3. The total
complexity for the cases K = 16, M = 12, Q = 16, W = 10
for groups of Kj = 4,∀j is shown in Fig. 3, for N = 100 and

Authorized licensed use limited to: McGill University. Downloaded on June 19, 2009 at 15:47 from IEEE Xplore.  Restrictions apply.



Operation ST-MUD BF-STMUD (per group)

Match Filtering 2NKMQ 2NK2
j Q

Beamforming N/A 2KjMQ
Overhead 2K2MQ 2KQKj(M + K)

+12KK2
j + 10NK2

j

System solution NK3 8NK3
j

TABLE I

COMPLEXITY (IN COMPLEX FLOPS)

N = 25. As illustrated, for large N important computational
savings can be obtained when using BF-STMUD. For smaller
N , the overhead associated to computing the various matrix
products in (15) becomes the dominant term and the reduction
of complexity is modest.

ST−MUD BF−STMUD
0

1

2

3
Total complexity N=100

C
Fl

op
s 

× 
10

6

MF
OH
Sol.
BF

ST−MUD BF−STMUD
0

0.4

0.8

1.2
Total complexity N=25

C
Fl

op
s 

× 
10

6

MF
OH
Sol.
BF

Fig. 3. Complexity (in complex flops)

V. COMPUTER EXPERIMENTS

The BF-STMUD system proposed with the different algo-
rithms for beamforming in section III B was implemented and
tested along with the more traditional ST-MUD system of (9)
for comparison. The system consists of K = 8 users, assumed
to be located within a 120◦ sector. For simplicity and also to
study the effects of IGI independently from the effects of ISI,
a W = 1 path channel model corresponding to the direct
line of sight path is used with equal amplitude for each user,
representing a perfect power control situation. The DOAs are
fixed for the entire simulation time and are given in Table II
along with the associated grouping. The CDMA codes are

User # 1 2 3 4 5 6 7 8

Group # 1 1 2 2 3 3 4 4
DOA (in deg.) 0 10 45 55 -25 -20 -45 -50

TABLE II

USER DOA AND GROUPING

chosen randomly and the processing gain is Q = 16. The
standard linear array (SLA) has M = 12 antenna elements
assumed ideal and isotropic. The block size is N = 10 data
symbols for all simulations for faster computations; since there
is no ISI in these simulations, this smaller choice of N has
no impact on the performance results. The estimate for the
covariance matrix on the other hand is obtained by using the
sample matrix over blocks equivalent to 150 data symbols.

In the first part of these experiments, the average SINR
is measured with the help of (21) and (22) developed in the
appendix. As (21) suggests, at high input SNR (i.e.: σ2

w → 0)
the SINR for BF-STMUD achieves a plateau, whereas the full
ST-MUD does not (see (22)). This can be observed directly
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Fig. 4. SINR for the different algorithms

from Fig. 4 and is explained by the inability of the group-based
BF-STMUD to completely eliminate IGI, the main source of
signal degradation at high SNR.

Since MPDR has a better ability to null interferers, in
general it provides higher output SINR than conventional
beamforming. Table III shows the value of the SINR for the
different algorithms at the operating SNR of 10dB. It can
be observed that ST-MUD is closely followed by the group-
based BF-STMUD of section III with MPDR and Conv. BF.
The difference of 0.2dB between STMUD and BF-STMUD

Method SINR (dB)

ST-MUD 9.834
BF-STMUD MPDR 9.627
BF-STMUD Conv. BF 9.388

TABLE III

SINR AT 10DB

with MPDR is negligible in practice. Yet, the implication
in terms of complexity reduction is significant: by carefully
choosing the grouping, and by applying proper spatial filters,
it is possible to reduce the complexity considerably with a
minimal cost on performance. This is further confirmed in the
bit error rate (BER) curves for practical operation range shown
in Fig. 5. It can be easily observed that the difference between
the three algorithms is really small. Indeed, at BER of 10−4,
the corresponding differences in terms of input SNR between
the full STMUD and BF-STMUD with MPDR and Conv. BF
are approximately 0.2dB and 0.5dB, respectively.

We also considered the traditional decorrelator or zero-
forcing (ZF) approach for the weight design. Using this
method, the IGI and noise are ignored in the weight design,
i.e. the terms CCH and TH

jjRnTjj in (15) are dropped. The
results obtained showed a negligible degradation in the order
of a few hundredth of a dB when compared to the MMSE
approach. As expected, the degradation was more important
for groups that were closer together since the IGI is more
prominent.

VI. CONCLUSION

In this work, we have studied the optimal linear group-based
beamforming ST-MUD receiver and compared it to the full
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ST-MUD receiver. Computer simulations show that the loss in
performance in BER due to grouping is negligible when using
traditional beamforming algorithms. The studied structure may
therefore represent an approach of choice to future multiuser
receiver design. In a subsequent work, we will improve the
structure by removing the beamformers, since it represents an
extra step in the design of the group-optimal ST-MUD weights.

APPENDIX

A. SINR derivation

Let d̂′
j be the soft data symbol vector estimate for users of

group j. Then according to (8) and (10), for any group linear
data estimator M, it can be expressed as

d̂′
j = �(MHWH

j x). (19)

The statistical mean power of d̂′
j can be expressed as a sum

of three terms:

E||d̂′
j ||2 = E(tr(d̂′

jd̂
′H
j ))

= tr(MHWH
j TjjTH

jjWjM

+ MHWH
j Tjj̄T

H
jj̄WjM

+ σ2
wMHWH

j WjM)

(20)

where tr is the matrix trace operator. Equation (20) is obtained
assuming independence between noise and data symbols from
different users, i.e. E(ddH) = IN and E(dnH) = 0.
The first term in (20) represents the signal part from the
group of interest, the second and third terms represent the
interference and noise components, respectively. Thus, the
signal to interference plus noise ratio (SINR) for group j, may
be expressed as

Γ(j)
BF(M) =

tr(MHWH
j TjjTH

jjWjM)
tr(MHWH

j Tj̄jTH
j̄j
WjM + σ2

wMHWH
j WjM)

.

(21)
For the particular case of the full ST-MUD in (9), the

beamforming is absent and since no grouping occurs, there

is no IGI present. Therefore, the SINR simply becomes:

ΓSTMUD(M) =
tr(MHTTHM)
tr(σ2

wMHM)
. (22)
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