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The past decade has seen extensive research on audio classification and segmentation algorithms. However, the effect of background noise on classification
performance has not been widely investigated. Recently, an early auditory model that calculates a so-called auditory spectrum has achieved excellent
performance in audio classification along with robustness in a noisy environment. Unfortunately, this early auditory model is characterized by high
computational requirements and the use of nonlinear processing. In this paper, certain modifications are introduced to develop a simplified version of
this model which is linear except for the calculation of the square-root value of the energy. Speech/music and speech/non-speech classification tasks are
carried out to evaluate the classification performance, with a support vector machine (SVM) as the classifier. Compared to a conventional fast Fourier
transform–based spectrum, both the original auditory spectrum and the proposed simplified auditory spectrum show more robust performance in noisy test
cases. Test results also indicate that despite a reduced computational complexity, the performance of the proposed simplified auditory spectrum is close to
that of the original auditory spectrum.

La dernière décennie a connu une expansion de la recherche sur les algorithmes de classification audio et de segmentation. Cependant, l’effet du bruit
de fond sur les performances de la classification n’a pas été largement étudié. Récemment, un modèle auditif qui calcule un spectre auditif a atteint
une performance excellente en classification audio ainsi qu’une robustesse dans un environnement bruité. Malheureusement, ce modèle auditif est
caractérisé par des besoins élevés en calcul et par un traitement non-linéaire. Dans ce papier, quelques modifications sont introduites afin de développer
une version simplifiée de ce modèle qui est linéaire à l’exception du calcul de la valeur de la racine carrée de l’énergie. Des tâches de classification de la
parole/musique de même que de la parole/non-parole sont effectuées pour évaluer la performance de la classification, en utilisant un classifieur à automate
à support vectoriel. Comparé à une transformation rapide de Fourier conventionnelle, les deux spectres auditifs – celui d’origine et celui simplifié proposé
– montrent des performances plus robustes dans les tests avec bruit. Les résultats des tests montrent également qu’en dépit d’une complexité de calcul
réduite, la performance du spectre auditif simplifié qui a été proposé est proche du spectre auditif d’origine.
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I. Introduction

Audio classification and segmentation can provide useful informa-
tion for understanding both audio and video content. In recent years
many studies have been carried out on audio classification. In work
by Scheirer and Slaney [1] to classify speech and music, as many as
13 features are employed, including 4 Hz modulation energy, spectral
rolloff point, spectral centroid, spectral flux (delta spectrum magni-
tude), and zero-crossing rate (ZCR). Using audio features such as en-
ergy function, ZCR, fundamental frequency, and spectral peak tracks,
Zhang and Kuo [2] proposed an approach to automatic segmentation
and classification of audiovisual data. Lu et al. [3] proposed a two-
stage robust approach that is capable of classifying and segmenting
an audio stream into speech, music, environment sound, and silence.
In a recent work, Panagiotakis and Tziritas [4] proposed an algorithm
for audio segmentation and classification using mean signal amplitude
distribution and ZCR.

Although in some previous research the background noise has been
considered as one of the audio types or as a component of some hybrid
sounds, the effect of background noise on the performance of classi-
fication has not been widely investigated. A classification algorithm
trained using clean test sequences may fail to work properly when
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the actual testing sequences contain background noise with certain
SNR levels (see test results in [5] and [6]). The so-called early au-
ditory model proposed by Wang and Shamma [7] has proved to be ro-
bust in noisy environments because of an inherent self-normalization
property which causes noise suppression. Recently, this early audi-
tory model has been employed in audio classification, and excellent
performance has been reported in [6]. However, this model is charac-
terized by high computational requirements and the use of nonlinear
processing. It would be desirable to have a simplified version of this
early auditory model, or even to have an approximated model in the
frequency domain, where efficient fast Fourier transform (FFT) algo-
rithms are available.

In this paper we propose, based on certain modifications, a simpli-
fied version of this early auditory model which is linear except for the
calculation of the square-root value of the energy. To evaluate the clas-
sification performance, speech/music and speech/non-speech classifi-
cation tasks are carried out, in which a support vector machine (SVM)
is used as the classifier. Compared to a conventional FFT-based spec-
trum, both the original auditory spectrum and the proposed simplified
auditory spectrum show more robust performance in noisy test cases.
Experimental results also show that despite its reduced computational
complexity, the performance of the proposed simplified auditory spec-
trum is close to that of the original auditory spectrum.

The paper is organized as follows. Section II briefly introduces the
early auditory model [7] considered in this work. A simplified version
of this model is proposed in Section III. Section IV explains the extrac-
tion of audio features and the setup of the classification tests. Test re-
sults are presented in Section V, and conclusions appear in Section VI.
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Figure 1: Schematic description of the early auditory model [7].

II. Early auditory model

The auditory spectrum used in this work is calculated from a so-called
early auditory model introduced in [7] and [8]. This model, which can
be simplified as a three-stage processing sequence (see Fig. 1), de-
scribes the transformation of an acoustic signal into an internal neural
representation referred to as an auditory spectrogram. A signal enter-
ing the ear first produces a complex spatio-temporal pattern of vibra-
tions along the basilar membrane (BM). A simple way to describe the
response characteristics of the BM is to model it as a bank of constant-
Q highly asymmetric bandpass filters h(t, s), where t is the time index
and s denotes a specific location on the BM (or equivalently, s is the
frequency index).

In the next stage, the motion on the BM is transformed into neural
spikes in the auditory nerves, and the biophysical process is modelled
by the following three steps: a temporal derivative, which is employed
to convert instantaneous membrane displacement into velocity; a non-
linear sigmoid-like function g(·), which models the nonlinear channel
through the hair cell; and a low-pass filter w(t), which accounts for the
leakage of the cell membranes.

In the last stage, a lateral inhibitory network (LIN) detects discon-
tinuities along the cochlear axis, s. The operations can be effectively
divided into the following stages: a derivative with respect to the tono-
topic axis s which mimics the lateral interaction among LIN neurons; a
local smoothing filter, v(s), due to the finite spatial extent of the lateral
interactions; a half-wave rectification (HWR) modelling the nonlinear-
ity of the LIN neurons; and a temporal integration which reflects the
fact that the central auditory neurons are unable to follow rapid tem-
poral modulations.

These operations effectively compute a spectrogram of an acoustic
signal. At a specific time index t, the output y5(t, s) is referred to as
an auditory spectrum. For simplicity, the spatial smoothing, v(s), is
ignored in the implementation [7].

III. Simplified early auditory model

Because of a complex computation procedure and the use of nonlinear
processing in the above early auditory model, the computational com-
plexity of the auditory spectrum is expected to be much higher than
that of a conventional FFT-based spectrum. It is thus desirable that the
model be simplified.

A. Pre-emphasis and nonlinear compression
This early auditory model has proved to be noise-robust because of
an inherent self-normalization property. According to the stochastic
analysis carried out in [7], the following relationships hold:

E[y5(t, s)] = E[y4(t, s)] ∗t Π(t),

E[y4(t, s)] = E[g′(U)E[max(V, 0) | U ]],

V = (∂tx(t)) ∗t ∂sh(t, s),

U = (∂tx(t)) ∗t h(t, s),

(1)

where E denotes statistical expectation, E[y5(t, s)] is the output av-
erage auditory spectrum, Π(t) is a temporal integration function, and

∗t denotes time-domain convolution. According to [7], E[y4(t, s)] is
a quantity that is proportional to the energy1 of V and inversely pro-
portional to the energy of U . The definitions of U and V given in
(1) further suggest that the auditory spectrum is an averaged ratio of
the signal energy passing through the differential filters ∂sh(t, s) and
the cochlear filters h(t, s), or equivalently, the auditory spectrum is a
self-normalized spectral profile. Considering that the cochlear filters
are broad while the differential filters are narrow and centred around
the same frequencies, this self-normalization property leads to unpro-
portional scaling for spectral components of the sound signal. Specif-
ically, a spectral peak receives a relatively small normalization factor,
whereas a spectral valley receives a relatively large normalization fac-
tor. The difference in the normalization is known as spectral enhance-
ment or noise suppression.

When the hair-cell nonlinearity is replaced by a linear function, e.g.,
g′(x) = 1 (see Fig. 1), we have E[y4(t, s)] = E[max(V, 0)], where
E[y4(t, s)] represents the spectral energy profile of the sound signal
x(t) across the channels indexed by s. With a linear function g(x),
it is found in our test that if the input signal is not pre-emphasized,
the classification performance of the modified auditory spectrum is
close to that of the original auditory spectrum. A close performance
may suggest that a scheme for noise suppression is implicitly part
of this modified auditory model. However, according to [7], with a
linear function g(x), the whole processing scheme is viewed as es-
timating the energy resolved by the differential filters alone without
self-normalization. It seems that the self-normalization alone cannot
be used to explain the noise suppression for this modified model. The
actual cause of the noise suppression in this case is under investigation.

B. HWR and temporal integration
Referring to Fig. 1, we note that the LIN stage consists of a deriva-
tive with respect to the tonotopic axis s, a local smoothing, v(s), a
half-wave rectification, and a temporal integration (implemented via
low-pass filtering and downsampling at a frame rate [9]). The HWR
and temporal integration serve to extract a positive quantity corre-
sponding to a specific frame and a specific channel (i.e., a component
of the auditory spectrogram). A simple way to interpret this positive
quantity is as the square-root value of the frame energy in a specific
channel. Based on these considerations, an approximation to the HWR
and temporal integration is proposed, where the original processing is
replaced by the calculation of the square-root value of the frame en-
ergy. Fig. 2 shows the auditory spectrograms of a one-second speech
clip calculated using the original early auditory model and the mod-
ified model (i.e., the original model with proposed modifications on
HWR and temporal integration). The two spectral-temporal patterns
are very close.

C. Simplified model
By introducing modifications to the original processing steps of pre-
emphasis, nonlinear compression, half-wave rectification, and tempo-
ral integration, we propose a simplified version of this model. Except
for the calculation of the square-root value of the energy, this simpli-
fied model is linear. Considering the relationship between time-domain
energy and frequency-domain energy as per Parseval’s theorem [10], it
is possible to further implement this simplified model in the frequency
domain so that significant reductions in computational complexity can
be achieved. Such a self-normalized FFT-based model has been fur-
ther proposed and applied in a speech/music/noise classification task
in [11].

IV. Audio classification test

A. Audio sample database
To carry out performance tests, a generic audio database is built which

1E[y4(t, s)] is related to E[max(V, 0)], a quantity proportional (though
not necessarily linearly) to the standard deviation, σ, of V when V is zero
mean. In [7], the quantity E[max(V, 0)] is referred to as energy, considering
the one-to-one correspondence between σ and σ2.
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Figure 2: Auditory spectrograms of a one-second speech clip.

includes speech, music, and noise clips, sampled at the rate of 16 kHz.
The music clips consist of different types, including blues, classical,
country, jazz, and rock. The music clips also contain segments that
are played by certain Chinese traditional instruments. Noise samples
are selected from the NOISEX database, which contains recordings of
various noises. The total length of all the audio samples is 200 min-
utes. These samples are divided equally into two parts for training and
testing. The audio classification decisions are made on a one-second
basis.

In the following, for the speech/music classification task, a clean
test is a test in which both the training and the testing sets contain
clean speech and clean music. A specific SNR value indicates a test in
which the training set contains clean speech and clean music while the
testing set contains noisy speech and noisy music (both with the stated
SNR value). As for the speech/non-speech classification task, music
and noise clips are grouped together as the non-speech set. The clean
and noisy tests are carried out in a way similar to that for speech/music
classification, except that noise clips are added in the training and
testing.

B. Audio features
In this work, audio features are extracted based on the aforementioned
auditory spectrum and the FFT-based spectrum. Using auditory spec-
trum data, we further calculate mean and variance in each channel over
a one-second time window. Corresponding to each one-second audio
clip, the auditory feature set is a 256-dimensional mean-plus-variance
vector.

Figure 3: The power spectrum grouping scheme.

For the FFT-based spectrum, a narrowband (30 ms) spectrum is cal-
culated using 512-point FFT with an overlap of 20 ms. To reduce the
dimension of the obtained power spectrum vector, we may use meth-
ods such as principal component analysis. In this work, to simplify the
processing, we propose a simple grouping scheme to reduce the dimen-
sion. The grouping is carried out according to the following formula:

Y (i) =

8>>><>>>:
X(i) 1 ≤ i ≤ 80,
1

2

P1
k=0 X(2i− 80− k) 81 ≤ i ≤ 120,

1

8

P7
k=0 X(8i− 800− k) 121 ≤ i ≤ 132,

(2)

where i is the frequency index and X(i) and Y (i) represent the
power spectrum before and after grouping, respectively. This grouping
scheme places the emphasis on low-frequency components. As shown
in Fig. 3, based on this grouping scheme, a set of 256 power spec-
trum components is transformed into a 132-dimensional vector. After
discarding the first and the last two components and applying logarith-
mic operation, we obtain a 128-dimensional power spectrum vector.
Furthermore, mean and variance are calculated similarly on different
frequency indices over a one-second time window.

C. Implementation
In this work, we use a MATLAB toolbox developed by Neural Systems
Laboratory, University of Maryland [9], to calculate the auditory spec-
trum. Relevant modifications are introduced to this toolbox to meet the
needs of our study.

The support vector machine, which is a statistical machine learning
technique applied in pattern recognition, has been recently employed
in the audio classification task [5], [12]. An SVM first transforms input
vectors into a high-dimensional feature space using a linear or non-
linear transformation and then conducts a linear separation in feature
space. In this work, we use the SVMstruct algorithm [13]–[15] to carry
out the classification task.

V. Performance analysis

The FFT-based spectrum features are used as a reference to compare
the performance of the auditory spectrum features. The speech/music
classification test results are listed in Table 1, where AUD, AUD S,
and FFT represent the original auditory spectrum, the simplified
auditory spectrum, and the FFT-based spectrum respectively. The
speech/non-speech classification test results are listed in Table 2.

Although the conventional FFT-based spectrum provides excellent
performance in the clean test case, its performance degrades rapidly
and significantly as the SNR decreases, leading to a very poor over-
all performance. Compared to the conventional FFT-based spectrum,
the original auditory spectrum and the proposed simplified auditory
spectrum are more robust in noisy test cases. Results in Tables 1 and
2 also indicate that despite a reduced computational complexity, the
performance of the proposed simplified auditory spectrum is close to
that of the original auditory spectrum, especially when SNR is greater
than 10 dB.
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Table 1
Speech/music classification error rate for auditory

spectrum (AUD), simplified auditory spectrum (AUD S),
and FFT-based spectrum (FFT)

SNR (dB) AUD (%) AUD S (%) FFT (%)
∞ 2.2 2.7 1.0
20 2.5 3.1 20.6
15 3.3 3.9 37.3
10 5.9 7.4 42.9
5 14.3 19.3 44.2

Average 5.6 7.3 29.2

Table 2
Speech/non-speech classification error rate for auditory

spectrum (AUD), simplified auditory spectrum (AUD S),
and FFT-based spectrum (FFT)

SNR (dB) AUD (%) AUD S (%) FFT (%)
∞ 1.4 1.7 0.8
20 1.7 2.0 15.3
15 2.3 2.5 27.4
10 4.0 4.8 31.3
5 10.8 13.6 32.3

Average 4.0 4.9 21.4

An example of audio features (mean and variance values in relative
scales) is given in Fig. 4, which shows the FFT-based spectrum, the
original auditory spectrum, and the proposed simplified auditory spec-
trum features for a one-second music clip in a clean test case and in
a noisy test case with 10 dB SNR. For the original auditory spectrum
features and the proposed simplified auditory spectrum features, the re-
sults when SNR equals 10 dB are close to those for the clean test case.
However, this is not the case for conventional FFT-based spectrum fea-
tures, which show a relatively large change. The results presented in
Fig. 4 demonstrate the noise-robustness of the original auditory spec-
trum features and the proposed simplified auditory spectrum features.

VI. Conclusions

In this paper, we proposed a simplified version of an early auditory
model [7] by introducing modifications to the original processing steps
of pre-emphasis, nonlinear compression, half-wave rectification, and
temporal integration. Except for the calculation of the square-root
value of the energy, the proposed simplified early auditory model is
linear. To evaluate the classification performance, speech/music and
speech/non-speech classification tasks were carried out, with a sup-
port vector machine as the classifier. Compared to the conventional
FFT-based spectrum, the original auditory spectrum and the proposed
simplified auditory spectrum are more robust in noisy test cases. Ex-
perimental results also indicate that despite a reduced computational
complexity, the performance of the proposed simplified auditory spec-
trum is close to that of the original auditory spectrum.
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