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Abstract—In this paper, an adaptive algorithm is proposed
for the estimation and tracking of the channel coefficients in
peer-to-peer communication through a network of relays. Using
the observed signals at the relay and destination nodes, the
channel state information (CSI) is estimated centrally by taking
advantage of a Markov model for the source-relay and relay-
destination channels, and employing the Cubature Kalman Filter
(CKF). The estimated CSI is used for solving a robust relay
beamforming problem, aiming to minimize the total transmitted
power by the relays subject to signal-to-interference-plus-noise
ratio (SINR) constraint at each one of the destination nodes.
Through simulations, the proposed CSI estimation is shown to be
unbiased and converge to the Cramer-Rao-Lower-Bound (CRLB)
for low and moderate error levels. Furthermore, the ensuing
beamformer design exhibits better performance compared to
existing robust beamforming methods.

Index Terms—Cramer-Rao-Lower-Bound, Cubature Kalman
Filter, Channel State Information.

I. INTRODUCTION

Cooperative communication has received significant interest
as a promising way of achieving spatial diversity without using
Multiple-Input-Multiple-Output (MIMO) technology [1], [2].
Peer-to-peer communication using a network of relays (also
known as cooperative relaying) is a cooperative scheme in
which each source in a pair wishes to communicate with its
corresponding destination through the relays [3]. Employing
the relay nodes between the source-destination pairs reduces
the effect of channel degradation and mitigates the interference
received from other nodes; thus, it can provide reliable com-
munication between source-destination pairs. Among different
cooperative relaying schemes, such as amplify-and-forward
(AF) [3], decode-and-forward (DF) [4], and coded-cooperation-
and-forward (CF) [5], AF is much more attractive due to its
relatively low-complexity of implementation and higher secu-
rity. In this scheme, a commonly adopted strategy to increase
the SINR at the target destination is performing cooperative
beamforming using the relay nodes.

One major problem in the practical implementation of a co-
operative relaying system is that the Channel State Information
(CSI) cannot be precisely estimated as it contains errors due
to limited channel feedback, channel quantization errors, or
feedback delays. Designing the beamformer requires accurate
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knowledge about CSI [6]; thus, establishing a reliable relay
transmission is challenging under channel variations.

In the literature on cooperative robust relay beamforming,
authors assume that they can somehow provide an initial
estimation of the channel with error, while is unknown and does
not decrease by receiving more measurements over time [6]–
[8]. In the mentioned papers, the assumed channel error model
does not change dynamically while, in the real communications
world by observing new measurement data, the channel uncer-
tainty can be decreased. Two different robust approaches have
been proposed in the literature which are: 1) stochastic [6],
[7], and 2) worst-case methods [8] whose applications depend
on the way that the error is modelled. In this respect, in [6],
authors proposed a stochastic-based robust method for tuning
the relays’ beamform weights. In [9], the authors proposed a
method to model the channel error dynamically. While this
method decreases the CSI error receiving new measurements, it
suffers from non-convexity and ambiguity at the starting point,
impacting the convergence.

In this paper, we assume there exists a processing center
that has access to the destinations and relays observed signals
and can fuse information of these two sources. The available
information at the processing center, called measurements, used
to estimate the channel coefficients (states). The measurements
are a function of the beamforming weights which are optimized
at each time step. In our designed method, the CSI be updated
whenever we observe new data in the relays or destination
nodes. Note that due to the low complexity of implementations
we used AF relaying in this paper. Furthermore, the contribu-
tions of this paper are summarized as follows:
• The discussed robust approach is a real-time adaptive

approach that mitigates the channel error at each time step,
unlike the previous works in [6]–[8].

• In our approach, the convergence of the channel estimation
method does not depend on the starting point, unlike the
robust adaptive approach in [9].

• Due to the non-linear nature of measurements with respect
to the states of the channels, we have utilized the Cubature
Kalman Filter (CKF) [10], for tracking the CSI. The
CKF is shown to have a better performance in highly
non-linear measurements compared to other non-linear
approximations of KF [10].

• A robust optimization approach for minimizing the total
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Figure 1: System Model: a cooperative relay beamforming with M source-destination
pairs and L relays.

power transmission of the relays subject to probabilistic
SINR constraint at each of the destinations is proposed.

• The results of simulations show that our proposed method
is unbiased and achieves the Cramer-Rao-Lower-Bound
(CRLB) for low and moderate error levels which shows
the efficiency of our estimation.

Notations: In this paper, the notation � stands for Schur-
Hadamard (element-wise) multiplication and BD (.) denotes the
block diagonalization of an array of matrices.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We consider a network for point-to-point transmission be-
tween M source-destination pairs, through a layer of L relays
operating in parallel, as illustrated in Fig. 1. The sources
S = {Si}Mi=1, relays R = {Rr}Lr=1, and destinations D =
{Di}Mi=1, are all assumed to be equipped with a single antenna.
Assume that fpr(k), and grp(k) are the channel coefficients
between the pth source to rth relay at kth time step, and the
channel coefficient between the rth relay to pth destination
at kth time step, respectively. Assume that there exists no
direct link between the source-destination pairs. For notation
simplicity, assume that we drop the time step k from the channel
coefficients (e.g. fpr(k) → fpr, grp(k) → grp), i.e., all the
equations in this Section are for time step kth. Suppose that
vx
m and vyjm are additive white Gaussian noise at relays and jth

destination, respectively. The relays observed signal is

x =

M∑
p=1

fpsp + vx
m (1)

where x = [x1, x2...xL]
T
,vx
m = [vxm1,, v

x
m2...v

x
mL]T , fp =

[fp1, fp2...fpL]
T and {sp}Mp=1 are information symbols. The

rth relay multiplies its received signal by a complex weight w∗r ,
then transmits it to the target destination. The relays transmitted
signal using AF approach can be written as

t = WHx (2)

where W = diag(w) and w = [w1, w2...wL]T , the received
signal at jth destination node is denoted as

yj = gj
T t + ηj ∀j ∈ J (3)

= gTj WHfjsj + gj
TWH

M∑
p6=j

fpsp + vyjm

where J = {1 . . .M}, vyjm = gTj WHvx
m+ηj . SINR at the jth

destination node is written as

SINRj =
P js

P jN + P jI
j ∈ J (4)

where P js , P jI , P jN are the desired signal, interference, and
noise power at the jth destination, respectively. By using (3),
the total transmit power of the relays is

PT= E
{
‖t‖2

}
= E

{
Tr
(
tHt
)}

= E
{
xHWWHx

}
=

L∑
r=1

|wr|2[Rx]r,r = wHDw (5)

where PT is the total power transmission of the relays and
D = diag

(
[Rx]1,1[Rx]2,2 . . . [Rx]L,L

)
and w = diag (W)

and Rx = E
{
xxH

}
. The correlation matrix of the received

signal at the relays is computed as

Rx =

M∑
p,q=1

E
{
fpf

H
q

}
E {spsq}+ σ2

N1I

=Pp
(
f̄pf̄

H
p + σ2

fI
)

+ σ2
N1I (6)

where Pp = E{sps∗p}. Using (3), the jth desired signal power
can be written as

P js =E
{
gTj WHfjf

H
j Wg∗j

}
E{s2

j}
=Pj(w

H(gj � fj)(gj � fj)
Hw) = wHRj

hw (7)
where hjj and Rj

h are defined as

Rj
h

∆
= Pjhjh

H
j , hjj

∆
= gj � fj

Similarly, the interference power at the jth destination can be
written as

P jI = E{gTj WH(

M∑
p6=q

fpf
H
q sps

∗
q) Wg∗k}

=wH
∑
p6=j

Pp((gj�fp)(gj�fp)
H

)w=wHQjw (8)

where

hpj
∆
= gj � fp, Qj

∆
=

M∑
p6=j

Pjh
p
j

(
hpj
)H

Similarly, the noise power at the jth destination is
P jN= E

{
(gTj WHvx

m + ηj)(g
T
j WHvx

m + ηj)
H
}

=σ2
N1

wHdiag(gjg
∗
j )w+σ2

N2
=wHDjw+σ2

N2
(9)

where Dj
∆
= σ2

N1
diag(g∗j )diag(gj). Hence, the SINR at the

jth destination is

SINRj =
wHRj

hw

wH (Qj + Dj) w + σ2
N2

j ∈ J (10)

B. Problem Statement

We want to design the beamforming weights at relays for
all of the possible channel variations that guarantee the relays
consume the minimum possible power while QoS at destination
nodes preserves. The designed beamforming weights at relays
and SINR at jth destination are the functions of CSI. More
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specifically, the CSI needs to be estimated in order to solve the
following optimization problem

min
w

wHDw (11a)

s.t. Pr
f ,gj

(SINRj ≥ γj) ≤ εj j ∈ J (11b)

where γj is a preselected SINR threshold value at the jth desti-
nation node and εj is a maximum threshold outage probability
at the jth destination node. We intend to solve optimization
problem (11) the in the real-time by considering CSI rapid
changes. This optimization problem needs to be solved at
each specific time step. In our previous research study in [6],
we solved the stochastic version of the aforementioned robust
beamforming problem supposing the perfect knowledge of the
distribution of the channel error and the mean and covariance
of this distribution to be known. However, we do not have
such information about the channel in many situations. Also,
in [9], we discussed the joint prediction of beamforming and
CSI, we reformulated the non-convex optimization problem as
a constrained least square problem. The major drawback of
this solution is that it has high complexity and requires the
initial estimation of beamforming weights which may not exist
in practical scenarios. In Section III, an optimization procedure
for solving (11) is proposed.

III. STOCHASTIC ROBUST RELAYS BEAMFORMING

In this section, we propose a probabilistic method for making
the problem robust against CSI uncertainty. It has been proved
that considering the exact CSI in the situation that the CSI
has uncertainty, severely degraded the performance [6]. By
considering the uncertainty in the channel coefficients, the
channel coefficient between sources and relays can be written
as

f = f̄ + ∆f (12)

where f , f̄ and ∆f are the estimated, the actual value, and
the corresponding complex Gaussian error vector, respectively.
Similarly, for the relay to the destination counterpart, the
channel coefficients between the relays and the jth destination
is

gj = ḡj + ∆gj j ∈ J (13)

where gj , ḡj and ∆gj are the estimation, the actual value, and
the corresponding complex Gaussian error vector, respectively.
Let us define an auxiliary variable Zj as follows:

Zj = wH
(
Rj
h − γjQj − γjDj

)
w j ∈ J (14)

As a result, the constraints of our optimization problem in (11)
can be rewritten as

Pr
(
Zj ≤ γjσ2

N2

)
≤ εj j ∈ J (15)

By considering the statistics of uncertainty of the sources-
relays channel coefficients, the error vector is modelled as

∆f ∼ CN (0, σ2
fI) j ∈ J (16)

Similarly, for the relays to the jth destination counterpart, the
error vector is modelled as

∆gj ∼ CN
(
0, σ2

gI
)

j ∈ J (17)
It has been shown in [6] that (14) has the terms in first,
second, third and the forth order terms of ∆f , and ∆gj . In
[6], we showed that the third and forth order error terms can
be neglected. The following theorem shows that a certain set of

second-order cone constraints can serve as a tractable convex
approximation of the chance constraints (15).

Theorem 1. Let ξ1, ξ2, ..., ξm be independent standard
Gaussian random variables. Consider the function
Q : Rn × Rm → R defined via

Q(x, ξ) = −a0(x) +
m∑
i=1

ξiai(x) +
m∑
i=1

ξiξjai,j(x)

+
m∑
i=1

ξiξjξkai,j,k(x) +
m∑
i=1

ξiξjξkξlai,j,k,l(x)
(18)

where a0 (.) is affine and ai (.), ai,j (.), ai,j,k (.), ai,j,k,l (.) are
linear in their arguments. Consider the chance constraint

Pr (Q (x, ξ) ≥ 0) ≤ ε (19)
where ε ≥ 0 is given. Set

q̄ (ε) =

{
− ln ε+

√
(ln ε)2−8 ln ε

4 ε ≤ exp(−8)
2 else

(20)

and Q̄ (x, ξ) =Q (x, ξ) + a0 (x). Then, the following hold:
(a) For each x ∈ Rn, ξ ∈ Rm , we have Q̄(x, ξ)

2
=

xTU (ξ) x
(b) Let U = E{U (ξ)} � 0 and

c (ε) =

{
(q̄(ε)− 1)

2
exp( 2q̄(ε)

q̄(ε)−1 ) q̄(ε) > 2
1√
ε

q̄(ε) = 2
(21)

The second-order cone constraint
a0 (x) ≥ c(ε)‖U 1

2 x‖ (22)
serves as a tractable approximation of the chance constraint.

Proof. By assumption, for each ξ ∈ Rm, the function Q̄ (x, ξ)

is linear in x ∈ Rn. This implies that Q̄ (x, ξ)
2 is a non-

negative homogeneous quadratic polynomial in x ∈ Rn. This
establishes (a). To prove (b), we invoke [11] (Theorem 5.10),
which states that for any q ≥ 2:

E
[∣∣Q̄ (x, ξ)

∣∣q] 1
q ≤ (q − 1)

2
E
[∣∣Q̄ (x, ξ)

∣∣2] 1
2

(23)
This, together with Markov’s inequality and the result in (a),
implies that for any q ≥ 2

Pr
(∣∣Q̄ (x, ξ)

∣∣ ≥ t) ≤ t−qE [∣∣Q̄ (x, ξ)
∣∣q]

= [t−1(q − 1)
2‖U0.5x‖]q (24)

By setting q = q̄(ε) , we have q ≥ 2. Moreover, whenever
t ≥ c (ε) ‖U0.5x‖, we have Pr

(∣∣Q̄ (x, ξ)
∣∣ ≥ t) ≤ ε. It follows

that
Pr (Q (x, ξ) ≥ 0) = Pr

(
Q̄ (x, ξ) ≥ a0 (x)

)
≤ Pr

(∣∣Q̄ (x, ξ)
∣∣ ≥ a0 (x)

)
≤ ε

(25)

whenever (22) holds. In particular, the second-order cone
constraint (22) is a tractable safe approximation of (19).

Here, we aim to apply the result of Theorem 1 to the
non-convex problem (11). The auxiliary variable Zj can be
simplified as

Zj =∆fHQf∆f + ∆gHj Qf ,g∆f + ∆fHQH
f ,g∆gj

+∆gTj
_

Qf ,g∆f + ∆fH
_

Q
H

f ,g∆g∗j + ∆gHj Qg∆gj

+cHg ∆gj+∆gHj cg+cHf ∆f +∆fHcf +dj+h.o.t. (26)
By assuming the third and fourth order of the cross product of
channel errors to be negligible, we can reformulate Zj as

Zj = ∆HH
j Q̃∆Hj + 2Re

{
r̃j∆HH

j

}
+ dj (27)

where Q̃
∆
=

[
RI RIQ

RIQ RQ

]
, RI

∆
=

[
Qf QH

f ,g

Qf ,g Qgj

]
, RI,Q

∆
=
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[
0 0

_

Q
H

f ,g0

]
, RQ

∆
= 0, ∆HH

j
∆
=

[
∆hHj ∆hTj

]
, ∆hTj

∆
=[

∆fT ∆gTj
]
, r̃j

∆
= 1

2

[
cHcT

]
, cH

∆
=
[
cf
Hcg

H
]
.

The matrices Qf ,Qg,Qf ,g,
_

Qf ,g, cf , cg, and dj are defined in
Appendix 1. We have

E{|Zj |2} = E{ZjZHj } (28)

= E{∆HH
j Q̃∆Hj∆HH

j Q̃∆Hj}
+ 4E{∆HH

j rjr
H
j ∆Hj}

we have
2Tr[Q̃ΣQ̃Σ] + (Tr(Q̃Σ))2 + 4Tr(rjΣ) (29)

After some algebraic manipulations, it can be represented as
E{|Zj |2} = vec(X)HUjvec(X) (30)

The Affine term is also
dj(X) = vec(X)Hvec(Pjh̄

j
j(h̄

j
j)
H) (31)

− γjσ2
N1

vec(X)Hdiag(vec(I))vec(gjg
H
j )

− γjvec(X)Hvec(

M∑
p6=j

Pph̄
p
j (h̄

p
j )
H

)

Using Theorem 1, the following set of second-order cone
constraints serves as a convex approximation of the chance
constraint (15):

dj (X) ≥ c(ε)‖U
1
2

j X‖ j ∈ J (32)
Hence, our optimization problem in (11), would be

min
X

Tr(DX) (33a)

s.t. dj (X) ≥ c(ε)‖U
1
2

j X‖ j ∈ J (33b)

Rank(X) = 1 (33c)
The rank constraint in (33) is not convex. By dropping this
constraint, and using Semi-Definite Program (SDP) relaxation
the problem would be convex and can be solved efficiently
using CVX software [12]. The relaxed SDP problem is

min
X

Tr(DX) (34a)

s.t. dj (X) ≥ c(ε)‖U
1
2

j X‖ j ∈ J (34b)
Note that, we want to extract the beamforming weights w
from the solution of (34). The solution of (34) is a lower
bound to the solution of (33), because the feasibility region
of the non-convex problem is a subset of the relaxed problem.
In general, the solution of the relax problem may have a
general rank. Let Xopt denote the optimal solution of the
relaxed problem (34). If the rank of Xopt is one, the principal
eigenvector of Xopt is the optimal solution to the original
problem. Otherwise, if the rank of the matrix Xopt is higher
than one, an approximation technique is needed to obtain a rank
one solution from the relaxed problem. This method is called
randomization in literature (e.g. [3], [6]). The idea behind this
technique is to generate a candidate set of beamforming vectors
from the optimal solution of (34).

To design a randomization procedure for our problem, let
Xopt = UVUH denotes eigen-decomposition of Xopt. The
candidate vector wc can be chosen as wc = UV

1
2 ξ , where ξ ∼

CN (0, I), so that E(wcw
H
c ) = Xopt. A feasible solution can

be obtained by generating a sufficient number of realizations of
wc, then easily choosing the best feasible solution. One way
to generate the candidate solution of the problem (33) is to

find the scaling factor
√
α to scale wc. This scaling factor is

obtained by solving the following linear optimization problem:
min
α

α

s.t. αaj − c(ε)bj ≥ 0 j ∈ J
(35)

where
aj = vec(wcw

H
c )Hvec(Pjh̄

j
j(h̄

j
j)
H)

−γjσ2
N1

vec(wcw
H
c )diag(vec(I))vec(gjg

H
j )

−γjvec(wcw
H
c )Hvec(

M∑
p6=j

Pph̄
p
j (h̄

p
j )
H

)

bj = ‖U
1
2
j wcw

H
c ‖

This random vector generation process is performed over a
predefined value Nmax times and, then, we select the appro-
priate vector which has the minimum objective value in the
optimization problem (33). Algorithm 1 shows the different
steps of randomization method.

Algorithm 1 Randomization Method
Input: Xopt

Output: The rank one solution of Xopt, w

1: Compute SVD X = UVUH after solving (34)
2: for i < Nmax do
3: Generate a complex Gaussian random vector ξ ∼
N (0, I)

4: Generate a candidate vector as wi
c = UV1/2ξ

5: Solve the optimization problem (35) and obtain αi

6: if the optimization problem is infeasible then
7: discard and return to step 4
8: else
9: Store wi

c and the corresponding αi and relays
power transmission αi

(
wi
cDwi

c

)
10: end if
11: end for
12: Select αopt = αi and wopt

c = wi
c in which αi and wi

c

correspond to the minimum relay transmit power
13: Output best candidate vector is wopt =

√
αoptwopt

c and the
minimum objective function αopt

(
wopt
c Dwopt

c

)
IV. CHANNEL ESTIMATION

To solve the optimization problem (33), the means and vari-
ances of CSI for sources-relays and relays-destinations channels
are required. The observations (measurements) at relays and jth
destination at time step k is denoted as

zm(k) = h (f(k),gj(k)) + vz
m(k) (36)

where zm(k) = [xT (k), yj(k)]T , and vz
m(k) =

[vx
m(k)T ,v

yj
m (k)]T , j ∈ J is measurement error with

variance Rk, and h is a non-linear function of states, the
footnote m denotes the measured values. Moreover, by using
the Markov model, the sources-relays and the relays-jth
destination channel coefficients are respectively formulated as

f (k + 1)= αf (k) + vf
s(k) (37)

gj (k + 1)= βgj (k) + vgj
s (k) ∀j ∈ J (38)

where α, β are the temporal correlation coefficients. Note that
α, β should be chosen less than one. Otherwise, the system will
not be stable. The state variable at kth time step is ξTj (k) =
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[
fT1 (k) fT2 (k) . . . fTM (k) gTj (k)

]T
which is a (LM + L)× 1

vector. It can be written as
ξj (k + 1) = Fξj (k) + vs(k) ∀j ∈ J (39)

where F=BD (αILM , βIL), and vs(k) =[vf
s(k)T ,v

gj
s (k)T ]T

is the state noise which has a Gussian distribution with variance
Q = σ2

sI. Here, the footnote s denotes the state equations. In
(36), the observation equations are not linear functions of CSI,
so we need to utilize the non-linear versions of KF (i.e. EKF, or
CKF ) for CSI estimation. Here, we have utilized the CKF for
overcoming the non-linearity of the observation equations. The
CKF method is an approximation of a Bayesian filter which
has shown to have a better performance than Extended Kalman
Filter (EKF) and Unscented Kalman Filter (UKF) [10]. A single
step of CKF algorithm is presented in Algorithm 2. The worst
case complexity of CKF is given by O((LM + L)2) [13],
Note that, the complexity order of channel estimation is nearly
negligible compared to the complexity of solving optimization
problem (34) and randomization procedure in Algorithm 1. A
complete complexity analysis of SDP-based approaches can be
found in [6].

Algorithm 2 Single Step of CKF Algorithm
Assume that we have 2n samples for state. For ease of notation,
we denote l = k−1 and we show the time index by a subscript
(e.g. ξj (k|k)→ ξjk|k).

1: for ≤ i ≤ 2n do
2: Evaluate the cubature points:

χil|l = ξl|l +
√

Pl|lζi
3: Evaluate the propagated cubature points:

χik|l = Fχil|l + vs
4: Estimate the predicted state and error covariance:

ξk|l =
1

2n

2n∑
m=1

χmk|l

Pk|l = 1
2n

2n∑
m=1

((χmk|l − ξk|l)(χ
m
k|l − ξk|l)

H)

5: Form the cubature points:
χik|l =

√
Pk|lFζi + ξk|l

6: Propagate cubature points:
Zik|l = h(χik|l)

7: end for
8: Estimate predicted measurement:

z (k|l) =
1

2n

2n∑
i=1

Zik|l

9: Estimate innovations covariance matrix:

Sk = 1
2n

2n∑
i=1

(Zik|l − zk|l)(Z
i
k|l − zk|l)

H + Rk

10: Estimate the cross-covariance matrix:

Ck = 1
2n

2n∑
i=1

(χik|l − ξk|l)(Z
i
k|l − zk|l)

H

11: Estimate the updated state:
ξk|k = ξk|l + CkS

−1
k (zm − zk|l)

12: Estimate the corresponding error covariance:
Pk|k = Pk|l −ΩkSkΩ

T
k

Figure 2: Minimum relays transmission power versus the SINR threshold

V. SIMULATION RESULTS
In this section, we present numerical results to compare the

performance of the proposed robust beamforming design with
other approaches in terms of power consumption. Also, the
convergence of CKF method for estimating CSI is discussed
and compared with CRLB.

A. Methodology

In this section, we use the Monte-Carlo simulations to
generate the results. We consider a network with two source-
destination pairs (M = 2) and L = 20 relays. We have the
following assumptions: the noise variance is −10 dBw, each
channel has 0 dBw power and that the error variance of each
channel is −20 dBw and α = β = 0.99 and the measurements
error matrix is R = σ2

errorI = 0.1I. Unless another value
is specified, the SINR threshold is assumed to be 5 dB. The
following methods are compared:
• The robust method in [6];
• The non-robust method in [3] denoted by “Full-CSI”;
• The robust method in [9];
• Stochastic method in (33) which is denoted by “SM”.

B. Results and Discussion

We first study the average transmit power of the relays versus
the SINR threshold. To this end, we compare different robust
and non-robust methods in terms of power transmission. In
Fig. 2, we plot the minimum power required versus the target
SINR. It can be seen that, as the measurement error covari-
ance increases, more power is required. Also, the proposed
method outperforms the methods in [9] and [6] in terms of
power consumption and feasibility region. Furthermore, this
figure shows that the performance of the proposed real-time
channel estimation using CKF for our beamforming method is
comparable with that of the Full-CSI method in [3].

Next, in Fig.3, we study the convergence behavior of the
proposed algorithm. For this purpose, we consider the first 100
iterations of CKF. The root mean square error (RMSE) for the
proposed CKF method is compared with CRLB and depicted
in Fig.3. We can see that the CKF method almost achieves the
CRLB after some iterations which shows the efficiency of the
proposed method. Fig.4 evaluates the performance of proposed
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Figure 3: RMSE versus the number iterations

Figure 4: RMSE versus the measurement error variance

CKF method versus measurement error level. As shown in this
figure, the proposed CKF method achieves the CRLB for low
and moderate error levels. Moreover, the performance of CKF
method in higher levels of error is also close to CRLB.

VI. CONCLUSION

In this paper, we proposed an adaptive CKF method for esti-
mation and tracking the sources-relays and relays-destinations
channels for a peer-to-peer communications system using a
network of relays. The estimated CSI were used for solving
a stochastic robust beamforming optimization problem to min-
imize the total power transmission of the relays subject to
probabilistic SINR constraint at each of the destination nodes.
Simulation results showed our stochastic beamforming method
have a better performance than the existing methods. Moreover,
the CSI estimation methods were shown to converge to CRLB
for low and moderate error levels which confirms the efficiency
of our estimation.

APPENDIX1: DEFINITION OF MATRICES

Assume that F̄p = diag
(
f̄p
)
, Ḡj = diag

(
ḡj
)
, H̄p

j =

diag
(
h̄pj
)
, X = wwH , W = WWH , Hpj = h̄pj h̄

p
j
H , j, p ∈ J

and j 6= p. The matrices Qf ,Qg,Qf ,g,
_

Qf ,g, cf , cg, and dj
which have been derived in [6], are defined as:

Qf = BD([Qf ]11, [Qf ]22, . . . , [Qf ]jj , . . . , [Qf ]MM ) (40)

[Qf ]jj = Pj(ḠjXḠ
H
j )− γj

M∑
p6=j

PpḠpXḠH
p

Qgj
=

1

d
BD(Q′gj

,Q′gj
, . . . ,Q′gj

) (41)

Q′gj
= PjF̄

H
j XF̄j − γjσ2

N1
W − γj

M∑
p6=j

PpF̄
H
p XF̄p

Qf ,g=BD
(
[Qf ,g]11, [Qf ,g]22, . . . , [Qf ,g]MM

)
(42)

[Qf ,g]jj = PjF̄
H
j XḠj − γj

M∑
p6=j

PpF̄
H
p XḠp

_

Q
H

f ,g = BD([
_

Q
H

f ,g]
11
, [

_

Q
H

f ,g]
22
, . . . , [

_

Q
H

f ,g]
MM

) (43)

[
_

Q
H

f ,g]jj = Pjdiag(w)HH̄j
jdiag(w)− γj

M∑
p6=j

PpW
HH̄p

pW

cf = BD[[cf ]
H
11 . . . [cf ]

H
jj . . . [cf ]

H
MM] (44)

[cf ]
H
jj = Pj(h̄

j
j)
HXḠj − γi

M∑
p6=j

Pj
(
h̄pj
)H

XḠj

cg =
1

d
(PjF

H
j Xh̄

j
j − γj

M∑
p6=j

PpF
H
p Xh̄

p
j−γjσ2

N1
Wḡj) (45)

dj=wHPjHjjw−γjσ
2
N1

ḡHj Wḡj−γjwH
M∑
p6=j

PpHpjw (46)
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