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Abstract
In this paper, we present a new two-stage speech enhancement approach, specially 
conceived to reduce musical and other random noises without requiring their locali-
zation in the time–frequency domain.The proposed method is motivated by two 
observations: (1) the random scattering nature of the energy peaks corresponding to 
the musical noise in the spectrogram of the processed speech; and (2) the existence 
of correlation between Wiener filter gains calculated at different frequencies. In the 
first stage of the proposed method, a preliminary gain function is generated using 
the nonnegative matrix factorization algorithm. In the second stage, a modified gain 
function that is more robust to noise artefacts, and referred to as calibrated filter, is 
estimated by applying a DNN-based nonlinear mapping function to the preliminary 
gain function. To further decrease the variability of the estimated calibrated filter, 
we propose to expand the DNN-based extraction of frequency dependencies to a 
set of preliminary gain functions derived from spectral estimates based on a family 
of data tapers; the resulting calibrated filter is referred to as multi-filter. The evalu-
ation of the proposed DNN-based calibrated filter models for speech enhancement, 
under different noise types and input SNR levels, shows substantial improvements 
in terms of standard speech quality and intelligibility measures when compared to 
uncalibrated filter.
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1 Introduction

Speech enhancement aims to improve the quality and intelligibility of speech 
by isolation of the target speech from contaminating background noises. Several 
algorithms for speech enhancement involving a single audio channel have been 
proposed in the past, e.g., [19, 37, 48, 53]. Most single-channel speech enhance-
ment methods decompose the audio signal of the noisy speech in the frequency 
domain and weight the spectral coefficients using an estimated gain function. 
The latter provides the amount of attenuation (or gain) that must be applied to 
the noisy speech spectrum at any given frequency to obtain the enhanced speech 
spectrum. The suppression function, Wiener filter and ideal ratio mask (IRM) are 
examples of such gain functions. The suppression function is used in the spec-
tral-subtractive algorithms, in which the clean speech spectrum is estimated by 
subtracting the noise spectrum from the noisy speech spectrum [3, 4, 24, 44]. 
The Wiener filter is derived from the optimization of a linear time-invariant filter, 
aiming to minimize the mean square error between the desired signal and its esti-
mate [5, 20, 31, 38, 40, 52]. IRM is used as a target value of a complex nonlinear 
mapping function estimated using deep neural networks (DNN) [11, 35, 50, 51].

Each one of these speech enhancement methods produces a distinct shape of 
the gain function, which can provide an improvement in terms of noise attenua-
tion. As a side effect, the gain function also alters the quality of the original clean 
speech. Therefore, it is important to find a proper balance between the amounts of 
noise reduction and introduced speech distortion [32]. Indeed, a poor estimation 
of the enhancement gain introduces isolated spectral energy peaks of short dura-
tion at random positions in the processed audio spectrum. These isolated com-
ponents, known as musical noise artifacts, are perceived as unpleasant tones that 
lead to a serious deterioration of the speech quality, particularly under low signal-
to-noise ratio (SNR) conditions and during speech pauses [12]. The main factors 
responsible for musical noise include [32]: (1) nonlinear processing of the power 
spectrum, (2) inaccurate estimation of the noise spectrum, (3) large variance in 
the estimates of the noise and noisy speech signal spectra, and (4) large variabil-
ity in the gain function.

Several methods have been proposed in the past to eliminate the musical noise. 
Most of these methods were designed to separately tackle one of the above con-
tributing factors. Regarding the first factor (i.e., nonlinear processing), the itera-
tive spectral subtraction has been proposed in [26, 30, 33, 54]. This method 
assumes that a weak nonlinear processing can reduce musical noise generation 
when iteratively applied to the input signal. Under the assumption of stationary 
input noise, it can improve speech quality with low musical noise. To address 
the second factor (inaccurate noise estimation), some researchers have developed 
more efficient speech pause detectors, which play a crucial role in noise spectrum 
estimation [12, 14, 41, 55]. In [12], the authors also proposed a postfilter as a sec-
ond step to further reduce musical noise. The postfilter, which adaptively smooths 
the gain function over frequency based on soft-decisions from a low-SNR detec-
tor, leads to consistent improvements of speech quality. The third factor (large 
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spectral variance) can be addressed through modifications of the classical win-
dowed periodogram-type estimator. To this end, the use of multi-tapering along 
with wavelet thresholding has been proposed in [20, 43]. In this method, a set of 
orthogonal tapers is applied to the speech signal and the resulting spectral esti-
mates are then averaged, which reduces the spectral variance. Recently, multi-
tapering has been employed to enhance the speech/noise dictionary and activation 
matrices in the nonnegative matrix factorization (NMF) method [1]. Regarding 
the fourth factor (gain function variability), the adaptive exponential time-averag-
ing method was proposed to smooth either the Wiener gain function [17] or the a 
priori SNR needed in its calculation. [10, 40].

Some researchers have taken another approach to reduce the musical noise, 
which consists in the localization and elimination of the isolated peaks in the 
spectrogram of the enhanced speech [2, 3, 15]. The peak localization also serves 
to assess the amount of musical noise present in the enhanced speech, creating an 
objective measure of musical noise [9, 18]. Determining the presence of isolated 
spectrogram peaks involves several processing steps. In [18], this includes detec-
tion of small local minima in the spectrogram, application of Delaunay triangula-
tion over local minima, selection of specific triangles, and grouping of adjacent 
triangles in domains. The method in [9] involves the following steps: detection 
of isolated peaks, verification of the non-harmonicity condition, and detection of 
transient spectral components. In the context of musical noise reduction, the peak 
localization process remains a complex and error-prone task.

In this work, we propose a supervised machine learning-based speech enhance-
ment approach in two stages, specially designed to reduce musical noises from 
processed speech, without requiring the localization of isolated noise peaks in the 
time–frequency domain. The underlying idea is based on two key observations: 
(1) the random scattering nature of the energy peaks corresponding to the musical 
noise in the spectrogram, and (2) the existence of dependencies across frequency 
bins in the gain functions used for speech enhancement. Specifically, in the first 
stage of our proposed approach, a preliminary gain function is estimated using a 
robust speech enhancement algorithm, which in this work is based on the NMF 
method [49]. In the second stage, the accuracy of the estimated gain function is 
refined using a DNN-based nonlinear mapping. We refer to the impact of this 
process on the gain function as a calibration effect. Subsequently, instead of using 
a single gain function, we extend the proposed method to a set of gain functions 
with different spectral properties, which will be combined using a DNN-based 
fusion approach. By using diverse gain functions, we can decrease the variability 
in the estimated filter, and hence, further enhance the quality of the processed 
speech. We refer to the impact of using a set of gain functions in this manner as a 
fusion effect.

The paper is organized as follows. Section  2 introduces the proposed DNN-
based calibrated filter model for speech enhancement. Section  3 explains how 
the concept of a calibrated gain function can be extended to a set of multiple 
gain functions. Section 4 reports on the experimental speech enhancement perfor-
mance of the proposed systems using different objective measures. Finally, Sec-
tion 5 concludes the paper.
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2  DNN‑Based Calibrated Filter Model

The proposed speech enhancement system using calibrated gain function consists 
of two main components, as shown in Fig. 1, that is: an NMF sub-system, used for 
the first stage, and a calibration sub-system, used for the second stage. The NMF 
sub-system estimates the power spectra of the clean speech and the noise and gener-
ates the preliminary gain function. The calibration sub-system refines the accuracy 
of the gain function estimated in the first stage using a DNN-based nonlinear map-
ping. In this work, we chose the NMF algorithm in the first stage due to its capabil-
ity to recover clean speech from noisy observations without relying on the station-
arity assumption for the additive noise [8, 25, 28]. However, the first stage of the 
proposed framework can support other enhancement algorithms that produce a gain 
function.

2.1  NMF‑Based Speech Enhancement Sub‑system

In single-channel speech enhancement, the time-domain noisy speech signal y(t) is 
composed of the clean speech signal s(t) and the additive noise signal n(t) , that is,

where t is the discrete-time sample index. The noisy speech spectrum, obtained via 
short-time Fourier transform (STFT) of consecutive overlapping frames, can be 
expressed as Ykj = Skj + Nkj , where j represents the frame index, k = 0,… ,K − 1 , is 
the frequency bin index, K = F∕2 , and F is the frame size.1 In NMF-based speech 
enhancement, we assume in practice that the magnitude spectrum of the noisy 
speech, obtained via STFT, can be approximated by the sum of the clean speech and 

(1)y(t) = s(t) + n(t)
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Fig. 1  Block diagram of the proposed calibrated gain function-based speech enhancement system

1 Only half of the coefficients are used since the audio signal samples are real-valued and their spectral 
coefficients exhibit complex conjugate symmetry.
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noise magnitude spectra, i.e., |||Ykj
|||
ν
≈
|||Skj

|||
ν
+
|||Nkj

|||
�

 with � = 1 being the most com-
mon choice [34, 49].

In speech and audio applications, NMF interprets the magnitude or power spec-
trum of the target signal as a linear combination of basis vectors, which play a key 
role in the enhancement or separation process. Specifically, NMF decomposes a given 
matrix into a product of a basis (or dictionary) matrix and an activation (or encod-
ing) matrix with non-negative elements constraint [13, 29]. For a nonnegative matrix 
� =

[
vkj

]
∈ ℝ

K×J
+

 , NMF aims to find a local optimal decomposition of � = �� , where 
� =

[
akm

]
∈ ℝ

K×M
+

 is a basis matrix, � =
[
cmj

]
∈ ℝ

M×J
+

 is an activation matrix, ℝ+ 
denotes the set of nonnegative real numbers, M is the number of basis vectors, and J 
is the number of consecutive frames. The factorization is obtained by minimizing the 
reconstruction error between the observation matrix � and the model �� using the 
Kullback–Leibler (KL) divergence as a cost function, while constraining the matrices 
to be entry-wise nonnegative. The solutions can be obtained iteratively using the fol-
lowing multiplicative update rules [29],

where the operation ⊗ denotes element-wise multiplication, / and the quotient line 
is element-wise division, 1 is a K × J matrix with ones, and the superscript T is the 
matrix transpose. In this work, V = [vkj] contains the magnitude spectrum values of 
either one of the noisy speech, clean speech, and noise, as indicated by subscripts or 
superscripts Y, S, and N, respectively.

In a supervised framework, the � matrices of clean speech and noise, denoted 
as �S and �N , respectively, are first obtained during the training stage, by applying 
both update rules in (2) to the training data VS and VN. In the enhancement stage, 
the activation matrix �Y =

[
�T

S
�T

N

]T is estimated by applying only the activation 
update to �Y , while fixing the basis matrix �Y =

[
�S�N

]
 . Then, the clean speech 

spectrum can be estimated using a Wiener filter as [13, 28],

where ĝkj is the estimated Wiener gain function, given by,

In this expression, P̂S
kj

 and P̂N
kj

 denote the estimated power spectra of the clean 
speech and noise, respectively. The latter are obtained via temporal smoothing of the 
NMF-based periodograms as [28],

(2)� ← �⊗
(�∕��)�T

1�T
, � ← �⊗

�T(�∕��)

�T1

(3)Ŝkj = ĝkjYkj

(4)ĝkj =
P̂S
kj

P̂S
kj
+ P̂N

kj

(5)
P̂S
kj
= �sP̂

S

k(j−1)
+
(
1 − �s

)[
�S�S

]2
kj

P̂N
kj
= �NP̂

N

k(j−1)
+
(
1 − �N

)[
�N�N

]2
kj
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where �s and �N are the smoothing factors for the speech and noise, and [∙]kj denotes 
the (k, j)-th entry of its matrix argument. In the sequel, we shall refer to the gain 
function ĝkj (4) as the preliminary (or unprocessed) gain function.

2.2  DNN‑Based Calibration Sub‑system

The goal of the calibration process is to reduce the musical or residual noise, with-
out the complex task of localizing or assessing the isolated noise spectral peaks. The 
idea underlying the calibration method is based on two observations. First, and by 
definition, the isolated spectral peaks of energy leading to audible musical noise are 
located at random positions (i.e., time and frequency) in the spectrogram. An esti-
mated spectral component Ŝkj corresponding to such an isolated noisy peak at fre-
quency bin k and frame j is usually surrounded by spectral values with much smaller 
magnitudes. Subsequently, the filter weight values in the immediate neighborhood 
of bin k , i.e., ĝqj for q ≠ k , should also be relatively small.

The second observation is the existence, for noisy speech, of a relation-
ship between the values of gain function calculated at nearby frequencies. Such a 
dependency is illustrated in Fig. 2, which displays the sample Pearson correlation 
matrix for the actual Wiener filter gain vector �j =

[
g1jg2j … gKj

]T , computed using 
clean speech and noise from a training data set (as per the methodology described 
in Sect.  4). We can observe a strong level of correlation between values of gkj 

Fig. 2  Plot of the sample correlation matrix of actual Wiener filter gain vector, computed using clean 
speech and different types of noise from the training data (color level indicates normalized value of cor-
responding matrix entry)
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computed at neighboring frequency bins, suggesting the existence of a relationship 
between these components. Furthermore, the range of the dependent neighbors is 
particularly important for the mid to high frequency band. When an estimated spec-
tral component Ŝkj , resulting from an inaccurate gain estimate ĝkj , corresponds to 
musical noise, it can be corrected ĝkj by using information carried by the correlated 
entries ĝqj ( q ≠ k ) in the gain vector �̂j , for which the estimated spectral components 
Ŝqj are unlikely to be all affected by the random noise. The same idea generally holds 
for other types of randomly localized residual noise. Note that beside the removal of 
musical noise in silence-dominant segments, the same approach also contributes to 
restore distorted speech in speech-dominant segments.

Based on these two observations, we aim to reduce the musical or residual noise 
within Ŝkj by using a calibrated gain function or filter, denoted as 

−
g
kj and com-

puted using the entries of the preliminary gain vector �̂j estimated using (4)–(5). 
In that regard, our proposed approach is complementary to the temporal smooth-
ing described in (5), as it aims to exploit the gain correlation present along the fre-
quency dimension. For instance, a linear calibration model can be formulated as the 
following weighted sum,

where wkq is the (k, q)-th entry of a calibration matrix � =
[
wkq

]
∈ ℝ

K×K and rep-
resents the weight given to the q-th entry of the gain vector �̂j , in the adjustment of 
ĝkj . In the case of a linear relationship, the optimal weight values (obtained, e.g., 
via regularized least-squares) will depend on the correlation between neighboring 
values of the gain function in the frequency domain. By averaging a large gain value 
associated with a noise peak at frequency k with smaller gain values in the surround-
ing of this frequency, we can ideally reduce the energy level of the residual peak in 
the processed speech below the masking threshold for a human listener. The new 
enhanced magnitude spectrum is computed as,

where the phase of the noisy speech is unaffected by the enhancement process.
While the calibration approach in (6) leads to improvement in the quality of 

the enhanced speech, it is restricted to a linear relationship and thus may not fully 
exploit all the dependencies between nearby values of the gain function gkj . In this 
work, to overcome this limitation and fully exploit such dependencies, we propose 
to employ a feed-forward DNN architecture to model both the linear and nonlin-
ear components of the relationship between nearby values of gkj in the frequency 
domain.

This architecture consists of multiple nonlinear processing layers which together 
provide a mathematical representation of a highly nonlinear regression function, 
needed to map a set of preliminary (i.e., less accurate) gain function values at its 
input, into calibrated (i.e., more robust) gain function values at its output. Each layer, 
labelled with index l ∈ {1,2,… , L} , where L is the total number of layers, consists 

(6)
−
g
kj =

K∑

q=1

wkqĝqj

(7)Ŝkj =
−
g
kjYkj
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of Il nodes. The output values of the l-th layer are represented by vector �(l) ∈ ℝ
Il 

and are expressed as,

where �(l) ∈ ℝ
Il×Il−1 is a linear transformation matrix with (i, j)-th entry 

w
(l)

ij
, �

(l)
∈ ℝ

Il is a bias vector with i-th entry b(l)
i

 , and fl(∙) represents the activation 
function of the l-th layer. In this work, the rectified linear unit (ReLU) [6] is used as 
activation function for the hidden layers ( l = 1,… , L − 1 ), while the linear function 
is used for the output layer ( l = L ). In the first layer, �(0) represents the input vector 
�̂j ∈ ℝ

K , and in the L-th layer, �(L) represents the output vector 
−
�
j ∈ ℝ

K , i.e., the 
calibrated filter. The complete set of the calibration parameters for the nonlinear 
DNN model is represented by 

∼

�=
{
�(l), �(l) ∶ l = 1,… , L

}
.

Let �j =
[
g1jg2j … gKj

]T , where gkj represents the actual Wiener filter gain value 
at frequency bin k and time frame j , i.e., computed using the clean speech and pure 
noise data according to (4) and (5), where in the latter equation, the terms ([
�S�S

]
kj

)2

 and 
([
�N�N

]
kj

)2

 are replaced by |||Skj
|||
2

 and |||Nkj
|||
2

 , respectively. During 
the training stage, the calibration parameters 

∼

� are estimated by minimizing the 
mean-squared error (MSE) between the actual Wiener filter vector �j , and the cali-
brated filter 

−
�
j =

[−
g
1j

−
g
2j …

−
g
Kj

]T
 estimated using the nonlinear combination of the 

components of the vector �̂j . Specifically, the cost function is formulated as,

where the second term represents the L2-regularization, � ≥ 0 is the regularization 
parameter, and N is the number of frames in the training data.

The calibration parameters 
∼

� estimated in the training stage using the DNN 
will be applied to calibrate the preliminary gain function of the noisy speech in the 
enhancement stage as shown in Fig. 1. The time-domain enhanced speech signal is 
finally obtained via inverse STFT followed by the overlap-add method.

3  Multi‑filter Model Extension

In the previous section, information about the nonlinear relationship between gain 
values at different frequency bins was extracted using a single preliminary gain 
function. In this section, we extend the scope of the calibration process from a single 
preliminary gain function to multiple gain functions, from which we extract the rela-
tionship information. Specifically, by combining a set of gain functions with differ-
ent properties, we aim to further decrease the variability of the resulting calibrated 
filter, referred to as a multi-filter in the sequel, and consequently reduce the error in 
the estimated filter. Averaging multiple models, also known as ensemble method, 
is a well-known strategy in machine learning for reducing generalization errors. In 
particular, when the models are uncorrelated, the expected error can be reduced by 

(8)�(l) = fl
(
�(l)�(l−1) + �(l)

)

(9)E =
1

N

N�

j=1

‖
−
�
j(�̂j,

∼

�) − �
j
‖
2

2
+ �

L�

l=1

‖�(l)‖2
2
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a factor P , where P is the number of combined models [16]. In the present con-
text, several strategies can be followed to design a set of diversified preliminary gain 
functions. We can, for instance, use a distinct speech feature set as input for each 
gain function, implement a different speech enhancement algorithm to generate each 
gain function, or combine both strategies. In this work, we adopt the first strategy 
wherein multi-tapering is employed to generate the different gain functions using 
identical NMF systems. Figure  3 depicts the architecture of the proposed speech 
enhancement system using DNN-based nonlinear fusion to synthesize the desired 
multi-filter. Below, we describe in more details how the set of preliminary gain func-
tions are designed and combined.

3.1  Designing the Preliminary Gain Function Set

Let G =
{
ĝ
(p)

kj
∶ p = 1… ,P

}
 denotes the set of P distinct preliminary gain func-

tions. These gain functions should be designed to provide additional diversity (i.e., 
richness of information) without incurring a significant computational penalty for 
the proposed method. In our approach, all the P gain functions ĝ(p)

kj
 of Fig. 3 will be 

generated using the same speech enhancement algorithm, namely the NMF 
approach, with STFT magnitude data as input, but with the STFT coefficients com-
puted differently for each gain function.

Fig. 3  Block diagram of the speech enhancement system with DNN-based multi-filter
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Specifically, for each p = 1,… ,P , the preliminary gain function ĝ(p)
k

 is esti-
mated as follows,

where the power spectra P̂S
kj
(p) and P̂N

kj
(p) are computed as,

In (11), �(p)

S
 and �(p)

N
 are the clean speech and the noise signals dictionaries of 

the p-th NMF subsystem estimated during the training stage, while �(p)

S
 and �(p)

N
 

are the noisy speech activation matrices estimated during the enhancement stage 
for the same p-th NMF system. For each p , the dictionaries �(p)

S
 , �(p)

N
 as well as 

the activation matrices �(p)

S
 , �(p)

N
 of the p-th NMF system in (11) are computed 

on the basis of so-called p-th tapered STFT coefficients, as explained below.
Let xj(t) denote the time-domain signal of interest during the j-th frame, 

where x ≡ s, n or y , respectively, stands for clean speech, pure noise, or noisy 
speech. We define the p-th tapered STFT coefficient of xj(t) at frequency bin k 
as,

where w(p)(t) is the p-th data taper, p = 1,… ,P . In this work, the data tapers are 
selected from the sine taper family [39], a set of orthonormal tapers formulated as,

where the multiplicative factor 
√
2∕(F + 1) ensures proper normalization.

We recall that the classical power spectrum estimators use a traditional win-
dow function w(t) , such as Hamming or Hann in (12) instead of w(p)(t) . By com-
bining a set of diversified gain functions generated using different data tapers, 
we expect to create a smoother calibrated filter, i.e., a filter with reduced vari-
ance. The proposed combination, carried out at the gain function level, can be 
seen as a late fusion strategy (of combining a set of power spectrum estimates 
based on different data tapers) compared to the early fusion strategy applied in 
the multi-tapering method [1, 20] reported in the introduction.

(10)ĝ
(p)

kj
=

P̂S
kj
(p)

P̂S
kj
(p) + P̂N

kj
(p)

(11)
P̂S
kj
(p) = �sP̂

S

k,j−1
(p) +

(
1 − �s

)([
�

(p)

S
�

(p)

S

]

kj

)2

P̂N
kj
(p) = �NP̂

N

k,j−1
(p) +

(
1 − �N

)([
�

(p)

N
�

(p)

N

]

kj

)2

(12)

(13)w(p)(t) =

√
2

F + 1
sin

(
�p(t + 1)

F + 1

)
, t = 0,1,… ,F − 1
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3.2  DNN‑Based Fusion Model

Next, we describe the nonlinear model that will be used to fuse the multiple prelimi-
nary gain functions into the desired multi-filter. By considering a nonlinear model, we 
aim to extract richer information between the values of the multiple gain functions at 
different frequencies, which cannot be captured by a linear model. To verify this con-
jecture, the results of the fusion based on both linear and nonlinear models will be com-
pared in this study; hence, both models are briefly discussed below.

Let �̂(p)
j

=
[
ĝ
(p)

1j
ĝ
(p)

2j
… ĝ

(p)

Kj

]T
 be the p-th estimated gain vector of the j-th speech 

frame (using the p-th data taper). We model the enhanced multi-filter 
−
�
j =

[−
g
1j

−
g
2j …

−
g
Kj

]T
 , as a functional combination of the P gain vectors �̂(p)

j
 . For the 

linear model, the multi-filter value 
−
g
kj can be expressed as,

where w(p)

kq
 is the (k, q)-th entry of a fusion matrix �(p)=

[
w
(p)

kq

]
∈ ℝ

K×K , associated 
with the p-th preliminary gain function. As in Section II.B, the collection of fusion 
matrices � =

{
�(p) ∶ p = 1,… ,P

}
 can be estimated using a regularized least-

squares approach.
For the proposed solution based on the DNN feed forward nonlinear model, the 

fusion parameter set is equal to 
∼

�=
{
�(l), �(l) ∶ l = 1,… , L

}
 , where �(l) now repre-

sents the weight matrix of the l-th hidden layer of the DNN. These parameters are esti-
mated by minimizing the MSE between the actual Wiener gain vectors �j and the esti-
mated gain vectors 

−
�
j obtained by the nonlinear combination of the p gain functions 

�̂
(p)

j
 . Specifically, the cost function is formulated as,

where �̂j =
[
�̂
(1)T

j
�̂
(2)T

j
… �̂

(P)T

j

]T
∈ ℝ

PK is the extended gain vector containing the P 
estimated preliminary gain functions, L is the total number of layers of the DNN, 
� ≥ 0 is an L2-regularization parameter, and N is the number of frames in the train-
ing data. As before, the actual gain values, �j , are computed using the clean speech 
and pure noise training data.

Note that when P = 1 , i.e., a single preliminary gain function is used in the fusion 
stage, the previous equation simplifies to (9), the equation of the calibrated filter.
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4  Experimental Results

4.1  Experimental Set‑Up

The performance of the proposed systems is evaluated using clean speech from 
the TSP corpus [23] and noise from the NOISEX dataset [46]. For the clean 
speech, all adult speakers (11 males and 12 females) are selected. For the noise, 
two subsets of the NOISEX corpus are selected that will be used for evaluation 
under matched and unmatched conditions. For the matched condition, buccaneer 
1, HF channel, babble, factory 1, and pink noises are used for both training and 
testing of the proposed systems. For the unmatched condition, the unseen noises 
M109, F16 and Destroyerengine are only used for testing. The clean speech and 
noise signal datasets (used in matched condition) are each divided into three sub-
sets: (1) training data, used to estimate the parameters of the models, (2) valida-
tion data, used to tune the hyper parameters (such as the number of gain functions 
in the combination stage), and (3) test data, used for final performance evalua-
tion. The training data consist of approximately 2  min of speech segments for 
each speaker, as well as 3 min of noise segments. The training data are split in 
turn into two parts: Train1 and Train2. Train1 is used to train the model of the 
first stage, i.e., to generate the NMF dictionaries, while Train2 is used to estimate 
the fusion parameters of the second stage. The validation data consist of 11.5 s 
of speech for each speaker, and 30  s of noise. The same durations are used for 
the test partition. The noisy speech is generated by adding the noise to the clean 
speech to obtain input SNR of 0, 5, and 10 dB. Noisy speech at -5 dB input SNR 
is also generated for the evaluation in unseen input SNR condition. The audio sig-
nals are sampled at 16 kHz.

For the NMF system, we use M = 80 basis vectors for the clean speech and for 
the noise. The temporal smoothing factors are selected as (τS, τN) = (0.4, 0.9). For 
the STFT analysis, we use a window size of F = 512 samples with 75% overlap.

The noise dictionary is estimated using a noise-independent approach, i.e., 
we estimate a single universal noise dictionary covering all types of noise. Dur-
ing the training of the DNN-based fusion system, Adam [27] is used as the opti-
mizer to minimize the mean square error objective function with a learning rate 
of 0.0001, and a mini-batch size of 64. Following preliminary experiments where 
different DNN architectures were evaluated, a L = 3 layers network with 256 
nodes per layer was selected as it offered the best compromise between perfor-
mance and complexity. As benchmarks in the performance evaluation of the pro-
posed calibrated filter and multi-filter models for speech enhancement, we use 
both the conventional NMF-based system, i.e., preliminary gain function (4)–(5) 
without calibration, and SEGAN [36].

The latter is a speech enhancement system based on a generative adversarial 
network (GAN); the same network configuration as in [36] is used in this study. 
During the evaluation, PESQ (perceptual evaluation of speech quality) [22], SDR 
(signal-to-distortion ratio) [47], SSNR (segmental SNR) and, STOI (short-time 
objective intelligibility) [42] are used as objective measures for the enhanced 
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speech, where a higher value indicates a better speech quality (for PESQ, SDR 
and SSNR) or speech intelligibility (for STOI). In addition to the above measures 
of speech quality, we also report the log-kurtosis ratio (LKR) as a measure of the 
presence of musical noise in the processed speech. The studies in [21, 45] have 
shown that the human perception of the musical noise is strongly correlated with 
the (log) kurtosis ratio between the non-speech segments of the noisy and pro-
cessed speech signal. Specifically, lower LKR values indicate a reduced amount 
of musical tones in the enhanced speech.

4.2  Calibration and Fusion Effect

The calibration approach developed in Sect. 2.1 aims to correct the noise attenuation 
level by lowering the estimated preliminary filter value, ĝkj , if there is under estimation 
of noise, and conversely, by increasing its value if there is an over estimation. To show 
the effect of the calibration on the preliminary gain function generated by the NMF sys-
tem, we have plotted in Fig. 4, the average values of the preliminary, calibrated (linear 
model), and the actual gain functions versus frequency bin, as obtained using test data. 
The results clearly show the ability of the calibration process to correct the preliminary 
gain function values, especially in the low to mid frequency interval where the values 
of the calibrated filter gains are very close to the actual ones. In effect, the implemented 
NMF in the first stage tends to underestimate the noise power spectrum and leaves 
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important noise artifacts in the enhanced speech spectrogram, which is subsequently 
corrected in the second stage of our proposed approach.

Figure 5 shows the calibration effect in terms of PESQ, SDR, SSNR, STOI, and 
LKR scores for the calibrated filter (with P = 1 ) using both the linear and nonlinear 
models, and for the conventional (i.e., unprocessed) NMF gain function, where the 
results are obtained using validation data. As we can observe, the calibration step 
improves notably the five evaluation scores, reflecting the effect of the adjustment of 
the gain function shown in Fig. 4. We also observe that the DNN-based nonlinear cali-
bration model performs better than the linear model for the five measures. This sug-
gests that there exists valuable information between gain values extracted by the non-
linear model that are not visible in the plot of Fig. 2.

Next, we illustrate the effect of using multiple gain functions on the speech enhance-
ment performance using validation data. Figure 6 shows that combining more than one 
individual gain function helps to improve PESQ results independently of the fusion 
model. The number of gain functions P required to optimize the enhancement results 
depends on the fusion model. For the linear model, the PESQ results are nearly maxi-
mized with a combination of five gain functions, while for the nonlinear model, three 
are required. We generally find that the nonlinear model gives better results than the 
linear one, while requiring a smaller number of gain functions. Whereas only the PESQ 
results are shown in Fig. 6, the same trends are observed when the SDR, SSNR, and 
STOI are used as evaluation criteria.
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5  Results and Discussion

In this section, the generalization capability of the proposed calibrated filter and 
the multi-filter models is evaluated using test (unseen) data. Specifically, the cali-
brated filter (Calibrated) and the multi-filter (Multi-filter) NMF-based systems are 
compared with the conventional NMF and the SEGAN systems. For the multi-filter 
model, the number of data tapers is set to P = 3.

Figure 7 illustrates the magnitude spectra of the clean, noisy and enhanced speech 
for the reference models, i.e., conventional NMF and SEGAN, and the proposed 
methods with calibrated filter and multi-filter models. In this example, a female 
speech is degraded with buccaneer noise at the unseen − 5 dB input SNR. We can 
clearly see that, even though the preliminary gain function, i.e., conventional NMF, 
removes considerable noise, the low-frequency band still contains important amount 
of residual noise. While SEGAN removes most of noise at low-frequency band, 
it leaves the middle-frequency band corrupted by noise. In contrast, the proposed 
systems with calibrated filter and multi-filter can substantially reduce the remain-
ing low frequency noise left by the preliminary NMF gain without additional signal 
distortion (corroborating the finding of Fig. 4). In particular, in the case of the multi-
filter model the spectrogram is more alike the clean one.

In Figs. 8, 9, 10 and 11, we report the PESQ, SDR, STOI, and LKR results for the 
matched noise type condition at input SNRs of 0, 5, and 10 dB and for the unseen 
− 5 dB input SNR. In terms of speech quality, we observe considerable improve-
ments in PESQ, SDR scores with the proposed systems for all noise types and under 
all input SNR conditions. On average, absolute improvements of about 0.44, and 
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3.1 dB are achieved for PESQ, and SDR, respectively, for the calibrated filter model, 
and 0.5, and 3.7 dB for the multi-filter model when compared to conventional NMF 
system (i.e., with no calibration).

In terms of speech intelligibility, we note that while the conventional NMF sys-
tem does not improve the STOI score compared to the noisy speech, the calibrated 
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filter and the multi-filter systems can notably ameliorate the speech intelligibility 
score with, on average, absolute improvements of about 6% and 7%, respectively.

Interestingly, the gain in speech quality and intelligibility with the proposed 
calibrated and multi-filter models is achieved without introduction of musical 
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tones artifacts. In effect, the significantly lower LKR results reported for these 
models in Fig. 11 indicate that the proposed calibration approaches are effective 
in reducing the amount of musical noise, as initially advocated.

Besides, we also observe that the proposed NMF-based systems with cali-
brated filter models outperform SEGAN with respect to PESQ, SDR, SSNR, and 
LKR scores. For the STOI scores, SEGAN is slightly better in matched input 
SNR conditions for intermediate SNR values (0, and 5 dB).

While the results for the SSNR are not shown in the above figures to improve 
readability, a similar trend as for SDR has been observed, with an average abso-
lute improvement of about 5.8 dB for the calibrated filter model, and 6.2 dB for 
the multi-filter model when compared to the conventional NMF system.

Figures  12, 13, 14 and 15 show the PESQ, SDR, STOI, and LKR scores 
achieved by the various systems at input SNRs of 0, 5, and 10  dB and for the 
unseen − 5 dB input SNR conditions as in the previous tables, but in unmatched 
(unseen noise) conditions, i.e., with M109, F16, and destroyer engine noises. The 
proposed calibrated filter models are particular effective in increasing the PESQ 
(speech quality) and reducing the LKR (musical noise). The results in Figs. 12, 
13, 14 and 15 are generally consistent with those made previously under matched 
noise conditions. We summarize, in Table  1, the average PESQ, SDR, SSNR, 
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Table 1  Summary of results 
achieved on test data in matched 
and unmatched noise conditions

Noisy NMF SEGAN Calibrated Multi-filter

Matched conditions
PESQ 1.54 1.84 ± 0.13 2.10 ± 0.11 2.28 ± 0.09 2.34 ± 0.08
SDR 2.5 5.5 ± 0.34 5.6 ± 1.08 8.6 ± 0.57 9.2 ± 0.65
SSNR − 6.8 − 2.7 ± 1.3 0.39 ± 1.0 3.1 ± 1.0 3.5 ± 0.9
STOI 0.76 0.75 ± 0.03 0.80 ± 0.03 0.81 ± 0.02 0.82 ± 0.02
LKR – 1.47 ± 0.03 2.31 ± 0.07 0.31 ± 0.06 0.32 ± 0.05
Unmatched conditions
PESQ 1.79 2.06 ± 0.13 2.10 ± 0.10 2.23 ± 0.10 2.27 ± 0.09
SDR 2.5 6.0 ± 0.30 5.53 ± 0.97 7.1 ± 0.56 7.8 ± 0.67
SSNR − 6.8 − 2.4 ± 1.4 − 0.98 ± 1.2 0.1 ± 1.2 0.5 ± 1.2
STOI 0.81 0.81 ± 0.03 0.85 ± 0.03 0.83 ± 0.02 0.84 ± 0.02
LKR – 1.09 ± 0.03 1.48 ± 0.07 0.08 ± 0.04 0.04 ± 0.04
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STOI, and LKR scores in matched and unmatched noise conditions, over all noise 
types and input SNR levels.

Informal subjective listening tests that we have conducted also lead to similar 
conclusions, indicating that the enhanced speech using the multi-filter model pro-
duces the best speech quality and intelligibility, followed by the calibrated-filter and 
then by SEGAN and the conventional NMF system.

Finally, the proposed multi-filter model has a tractable memory and time com-
plexity. Regarding the first stage subsystem, the NMF algorithm is simple to imple-
ment and requires small storage space in comparison with the traditional machine 
learning methods [7]. For the complexity pertaining to the second stage, we com-
bine the output of a maximum of three NMF systems using a simple fully connected 
DNN architecture. This DNN subsystem uses an input feature vector of dimension 
256 × 3 = 768 and comprises only two hidden layers, which can be considered as 
a low-complexity structure compared to deeper DNN structures or more complex 
architectures such the recurrent neural network (RNN) and convolutional neural net-
work (CNN). Furthermore, for applications where the execution time is the primary 
concern, we have proposed the calibrated filter model, which provides an interest-
ing compromise between speed and precision. This calibrated model is based on 
the fine-tuning of a unique NMF system, which provides enhancement performance 
close to the multi-filter model using three NMF subsystems.

6  Conclusion

We have presented a new two-stage speech enhancement method, specially designed 
to reduce musical noises without the need for time–frequency localization of the 
noise peaks. In the first stage of the proposed method, a preliminary gain function is 
generated using the NMF algorithm. In the second stage, a calibrated gain function, 
which is more robust to the noise artefacts, is estimated by applying a DNN-based 
nonlinear mapping function to the preliminary gain function.

To further decrease the variability of the estimated calibrated filter, the DNN-
based extraction of frequency dependencies was expanded to a set of preliminary 
gain functions derived from spectral estimates based on a family of data tapers. The 
evaluation of the proposed DNN-based calibrated filter models for speech enhance-
ment under different noise types and input SNR has shown substantial improve-
ments in terms of standard speech quality measures compared to the conventional 
NMF system (with unprocessed gains) and the recently proposed SEGAN system. 
Finally, the proposed calibrated filter models allow reducing the amount of musical 
noise in the processed speech without the complex and error-prone task of localizing 
spurious energy peaks in the spectrogram.
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