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Abstract
We propose a novel dictionary learning technique for compressive sensing of speech
signals based on the recurrent neural network. First, we exploit the recurrent neural
network to solve an �0-norm optimization problem based on a sequential linear pre-
diction model for estimating the linear prediction coefficients for voiced and unvoiced
speech, respectively. Then, the extracted linear prediction coefficient vectors are clus-
tered through an improved Linde–Buzo–Gray algorithm to generate codebooks for
voiced and unvoiced speech, respectively. A dictionary is then constructed for each
type of speech by concatenating a union of structuredmatrices derived from the column
vectors in the corresponding codebook. Next, a decision module is designed to deter-
mine the appropriate dictionary for the recovery algorithm in the compressive sensing
system. Finally, based on the sequential linear prediction model and the proposed
dictionary, a sequential recovery algorithm is proposed to further improve the quality
of the reconstructed speech. Experimental results show that when compared to the
selected state-of-the-art approaches, our proposed method can achieve superior per-
formance in terms of several objective measures including segmental signal-to-noise
ratio, perceptual evaluation of speech quality and short-time objective intelligibility
under both noise-free and noise-aware conditions.
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1 Introduction

In the last decade, compressive sensing (CS) [5,11], as an alternative for sampling
and compression, has achieved great development with its widespread applications in
speech processing, image processing, radar and wireless communication. As opposed
to conventional Nyquist sampling which firstly performs sampling at a high frequency
exceeding twice of the signal bandwidth and then realizes compression, CS can achieve
sampling and compression simultaneously,which is beneficial for hardware design and
storage resources. Compared to other application areas and in spite of efforts devoted
by many researchers, compressive speech sensing still remains in a preliminary stage
in terms of both theory and practice. The majority of related works focus on how to
apply theCS technique to speechprocessing tasks such as enhancement [34,35], encod-
ing [14]. In [34], the CS method is applied to achieve speech and noise separation in
time–frequency domain. In [35], the compressive sensingmatching pursuit (CoSaMP)
algorithm [22] is adopted for time-domain speech denoising, which is regarded as an
alternative to traditional speech enhancement. A speech coding approach based on
sparse linear predictor is proposed in [14] to establish a new speech encoding frame-
work which can improve the coding performance of the traditional linear prediction
systems.

Notwithstanding these remarkable advances, the crux of compressive speech sens-
ing still lies on improving the sparsity of speech signals and designing speech-specific
recovery algorithms, which is also the basis for the above-mentioned applications but
has only achieved limited development to date. One effective method for improving
signal sparsity is to employ dictionary learning techniques to train data-driven dic-
tionaries for sparse representation. Typical dictionary learning methods include the
method of optimal directions (MOD) [12], the KSVD algorithm [2] and the online
dictionary learning (ODL) method [21]. These approaches exploit sparsity-promoting
term (�0 or �1 norm) within regularized optimization problems to learn overcomplete
dictionaries based on a large-scale training dataset. Recently, a dictionary learning
method based on principal component analysis (PCA) was proposed for speech unit
classification [25]. However, without considering specific characteristics of target sig-
nals, these methods cannot well capture the internal structure of signals and thus fail
to improve the sparsity of signals with respect to the trained dictionaries.

In this paper, we exploit a sequential linear prediction model in conjunction with
a recurrent neural network (RNN) [16]-based optimization algorithm to construct
the dictionary with a predetermined structure for speech signals. Moreover, in view
of the sequential linear prediction model, we incorporate the intra-frame correlation
of speech signals into the existing sparse recovery algorithms. In other words, this
sequential recovery algorithm is proposed to leverage the latent information from the
previously reconstructed frame and improve the quality of reconstructed speech.

Based on these proposed techniques, this paper presents a new compressive speech
sensing system which handles the voiced and unvoiced speech separately. The pro-
posed system is divided into two parts: the training stage and the application stage.
In the training stage, a large number of training data are utilized to learn a dictionary
for voiced and unvoiced speech, respectively, with our proposed dictionary learning
method. In the application stage, we employ the sequential recovery algorithm to real-
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ize effective reconstruction of speech with the trained dictionaries from the training
stage. Moreover, we devise a decision module to select an appropriate dictionary for
the sequential recovery algorithm.

This paper is arranged as follows. In Sect. 2, we give a brief description of CS,
dictionary learning and RNN for optimization. In Sect. 3, we concretely describe
our proposed compressive speech sensing system and explain the principles of the
modules involved. Section 4 evaluates the performance of our proposed system with
three objective measures and compare the results with four reference methods. In
Sect. 5, we conclude the paper with a brief summary of our contributions.

2 Background

In this section, we present an overview of CS, dictionary learning and RNN for opti-
mization.

2.1 Compressive Sensing

CSprovides an effective sampling and compression framework for sparse or compress-
ible (approximately sparse) signals and is able to realize high-quality reconstruction
of these signals with fewer measurements, providing a potential means for natural
signal processing such as images and speech signals in different kinds of applications.
Three key factors are involved in the CS theory: sparse representation, sensing matrix
and sparse recovery [10]. Sparse representation is the precondition of CS and usually
employs the dictionary learningmethod to learn an overcomplete dictionary to capture
the internal structure of signals [39], which is described in Sect. 2.2. In this subsection,
we focus on the sensing matrix and sparse recovery algorithm.

Given an S-sparse data vector x ∈ R
N (i.e., this vector has S nonzero elements), a

sensing matrix � ∈ R
M×N (M ≤ N ) can be designed to simultaneously sample and

compress the signal and generate a measurement vector as

y = �x. (1)

Ideally, the projection of x into a lower-dimensional space through the matrix �

entails no loss of information so that it remains possible to reconstruct the original
sparse vector x from its associated measurement vector y. To this end, the sensing
matrix above, as a linear operator for CS, is designed to satisfy the restricted isometry
property (RIP) [6], i.e., the condition

(1 − δS) ‖x‖22 ≤ ‖�x‖22 ≤ (1 + δS) ‖x‖22 (2)

should hold for all S-sparse signals with δS ∈ (0, 1).
When considered as linear projection operators, some random matrices, including

Gaussian, partial Fourier and Bernoulli randommatrices, have been shown to conform
to theRIP [7]. The advantages of randommatrices are twofold, namely, the universality
and democracy [19].
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Another key feature of CS is the possibility to recover the sparse signal x from the
measurement vector y. In practice, it is difficult to find out the true solution from the
innumerable solutions of (1) without any constraints. However, the desirable sparsity
can guarantee accurate reconstruction of x from the following optimization problem
[8],

min ‖x‖0 s.t. y = �x (3)

where the �0 norm counts the nonzeros in x.
It has been proved that as long as the sensing matrix satisfies RIP with the restricted

isometry constant δ2S ∈ (0, 1), the optimization technique in (3) can recover all S-
sparse signals. However, as the above �0-norm minimization problem is NP-hard, the
feasible alternatives [13] for (3) come into two flavors: greedy pursuit algorithms such
as orthogonal matching pursuit (OMP) [32] and convex relaxation methods such as
basis pursuit (BP) [9] which replaces the �0 norm with the convex �1 norm. In the BP
algorithm, the above optimization problem in (3) can be transformed into

min ‖x‖1 s.t. y = �x. (4)

2.2 Dictionary Learning

The goal of dictionary learning is to extract significant information and reduce dimen-
sionality [4]. Awell-trained dictionary can provide compact representation for specific
categories of signals. This kind of representation is named sparse representation,mean-
ing that signals can be expressed as a linear combination of a portion of atoms, i.e.,
the column vectors, in the redundant dictionary. The number of the selected atoms
should be much smaller than the signal dimension, which is regarded as the sparsity
level of the signal with respect to the specified dictionary [31]. In the context of CS, it
is well acknowledged that sparser representation can lead to higher compression rate
at the same level of reconstruction quality [20]. Thus, an effective dictionary learning
approach can improve the performance of the CS system.

One of the most typical dictionary learning algorithms is the KSVD algorithm [2]
which can learn a dictionary and a sparse coefficient matrix simultaneously by solving
the following optimization problem.

min
�,Θ

‖X − �Θ‖2F s.t. ‖θ i‖0 ≤ S for i = 1, 2, . . . , L (5)

where X = [
x1 x2 · · · xL

]
denotes the data matrix with the signal vectors as its

columns, Θ = [
θ1 θ2 · · · θ L

]
denotes the sparse coefficient matrix, the columns of

which are the sparse coefficient vectors of the corresponding signal vectors in X with
respect to the dictionary �, S is the sparsity level of the signal, and ‖·‖F denotes the
Frobenius norm of a matrix (i.e., referring to the square root of the sum of the squares
of all the elements in the matrix). The KSVD algorithm updates the dictionary �

and the sparse coefficient matrix Θ alternately in each iteration. In detail, the KSVD
algorithm employs the OMP algorithm at the sparse coding stage to estimate the
sparse coefficient matrix Θ ; the singular value decomposition (SVD) is then utilized
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in the codebook update stage to update all the atoms of the dictionary. In [2], the
KSVD algorithm has been able to train an effective dictionary for image inpainting
and compression. Different from the KSVD algorithm, the MOD [12] updates the
dictionary iteratively by exploiting the gradient of the loss function in (5) with respect

to � with fixed Θ , i.e., � = XΘT (
ΘΘT)−1

.
The ODL algorithm [21] was proposed to learn the dictionary based on large-

scale training data, aiming at reducing memory cost and computational complexity. In
contrast with the KSVD and the MOD, a single signal or a mini-batch, instead of the
whole training set, is processed at each iteration of the ODL method. The following
optimization problem was addressed to estimate the sparse coefficient matrix in the
ODL algorithm [33]:

Θ = argmin
Θ

1

2
‖X − �Θ‖2F + λ ‖Θ‖1 . (6)

Then in the dictionary updating step, with the estimated sparse coefficient matrix Θ

from the sparse coding step, the dictionary � is updated by solving

� = argmin
�

−2tr(XΘT�T ) + tr(ΘΘT�T�). (7)

In the PCA-based dictionary learning method [25], speech signals are firstly grouped
into several clusters via the K -means algorithm [1]. Then, PCA is applied to the
clustered speech signals to obtain the dictionary. As PCA provides discriminative
information, this method can achieve good performance in speech units classification.

2.3 Recurrent Neural Network for Optimization

Neural networks have been ingeniously applied to solve various optimization problem
for more than 3 decades [30]. In particular, various neural network models have been
developed to solve constrained convex optimization problems, the key point of which
is to leverage neurodynamic systems with state vectors to approximate desirable solu-
tions [17]. In [36–38], a series of algorithms were proposed based on the RNN, a
prevalent neural network model, to address different convex optimization problems
for autoregressive parameter estimation under different environments. Specifically,
an algorithm named noise-constrained least squares was developed in [37] to solve
the quadratic optimization problem with linear inequality constraints for prediction
coefficients estimation under Gaussian noise environment and then applied to speech
enhancement in [38]. Meanwhile, an �1-norm minimization problem was solved by a
generalized least absolute deviation algorithm in [36] for corresponding coefficients
estimation in the presence of non-Gaussian noise. These algorithms take advantage of
the learning ability of the RNN to approximate optimal solutions of optimization prob-
lems, which have low computational complexity and can be implemented in real-time
systems.
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Fig. 1 Block diagram for our proposed compressive speech sensing system

3 Proposed Compressive Speech Sensing System

3.1 SystemOverview

We illustrate the block diagram of our proposed compressive speech sensing system in
Fig. 1. The whole system is divided into two stages: the training stage and the applica-
tion stage. In the training stage, a vast number of speech signals are employed to train
the data-driven dictionary. The training speech is categorized into two groups, i.e.,
voiced speech and unvoiced speech. Unvoiced speech acts like white noise, result-
ing in unsatisfactory sparsity with respect to most existing orthonormal bases and
overcomplete dictionaries. In most of the literature on compressive speech sensing,
unvoiced speech is given less importance and not processed in a separate way [28].
However, considering the structural differences between voiced and unvoiced speech
[14], it would seem that the overall reconstruction performance can be improved if a
specific dictionary is learned for unvoiced speech. This observation motivates us to
construct dictionaries for the voiced and unvoiced speech separately. In other words,
we incorporate the voiced and unvoiced labels to the speech frames used during the
course of dictionary learning, which is anticipated to improve the overall sparsity of
speech and further enhance sparse reconstruction performance of CS. The proposed
dictionary learning method in the training stage is divided into four steps as follows:

Step 1: Classify the training speech data into two groups: voiced speech and
unvoiced speech.

Step 2: Extract linear prediction coefficients (LPCs) of voiced and unvoiced speech
based on the sequential linear prediction model by using the RNN sparse excitation
LPC algorithm, which will be developed in Sect. 3.2.

Step 3: Apply the clustering algorithm to the LPCs of voiced and unvoiced speech
and obtain cluster centroids needed to construct the voiced and unvoiced codebooks,
respectively.
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Step 4: Using a predetermined structure, fill the column vectors of the two code-
books into a union of structuredmatrices, respectively, to form the voiced and unvoiced
dictionary, denoted as �v and �u, respectively.

In contrast with the traditional dictionary learning methods [2,12,33], our proposed
method takes advantage of the speech features, the speech generativemodel, the neural
network-based optimization technique and the clustering algorithm to capture the
inherent structure of speech and construct effective dictionaries.

In the application stage, the measurement vector y is obtained by application of
sensing matrix � to the speech signal vector x and then “transmitted” through a
given channel to the receiver. Due to the presence of noise or other imperfection in
the transmission channel, the received measurement vector might be different from y.
Accordingly, at the receiver, the sensingmatrix, the trained dictionary and the received
measurement vector, are input to the recovery algorithmmodule to estimate the sparse
coefficients of speech. Finally, we can reconstruct the speech signal by multiplying
the dictionary and the estimated sparse coefficient vector. However, at the receiver, we
cannot directly decide the type of the speech frames (i.e., voiced or unvoiced) from
the received measurement vectors because the permutations induced by the sensing
matrix makes the observations behave like Gaussian noise. To address this issue, a
decision module is designed to help us select the desired dictionary, i.e., for either
voiced or unvoiced speech. Specifically, in the decision module, we can employ the
residual error of the measurements as the metric for selecting either the voiced or
unvoiced dictionary for reconstruction, owing to the fact,

(1 − δ2S)

∥∥∥θ − θ̂

∥∥∥
2

2
≤

∥∥∥ y − ��θ̂

∥∥∥
2

2
≤ (1 + δ2S)

∥∥∥θ − θ̂

∥∥∥
2

2

where θ is the true sparse coefficient vector of the speech signal x with respect to
the dictionary � and θ̂ is the estimated sparse coefficient vector from the recovery
algorithm.

Decision module

Step 1: Use the recovery algorithm to estimate the sparse coefficient vector with respect to the
dictionary �v, denoted as θ̂ I. According to RIP, the residual error can be measured as

rI =
∥∥∥y − ��v θ̂ I

∥∥∥
2

2
Step 2: Use the recovery algorithm to estimate the sparse coefficient vector with respect to the

dictionary �u, denoted as θ̂ II. The residual error can be measured as rI =
∥
∥∥y − ��u θ̂ II

∥
∥∥
2

2
Step 3: If rI < rII, the dictionary �v will be employed as the sparsifying matrix; otherwise, the
dictionary �u will be selected

3.2 New LPC Extraction Algorithm

In this subsection, we will investigate the dictionary learning core used in the training
stage in Fig. 1 to construct fine-tuning dictionaries for the speech signals. The dictio-
nary learning core is composed of three modules including LPC extraction, clustering
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and dictionary construction. In what follows, a new LPC extraction algorithm for
dictionary learning is first proposed.

RNN-based LPC Extraction Algorithm As we know, the regular P-order linear
predictor can approximate a sample of the ith frame xi (n) as

xi (n) =
P∑

p=1

ai (p)xi (n − p) + ei (n) (8)

where {ai (p)} are the prediction coefficients and ei (n) is the prediction error.However,
it is conspicuous that the first P samples in this frame, i.e., xi (1), xi (2), . . . , xi (P),
cannot be fully estimated, resulting in an unreasonable prediction error. In this case, we
propose to take advantage of the intra-frame and the inter-frame coherence to address
this problem. The samples of the (i − 1) th frame {xi−1(N ), xi−1(N − 1), . . . , xi−1
(N + 1 − P)} are utilized to take place of the samples {xi (0), xi (−1), . . . , xi (1 − P)}
in (8). Subsequently, the linear prediction model in (8) can be changed to

xi (n)=

⎧
⎪⎪⎨

⎪⎪⎩

∑P
p=1 ai (p)xi−1(N+1− p)+ei (1), n=1;

∑n−1
p=1 ai (p)xi (n− p)+∑P

p=n ai (p)xi−1(N+n− p)+ei (n), 1<n≤ P;
∑P

p=1 ai (p)xi (n − p)+ei (n), P+1≤n≤N .

(9)
This new linear prediction model in (9) is named as the sequential linear prediction
model in this paper. Based on this model, we propose the following optimization
technique to estimate the prediction coefficient vector, i.e.,

ai = argmin
ai

1

2
‖xi − Dai − ei‖22 s.t. ‖ei‖0 ≤ S (10)

where xi = [
xi (1) xi (2) · · · xi (N )

]T, ei = [
ei (1) ei (2) · · · ei (N )

]T, and

D =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

xi−1 (N ) xi−1 (N − 1) xi−1 (N − 2) · · · xi−1 (N + 1 − P)

xi (1) xi−1 (N ) xi−1 (N − 1) · · · xi−1 (N + 2 − P)
...

...
... · · · ...

xi (P − 1) xi (P − 2) · · · xi (1) xi−1(N )

xi (P) xi (P − 1) xi (P − 2) · · · xi (1)
...

...
...

...
...

xi (N − 1) xi (N − 2) xi (N − 3) · · · xi (N − P)

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

.

The proposed optimization technique in (10) can estimate the prediction coefficient
vector with a guaranteed sparsity of the prediction error vector, which is different from
the traditional autocorrelation method [27]. Moreover, as the prediction error vector ei
is also the sparse coefficient vector of the speech signal xi with respect to our proposed
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dictionary in Sect. 3.3, the residual ei is regarded as a part of the approximation for
the speech signal.

In [37], theRNNwas used to solve the �2-normminimization problemby converting
it into a dynamic systemwhich can yield the optimal solution through tracking its state
trajectory. Thus, the optimization problem in (10) can also be solved with the RNN in
a greedy way. The pseudo-code of our proposed RNN sparse excitation LPC (RSEL)
algorithm is summarized as follows. For simplicity, we omit the frame index of the
prediction coefficient vector and the prediction error vector.

RNN Sparse Excitation LPC (RSEL) Algorithm

Input: xi , D, sparsity level S, step size β, stopping criterion η

Initialization: a0 = 0, e0 = 0, μ = ‖D‖2F , xi = xi /μ, D = D/μ

Iteration: at the kth iteration,
1: Ω̃k ={2S indices of the largest magnitude entries in the vector Dak−1 − xi };
2: ẽk = (1 − β)ek−1 + β(Dak−1 − xi )Ω̃k ;
3: Ωk ={S indices of the largest magnitude entries in the vector ẽk} ;
4: ek = ẽk

Ωk ;

5: ak = (1 − βDTD)ak−1 + β(DTek−1 + DTxi );

6: If
∥∥∥ak − ak−1

∥∥∥
2

≤ η, quit the iteration. The last iteration index is denoted as K .

Output: The prediction coefficient vector aRSEL = aK ; the prediction error vector eRSEL = eK .

At each iteration, the approximation residual of xi calculated from the estimate
of the prediction coefficient vector ak−1 in the previous iteration can be regarded
as a proxy for the prediction error vector. The 2S largest magnitude components
in this residual vector are located, and the corresponding indices are denoted as a
set Ω̃k . With this preliminary support, the intermediate estimate ẽk can work as an
approximation for the prediction error vector with an extended support. It is obvious
that the support (namely indices of the nonzero entries) of ẽk can be represented as
supp(̃ek) = supp(ek)

⋃
Ω̃k , the cardinality of which should be up to 3S. With the

predetermined sparsity constraint, we need to prune this support by retaining the S
largest magnitude entries in ẽk to generate the estimate ek . The last step of the iteration
is to update the estimate of the prediction coefficient vector based on the interaction
between the prediction coefficient vector and the prediction error vector. In Table 1,
we provide the computational complexity of the steps at each iteration, based on the
standard matrix-vector multiplication. Thus, each iteration of our proposed algorithm
is completed in at most O(N P) operations.

Mean Squared Error Analysis In the following Theorem 1, we upper bound the
mean squared error of aRSEL to show the superiority of the proposed RSEL algo-

Table 1 Computational complexity of each step in the RSEL algorithm

Step 1 2 3 4 5 Total

Computational complexity O(N P) O(N ) O(N ) O(N ) O(N P) O(N P)
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rithm to the traditional autocorrelation method [27]. In the theorem statement, the
result of the autocorrelation method, denoted as aLS, corresponds to the solution of
min 1

2 ‖x − Da‖22, while the desired prediction coefficient vector in the linear predic-
tion model is represented as ad. We also note that for simplicity and convenience, we
omit the frame index in the analysis and discussions.

Theorem 1 Suppose that the matrix D has a full-column rank. If the support Ω of the
estimate eRSEL satisfies Ω = {S indices of the largest magnitude entries in x − Dad}
and eRSEL = eΩ , then

E
[
‖aRSEL − ad‖22

]
< E

[
‖aLS − ad‖22

]
. (11)

Proof We exploit the method in [37] to prove Theorem 1. The linear prediction model
can be written as

x − Dad = e = eΛ + eΩ (12)

where Λ = {1, 2, . . . , N }\Ω is the complement of Ω . As the nonzero entries of eΩ

correspond to the S largest entries in the desired prediction error vector e, the entries
of eΛ corresponding to the indices in Λ can be considered as i.i.d. Gaussian random
variables with zero mean. Hence, eΛ is uncorrelated with eΩ .

As mentioned above, aLS is the solution of 1
2 ‖x − Da‖22 and then according to the

Gauss–Markov theorem [24], we have the covariance matrix for this solution as

E[(aLS − ad)(aLS − ad)T] = (DTR−1
e D)−1 (13)

where Re = E[eeT].
The vector aRSEL can minimize the loss function 1

2 ‖x − Da − eRSEL‖22, and the
support of eRSEL is the same as that of eΩ . Let u = eΩ − eRSEL represent the
estimation error. It can be seen that the support of u is also Ω . Consequently, aRSEL
can be regarded as the LS solution of

x − Da − eRSEL = x − Da − (eΩ − u) = e − eΩ + u = eΛ + u. (14)

We define v = eΛ + u where eΛ and u are orthogonal. Moreover, eΛ is from the
driving noise, whereas u is introduced by the estimation error of the RSEL algorithm.
Thus, eΛ and u are uncorrelated. According to the Gauss–Markov theorem, we have
the covariance for the solution aRSEL as

E[(aRSEL − ad))(aRSEL − ad)T] = (DTR−1
v D)−1. (15)

Similar to the method in [37], we firstly consider N = P and then the matrix D is
invertible. In this case, (13) can be written as

E[(aLS − ad)(aLS − ad)T] = D−1Re(D−1)T (16)
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in which Re = ReΛ + ReΩ . Similarly, regarding (15), we have

E[(aRSEL − ad)(aRSEL − ad)T] = D−1Rv(D−1)T (17)

in which Rv = Ru + ReΛ . In this case, we have

E[(aLS − ad)(aLS − ad)T] = D−1ReΛ(D−1)T + D−1ReΩ (D−1)T (18)

and

E[(aRSEL − ad)(aRSEL − ad)T] = D−1ReΛ(D−1)T + D−1Ru(D−1)T. (19)

As eΩ = eRSEL,

tr(E[(aLS − ad)(aLS − ad)T] − E[(aRSEL − ad)(aRSEL − ad)T])
= tr(D−1ReRSEL(D

−1)T). (20)

As ReRSEL is a positive-definite matrix, D−1ReRSEL(D
−1)T is also positive definite.

Thus,

tr(E[(aLS − ad)(aLS − ad)T]) > tr(E[(aRSEL − ad)(aRSEL − ad)T]). (21)

when N > P , a P × P invertible submatrix DP of D exists based on the fact that D
has a full-column rank. Therefore, we obtain

xP − DPaLS = eP (22)

and
xP − DPaRSEL − eRSEL,P = vP (23)

where xP , eP , eRSEL,P and vP represent corresponding subvectors of x, e, eRSEL and
v. In this case, following a similar approach as above, we find that

E[(aLS − ad)(aLS − ad)T] = D−1
P ReP (D−1

P )T (24)

and
E[(aRSEL − ad)(aRSEL − ad)T] = (DT

P R
−1
vP

DP )−1. (25)

Thus, in the same way, we have

tr(E[(aLS − ad)(aLS − ad)T]) > tr(E[(aRSEL − ad)(aRSEL − ad)T]).

Finally, we conclude that

E[‖aRSEL − ad‖22] < E[‖aLS − ad‖22]. (26)

��
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Robustness In the following, we present a theorem for the robustness of the solution
aRSEL.

Theorem 2 The solution aRSEL of (10) is robust to a small disturbance for the sequen-
tial linear prediction model in (9).

The method used in [37] can also be employed to prove Theorem 2. We omit the proof
to save the space because it is similar to that in [37]. The difference lies in the constraint
for the prediction error vector.Nonetheless, small disturbance cannot affect the sparsity
of the prediction error vector, which guarantees the robustness of the solution aRSEL.
In this paper, we assume that small disturbances arise from the mismatch between the
training data at the training stage and the test data at the application stage. Thus, this
theorem has a significant implication for the stability of our proposed system.

Convergence In Theorem 3, we show that the proposed algorithm can converge to a
globally optimal solution provided a correctly identified support.

Theorem 3 Suppose that the proposed algorithm can identify the support Ω of the
prediction error vector within finite iterations and supp(ek+1) = supp(ek) = Ω . If
β ∈ (0, 2

3 ), the RSEL algorithm converges to a globally optimal solution of (10).

Proof Based on the ideal support identification of the proposed RSEL algorithm, the
iterative equations can be written as

ak+1 = ak + β(DTek + DTxi − DTDak) (27)

ek+1 = ek + β(PΩ(Dak − xi ) − ek) (28)

where the operator PΩ is defined as

PΩ(u) =
{
ui , if i ∈ Ω;
0, Otherwise.

(29)

The optimal solution of (10) can be denoted as (a∗, e∗) and supp(e∗) = Ω . Regarding
the orthogonality of the support, we have

(Dak − xi − PΩ(Dak − xi ))T(PΩ(Dak − xi ) − e∗) = 0 (30)

(PΩ(Dak − xi ) − e∗)T(e∗ − Da∗ + xi ) = 0 (31)

Adding (30) and (31), we have

(PΩ(Dak − xi ) − e∗)T(D(ak − a∗) + e∗ − PΩ(Dak − xi )) = 0. (32)

And then we get

(PΩ(Dak − xi ) − ek + ek − z∗)T(D(ak − a∗)
+e∗ − ek + ek − PΩ(Dak − xi )) = 0. (33)
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It follows that

−
∥∥∥ek − e∗

∥∥∥
2

2
−

∥∥∥PΩ(Dak − xi ) − ek
∥∥∥
2

2

= 2(ek − e∗)T(PΩ(Dak − xi ) − ek) − (ek − e∗)TD(ak − a∗)
−(PΩ(Dak − xi ) − ek)TD(ak − a∗). (34)

As in [37], we introduce a symmetric and positive-definite matrix operator H as

H =
[
DTD + I P×P −DT

−D 2I P×P

]
.

Let us define a new vector zk =
[
ak

T
ek

T
]T
, so that (27) and (28) can be transformed

into

zk+1 = zk + β

[
DTek + DTxi − DTDak

(Dak − xi ) − ek

]

= zk + βF(zk). (35)

Since H is symmetric and positive definite, there must exist another symmetric and
positive-definite matrix H1 such that H2

1 = H . Hence, we obtain

∥
∥∥H1(zk+1 − z∗)

∥
∥∥
2

2
=

∥
∥∥H1(zk + βF(zk) − z∗)

∥
∥∥
2

2

=
∥∥∥H1(zk + βF(zk) − z∗)

∥∥∥
2

2
+ β2

∥∥∥H1(F(zk)))
∥∥∥
2

2

+ 2β(zk − z∗)THF(zk). (36)

where z∗ = [
a∗T e∗T]T

. Applying (34) to (36), we have

∥∥∥H1(zk+1 − z∗)
∥∥∥
2

2
=

∥∥∥H1(zk − z∗)
∥∥∥
2

2
+ β2

∥∥∥H1F(zk)
∥∥∥
2

2

−2β(

∥
∥∥F(zk)

∥
∥∥
2

2
+

∥
∥∥D(ak − a∗)

∥
∥∥
2

2
+

∥
∥∥ek − e∗

∥
∥∥
2

2
)

≤
∥∥∥H1(zk − z∗)

∥∥∥
2

2
+ β2

∥∥∥H1F(zk)
∥∥∥
2

2
− 2β

∥∥∥F(zk)
∥∥∥
2

2
. (37)

Since ‖H‖22 ≤ 3, it follows that

∥∥∥H1(zk+1 − z∗)
∥∥∥
2

2
≤

∥∥∥H1(zk − z∗)
∥∥∥
2

2
+ (3β2 − 2β)

∥∥∥F(zk)
∥∥∥
2

2
. (38)

As 0 < β ≤ 2
3 , we get

∥∥∥H1(zk+1 − z∗)
∥∥∥
2

2
≤

∥∥∥H1(zk − z∗)
∥∥∥
2

2
.
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In this case, the RSEL algorithm can converge to a globally optimal solution of the
optimization problem in (10). ��

3.3 Clustering Algorithm and Dictionary Construction

Upon extracting the corresponding prediction coefficient vectors of the training speech
using the above-proposed RSEL algorithm, we need to employ a clustering algo-
rithm to obtain the codebook of prediction coefficients for the voiced and unvoiced
speech, respectively. In traditional speech processing methods, the Linde–Buzo–Gray
(LBG) algorithm [1] is typically employed to provide codebooks for speech-relevant
parameters. The codebook generation method may have a significant impact on the
performance of the learned dictionary. However, it is very difficult to directly design
the clustering algorithm based on the feedback of the reconstruction error in the appli-
cation stage. Alternatively, minimizing the distance between the LPC vectors and the
cluster centroids provides a simple and effective criterion for the clustering algorithm.
To further improve the clustering performance, we therefore propose to use the K near-
est neighbors (KNN) algorithm [3], as a substitute for the partition step in the LBG
algorithm. The resulting combinational algorithm, called NNLBG in this paper, is
expected to provide high-quality codebooks for the dictionary construction, as further
explained below.

In view of the sequential linear prediction model in (9), we have

xi = ψ(ei + Gxi−1) (39)

where G =
[

0P×(N−P) B
0(N−P)×(N−P) 0(N−P)×P

]
with B =

⎡

⎢
⎣

ai (P) . . . ai (1)
. . .

...

0 ai (P)

⎤

⎥
⎦, and

ψ =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

1 0 0 · · · · · · 0
−ai (1) 1 0 · · · · · · 0
−ai (2) −ai (1) 1 · · · · · · 0

...
...

...
. . .

...

−ai (P) −ai (P − 1) · · · −ai (1) 1 · · · 0

0 −ai (P) · · · · · · . . . 0
...

... · · ·
0 0 · · · −ai (P) · · · −ai (1) 1

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

−1

(40)
is a lower triangular matrix, constructed with the LPC vector. The matrix G is sparse,
and Gai is a P-sparse vector. As the prediction error vector ei is also sparse, the
i th training speech signal is sparse with respect to the basis ψ . The clustering algo-
rithm NNLBG is applied to the prediction coefficient vectors of the training speech
signals, which are estimated through the proposed RSEL algorithm in Sect. 3.2, to
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obtain the corresponding codebooks Qv = [
qv1 qv2 · · · qvc

]
and Qu = [

qu1 qu2 · · · quc
]
,

respectively, for voiced and unvoiced speech, where c is the number of clusters.
It is well known that the dictionary can be constructed from a union of bases

[15]. Specifically, we can fill the column vector qvj ( j = 1, 2, . . . , c) and quj ( j =
1, 2, . . . , c) within the above structured matrix ψ in (40) to generate multiple bases
ψv

j ( j = 1, 2, . . . , c) and ψu
j ( j = 1, 2, . . . , c) for both cases of voiced and unvoiced

speech, respectively. The dictionaries �v and �u can then be expressed as follows,

�v = [
ψv

1 ψv
2 · · · ψv

c

]
(41)

�u = [
ψu

1 ψu
2 · · · ψu

c

]
(42)

These two dictionaries are structured, easy to implement and can reduce the stor-
age cost because only the codebook including Pc entries, instead of the dictionary
composed of Nc entries, needs to be stored. In contrast with the reference dictionary
learning methods, our proposed dictionaries are learned with LPC features instead
of the raw speech signals. They hold the advantages of both analytic and data-driven
dictionaries [23]: It is easy and efficient to deploy; it can yield effective sparse rep-
resentation; and they are stable and robust to noise in compressive speech sensing
applications.

3.4 Recovery Algorithm

In the application stage, the recovery algorithm module is fed with the received mea-
surements, the sensing matrix and the dictionary for effective sparse reconstruction.
In this section, we discuss two cases: the noise-free case and the noise-aware case.

The noise-free case refers to an ideal environment where the received observations
are the same as the transmitted ones. In this case, assuming that the input speech signal
in the i th frame is voiced, the received measurement vector can be expressed as

yi = �xi = ��v(ei + si ) (43)

where si is a Pc-sparse vector and can be estimated as

si = λi

c
Gv x̂i−1 (44)

where λi is a regularization factor to reduce error propagation, and matrix Gv is the
expansion of the matrix G in (39) and can be generated by filling the codebook Qv to

G, i.e., Gv =
[
GT

qv1
GT

qv2
· · · GT

qvc

]T
, and x̂i−1 is the recovered speech signal from the

previous frame with the index i − 1. Therefore, the following optimization technique
can be employed to estimate the sparse coefficient vector of the i th speech frame,

êi = argmin ‖ei‖0 s.t. yi − ��vsi = ��vei . (45)
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With the estimated sparse coefficient vector êi from (45), we can reconstruct the i th
speech frame as

x̂i = �v(êi + si ).

Similarly, for the unvoiced speech, we can fill the matrix G with the codebook Qu to

construct the matrix Gu as Gu =
[
GT

qu1
GT

qu2
· · · GT

quc

]T
. The sparse coefficient vector

of the j th unvoiced speech frame can be estimated through

s j = λ j

c
Gu x̂ j−1 (46)

ê j = argmin
∥∥e j

∥∥
0 s.t. y j − ��us j = ��ue j . (47)

Then, the unvoiced speech for the j th speech frame can be reconstructed as

x̂ j = �u(ê j + s j ).

The optimization problems in (45) and (46) can be solved through the BP algorithm or
the OMP algorithm. Since we utilize the information from the previous speech frame
in sparse reconstruction, the method proposed above is referred to as a sequential
recovery algorithm. In a real environment, noise might be inevitable to some extent.
The noise-aware case refers to that measurements are corrupted by the noise, which
is here modeled as an additive white Gaussian disturbance. In this case, the above
optimization problems in (45) and (46) should be, respectively, modified as

min ‖ei‖0 s.t.
∥∥ yi − ��vsi − ��vei

∥∥
2 ≤ ε (48)

min
∥∥e j

∥∥
0 s.t.

∥∥ y j − ��vs j − ��ve j
∥∥
2

≤ ε (49)

where the threshold ε > 0 is used to control the noise energy. These two optimization
problems can be solved through the basis pursuit denoising (BPDN) algorithm [9] or
the OMP algorithm [32].

4 Experimental Evaluation

In this section, the performance of our proposed system is evaluated with the speech
dataset from theGRIDcorpus [26],which is freely available to researchers. This corpus
consists of recordings of 1000 sentences for each of 34 speakers (18male speakers and
16 female speakers). All the utterances were normalized to have a maximum absolute
magnitude of 1. We randomly select 10 speakers of both genders for our experiments.
All the speech signals in both training dataset and validation dataset are downsampled
to 16KHz. We use segmental signal-to-noise ratio (SSNR) [18], perceptual evaluation
of speech quality (PESQ) [18] score and short-time objective intelligibility (STOI)
[29] score as the objective measures to evaluate the reconstructed speech quality of
our proposed system. Moreover, the performance of our proposed system is evaluated
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in comparison with the KSVD algorithm [2], MOD algorithm [12], ODL algorithm
[21] and PCA algorithm [25]. For the experiments below, the parameters involved
are set as follows: prediction order P = 4, sparsity level S = 20, stopping criterion
η = 10−6, number of clusters c = 3. All the experiments were conducted inMATLAB
R2018a (64 bit) on a desktop computer with an Intel i7-8700 CPU (3.2 GHz) and 16
GHz RAM.

4.1 Speaker-Dependent Case in Noise-Free Environment

In the speaker-dependent case, the dictionaries for the voiced and unvoiced frames
are, respectively, learned with the training dataset from each speaker at the application
stage. Subsequently, the evaluation of the system performance is performed separately
for each speaker at the application stage. Three speakers of both genders are involved
in the experiments of this part. For each speaker, 20 utterances are selected randomly
for the training stage and another 10 utterances, guaranteed to be distinct from the
training set, are utilized at the application stage. It should be noted that the training
dataset for the KSVD, MOD, ODL and PCA methods includes 70 utterances from
each speaker in order to guarantee sufficient speech data are exploited to train atoms
of these dictionaries. The final results regarding the SSNR and the PESQ scores of the
reconstructed speech signals are averaged over all the speakers involved. Moreover,
in noise-free environment, the evaluation is implemented with both the BP and OMP
algorithms, the most representative recovery algorithms in CS, to reconstruct speech
signals at the application stage.

In Table 2, we compare the average SSNR results for male speakers among the
above-mentioned five methods, namely: KSVD, MOD, ODL, PCA and the proposed
method. It is conspicuous that our proposed system can achieve better performance
than the other fourmethods under all the compression rates and for both recovery algo-
rithms. For instance, with the BP algorithm, with a compression rate M/N = 0.5,
the average SSNR of our proposed system amounts to 20.9dB, with the improvement
to the other four methods ranging from 5.1dB to 8.9dB. Similarly, at the same com-
pression rate, with the OMP algorithm, our proposed system can achieve an average
SSNR at 16.2dB; the corresponding improvements with the other four methods range

Table 2 Average SSNR (dB) for male speakers in speaker-dependent case when using dictionaries from
KSVD, MOD, ODL, PCA and the proposed technique

M/N BP OMP

KSVD MOD ODL PCA Proposed KSVD MOD ODL PCA Proposed

0.3 11.7 11.4 11.5 7.20 14.1 6.61 7.06 6.54 3.97 8.10

0.4 13.7 13.0 13.4 9.63 17.5 7.93 8.17 7.62 6.34 11.6

0.5 15.8 14.7 15.6 12.0 20.9 10.9 9.50 10.4 8.52 16.2

0.6 18.2 16.5 18.1 14.6 24.2 13.5 11.4 12.9 10.3 18.9

0.7 20.9 18.6 20.7 17.5 27.3 15.2 13.1 14.8 11.6 20.5

0.8 24.2 21.2 23.7 21.1 30.8 16.5 14.6 16.2 12.6 21.5
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Fig. 2 Average PESQ scores for male speakers in speaker-dependent case when using dictionaries from
KSVD, MOD, ODL, PCA and the proposed technique. Recovered by a BP algorithm, b OMP algorithm

Table 3 Average SSNR (dB) for female speakers in speaker-dependent case when using dictionaries from
KSVD, MOD, ODL, PCA and the proposed technique

M/N BP OMP

KSVD MOD ODL PCA Proposed KSVD MOD ODL PCA Proposed

0.3 10.8 11.3 10.9 7.40 13.0 6.32 7.04 6.22 4.00 6.94

0.4 12.3 12.7 12.4 9.54 16.3 7.13 8.01 7.07 6.12 9.90

0.5 13.9 14.1 14.4 11.7 19.7 9.25 9.35 9.77 8.14 14.4

0.6 16.0 15.7 16.8 14.2 22.9 11.6 11.2 12.4 9.81 16.9

0.7 20.9 18.6 20.7 16.9 27.3 13.4 13.0 14.2 11.1 18.6

0.8 21.7 20.0 22.8 20.2 29.2 14.8 14.4 15.5 12.2 19.7

from 5.4dB to 7.7dB. The average PESQ scores for the male speakers in this case
are illustrated in Fig. 2. The histograms clearly show that our proposed system can
achieve better PESQ scores. For example, at the compression rate of 0.5, our proposed
method can improve the average PESQ score of the reconstructed speech with the
BP algorithm from 2.31 (PCA) to 2.86, and when the reconstruction is done with the
OMP algorithm, the PESQ is enhanced from 1.79 (PCA) to 2.47.

The experimental results of average SSNR and PESQ scores for female speakers
are demonstrated in Table 3 and Fig. 3. It is clear that our proposed technique can also
achieve better performance for female speakers. The improvement of our proposed
method on the average SSNR at compression rate of 0.5 with BP algorithm is over
5dB, while the average PESQ score is increased from 2.28 to 2.80 with the proposed
method.We can also find that theOMPalgorithmcan achieve averageSSNRandPESQ
gains with our proposed method of around 5dB and no less than 0.3, respectively.
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Fig. 3 Average PESQ scores for female speakers in speaker-dependent case when using dictionaries from
KSVD, MOD, ODL, PCA and the proposed technique. Recovered by a BP algorithm, b OMP algorithm

4.2 Speaker-Dependent Case in Noise-Aware Environment

This subsection studies the system performance in the speaker-dependent case when
the received measurement vectors are corrupted by the additive Gaussian white noise
with zero mean and standard deviation 0.002. Apart from the SSNR and PESQ score,
we add the STOI score to evaluate the intelligibility of the recovered speech signals
in the presence of noise. Although it is well acknowledged that the background noise
can deteriorate the recovery performance of CS, our proposed system can still achieve
better performance than the other four approaches. Tables 4 and 5 show the average
SSNR results for male and female speakers, respectively, and the maximum improve-
ment of the proposed method over the other four methods at the compression rate of
0.5 for both genders is around 8dB. Figure 4a, b, respectively, gives the average PESQ
scores of the reconstructed male speech from the BPDN and the OMP in noise-aware
environment based on different dictionaries trained with various approaches. These
results clearly show the improvement of our proposed technique over the benchmark
approaches. For example, at the compression rate of 0.5, the average PESQ score is

Table 4 Average SSNR (dB) for male speakers in the presence of noise when using dictionaries from
KSVD, MOD, ODL, PCA and the proposed technique

M/N BPDN OMP

KSVD MOD ODL PCA Proposed KSVD MOD ODL PCA Proposed

0.3 9.62 8.02 8.04 3.72 11.4 4.85 5.45 4.92 4.03 5.59

0.4 10.5 8.74 8.63 4.64 12.8 6.10 5.93 5.19 5.70 7.25

0.5 11.1 9.20 9.01 5.30 13.8 8.27 6.64 7.21 6.82 10.5

0.6 11.5 9.55 9.26 5.84 14.4 9.96 7.98 9.27 7.44 12.4

0.7 11.7 9.78 9.44 6.28 15.0 11.1 9.38 10.79 7.91 13.7

0.8 12.0 9.97 9.59 6.60 15.3 12.0 10.5 12.0 8.23 14.6
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Table 5 Average SSNR (dB) for female speakers in the presence of noise when using dictionaries from
KSVD, MOD, ODL, PCA and the proposed technique

M/N BP OMP

KSVD MOD ODL PCA Proposed KSVD MOD ODL PCA Proposed

0.3 9.56 8.54 8.51 4.12 10.9 5.32 6.04 5.23 4.44 5.35

0.4 10.4 9.20 9.06 4.98 12.3 6.11 6.54 5.54 6.00 7.03

0.5 11.0 9.64 9.42 5.64 13.3 7.96 7.30 7.65 7.00 10.4

0.6 11.4 9.93 9.64 6.14 14.0 9.60 8.62 9.86 7.66 12.50

0.7 11.7 9.19 9.85 6.55 14.5 10.8 10.0 11.4 8.07 13.8

0.8 11.9 10.4 9.98 6.90 14.9 11.8 11.2 12.5 8.42 14.7
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Fig. 4 Average PESQ scores for male speakers in speaker-dependent case in the presence of noise when
using dictionaries from KSVD, MOD, ODL, PCA and the proposed technique. Recovered by a BPDN
algorithm, b OMP algorithm

improved through the proposed method from 1.75 (PCA) to 2.54 in the case of the
BPDN algorithm, while for the OMP algorithm, it is improved from 1.64 (PCA) to
2.27. The PESQ score of the reconstructed female speech from the BPDN at the com-
pression rate of 0.5 in Fig. 5a is improved from 1.81 (PCA) to 2.47. Figure 5b shows
that our proposed method can improve the average PESQ score of the reconstructed
female speech with the OMP from 1.65 (PCA) to 2.21.

The intelligibility of the recovered speech signals is evaluated through the average
STOI scores in Figs. 6 and 7, respectively, for male and female speakers. When M =
0.5N and theBPDN is utilized as the recovery algorithm, the average STOI scoreswith
the KSVD are 0.84 and 0.86, respectively, for male and female speakers. The ODL
achieves a slightly better performance than the KSVD with the average STOI scores
for both genders increased to 0.86. The MOD achieves nearly the same average STOI
score for male speakers as the ODL, while the one for female speakers is improved
to 0.87. The average STOI scores of the PCA for male and female speakers are 0.83
and 0.82, respectively. The average STOI scores for both genders with our proposed
method reach higher values of 0.89 and 0.90, respectively. With the OMP as the
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Fig. 5 Average PESQ scores for female speakers in speaker-dependent case in the presence of noise when
using dictionaries from KSVD, MOD, ODL, PCA and the proposed technique. Recovered by a BPDN
algorithm, b OMP algorithm
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Fig. 6 Average STOI scores for male speakers in speaker-dependent case in noisy environment when using
dictionaries from KSVD, MOD, ODL, PCA and the proposed method. Recovered by a BPDN algorithm,
b OMP algorithm

recovery algorithm, our proposed technique can improve the average STOI scores
from 0.82 to 0.87 and 0.88, respectively, for male and female speakers. Based on
these experimental results, we conclude that our proposed system is more robust to
background noise than the state-of-the-art methods under comparison.

4.3 Speaker-Independent Case in Noise-Free Environment

In the speaker-independent case, we utilize speech signals of the above 6 speakers
as the training data, while 10 utterances of another two speakers of both genders are
randomly selected from the GRID corpus as the test dataset at the application stage,
i.e., ten speakers are involved in the experiments of this subsection. The average SSNR
results in the speaker-independent case are presented in Tables 6 and 7, respectively,
for male and female speakers. It can be clearly observed that our proposed method
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Fig. 7 Average STOI scores for female speakers in speaker-dependent case in noisy environmentwhen using
dictionaries from KSVD, MOD, ODL, PCA and the proposed method. Recovered by a BPDN algorithm,
b OMP algorithm

Table 6 Average SSNR (dB) for male speakers in speaker-independent case when using dictionaries from
KSVD, MOD, ODL, PCA and the proposed technique

M/N BP OMP

KSVD MOD ODL PCA Proposed KSVD MOD ODL PCA Proposed

0.3 15.4 14.2 14.0 7.07 17.1 9.34 8.63 8.23 3.89 10.1

0.4 17.5 15.8 15.5 10.3 20.2 11.5 9.75 9.04 7.69 13.3

0.5 19.9 17.3 16.8 13.3 23.5 15.5 11.1 10.6 10.9 18.4

0.6 22.5 18.9 18.2 16.2 26.5 18.2 13.0 12.8 13.2 21.2

0.7 25.4 20.6 19.7 19.2 29.5 19.7 14.7 14.6 15.1 22.7

0.8 28.5 22.9 22.0 22.7 32.7 20.8 16.3 16.1 16.4 23.8

Table 7 Average SSNR (dB) for female speakers in speaker-independent case when using dictionaries from
KSVD, MOD, ODL, PCA and the proposed technique

M/N BP OMP

KSVD MOD ODL PCA Proposed KSVD MOD ODL PCA Proposed

0.3 12.2 10.8 10.8 7.38 14.2 7.00 5.97 5.79 4.41 7.82

0.4 14.4 12.4 12.3 10.0 17.6 9.15 7.08 6.63 7.42 10.7

0.5 17.0 14.0 13.7 12.6 21.0 13.3 8.48 8.17 10.0 15.8

0.6 19.6 15.6 15.1 15.2 24.3 15.9 10.4 10.4 12.2 18.5

0.7 22.4 17.5 16.8 18.0 27.4 17.4 12.2 12.3 13.9 20.0

0.8 25.6 19.9 19.4 21.4 30.7 18.5 13.7 13.8 15.2 21.0

achieves better average SSNR than the reference approaches regardless of the recovery
algorithms and the genders. For example, with the BP algorithm, the average SSNRs
of the reconstructed speech of male speakers at the compression rate of 0.6 for ODL,
MOD, KSVD and PCA are 18.2dB, 18.9dB, 22.5dB and 16.2dB, respectively. Our
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Fig. 8 Average PESQ scores for male speakers in speaker-independent case when using dictionaries from
KSVD, MOD, ODL, PCA and the proposed technique. Recovered by a BP algorithm, b OMP algorithm
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Fig. 9 Average PESQ scores for female speakers in speaker-independent case when using dictionaries from
KSVD, MOD, ODL, PCA and the proposed technique. Recovered by a BP algorithm, b OMP algorithm

proposed method can improve the performance to 26.5dB. Meanwhile, the improve-
ment of our proposed approach with respect to average PESQ scores, as shown in Figs.
8 and 9 for both genders, is also conspicuous. For instance, as illustrated in Fig. 8b,
our proposed technique can improve the average PESQ scores from 2.14 to 2.80 at the
compression rate of 0.6. Therefore, our proposed method can obtain higher-quality
speech signals than the other four methods in the speaker-independent case.

4.4 Speaker-Independent Case in Noise-Aware Environment

We consider the speaker-independent case when the measurement vectors at the appli-
cation stage are corrupted by additive white Gaussian noise. The average SSNR results
for male and female speakers under this scenario are presented in Tables 8 and 9. For
instance, at the compression rate of 0.6, KSVD with BPDN as the recovery algorithm
can achieve the largest average SSNR of 11.9dB for male speakers among the exist-
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Table 8 Average SSNR (dB) for male speakers in speaker-independent case in the presence of noise when
using dictionaries from KSVD, MOD, ODL, PCA and the proposed technique

M/N BPDN OMP

KSVD MOD ODL PCA Proposed KSVD MOD ODL PCA Proposed

0.3 10.5 9.63 9.49 3.17 14.8 7.83 7.57 7.30 4.45 8.41

0.4 11.1 10.4 10.2 4.31 16.1 10.0 8.19 7.62 7.11 11.3

0.5 11.6 11.0 10.7 5.43 17.0 12.7 9.00 8.58 8.66 14.1

0.6 11.9 11.3 11.0 6.31 17.6 14.4 10.4 10.3 9.45 15.7

0.7 12.0 11.6 11.2 7.11 18.1 15.5 11.8 11.9 9.95 16.7

0.8 12.2 11.8 11.4 7.75 18.4 16.2 12.9 13.0 10.3 17.3

Table 9 Average SSNR (dB) for female speakers in speaker-independent case in the presence of noise when
using dictionaries from KSVD, MOD, ODL, PCA and the proposed technique

M/N BPDN OMP

KSVD MOD ODL PCA Proposed KSVD MOD ODL PCA Proposed

0.3 8.43 7.50 7.45 3.37 12.0 5.29 4.91 4.73 4.74 5.99

0.4 9.09 8.31 8.17 4.46 13.5 7.74 5.53 5.01 6.97 9.11

0.5 9.47 8.81 8.59 5.43 14.5 10.4 6.38 6.12 8.21 11.9

0.6 9.72 9.17 8.90 6.23 15.2 12.2 7.82 7.85 8.95 13.5

0.7 9.94 9.43 9.11 7.00 15.8 13.3 9.29 9.38 9.42 14.5

0.8 10.0 9.66 9.32 7.63 16.1 14.0 10.5 10.7 9.78 15.2
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Fig. 10 Average PESQ scores for male speakers in speaker-independent case in the presence of noise when
using dictionaries from KSVD, MOD, ODL, PCA and the proposed technique. Recovered by a BPDN
algorithm, b OMP algorithm

ing four reference methods. However, the average SSNR of our proposed approach
reaches 17.6dB. The 5.7-dB increment indicates that it can achieve better performance
in noise reduction.
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Fig. 11 Average PESQ scores for female speakers in speaker-independent case in the presence of noise
when using dictionaries fromKSVD,MOD, ODL, PCA and the proposed technique. Recovered by aBPDN
algorithm, b OMP algorithm
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Fig. 12 Average STOI scores for male speakers in speaker-independent case in the presence of noise when
using dictionaries from KSVD, MOD, ODL, PCA and the proposed technique. Recovered by a BPDN
algorithm, b OMP algorithm

The average PESQ results in the speaker-independent case in the presence of noise
are presented in Figs. 10 and 11, respectively, for both genders. The average PESQ
scores of our proposed method are higher than the other methods. As observed in Fig.
11b, at the compression rate of 0.6, our proposed technique can improve the average
PESQ score from 1.87 to 2.48. Meanwhile, the average STOI scores are given in
Figs. 12 and 13, respectively, for male and female speakers. The clear improvement in
average STOI scores with our method indicates that it can produce more intelligible
speech signals. As illustrated in Fig. 13a, at the compression rate of 0.6, our proposed
approach improves the average STOI score from 0.82 to 0.90 and can thus reduce
the background noise more effectively than the other four methods in a speaker-
independent case.
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Fig. 13 Average STOI scores for female speakers in speaker-independent case in the presence of noise
when using dictionaries from KSVD, MOD, ODL, PCA and the proposed technique. Recovered by a
BPDN algorithm, b OMP algorithm

5 Conclusion

In this paper, we have presented a new compressive speech sensing system which is
composed of two stages, namely the training stage and the application stage. The core
of training stage is the RNN-based dictionary learning module which learns struc-
tured dictionaries for both voiced and unvoiced speech. In particular, we leveraged
the sequential linear prediction model and the proposed RSEL to extract the speech
LPCs and applied the NNLBG algorithm to cluster the LPC vectors in order to gener-
ate effective codebooks. Then, the dictionaries for voiced and unvoiced speech were
constructed with a union of bases obtained from the column vectors in corresponding
codebooks. Moreover, we provided a theoretical analysis of the mean squared error,
robustness and convergence of the proposed RSEL algorithm. In the application stage,
a sequential recovery algorithm was proposed to reconstruct speech signals. It was
shown through an extensive experimental study that our proposed system can outper-
form the state-of-the-art methods in both speaker-dependent and speaker-independent
cases under the noise-free as well as noise-aware conditions.
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