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A MACSYMA program is presentedthat greatly helps in the calculation of Lie symmetry groups of largesystemsof
differential equations.

The programcalculatesthe determiningequationsfor systemsof m differential equationsof orderk. with p independent
and q dependentvariables,where m, k, p and q arearbitrary positiveintegers.

The programautomaticallyproducesa list of determiningequationsfor thecoefficientsof thevectorfield. This list hasbeen
parsed so that it is free of duplicate equationsand trivial differential redundancies.Numerical factors and non-zero
parametersoccurringas factorsarealsoremoved.From thesolutionof thesedeterminingequationsonecan constructtheLie
symmetrygroup.

An exampleshowstheuseof theprogramin batchmode.It alsoillustratesa feedbackmechanism,that not only allowsthe
treatmentof a largenumberof complicatedpartial differential equationsbut alsoaids in solving thedeterminingequations
stepby step.
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Nature ofphysicalproblem Typical running lime

The symmetrygroupof a givensystemof differential equations Givena systemof m differential equationsof orderk with q
modeling a physical phenomenonmay he used to achieve unknownsand p independentvariables,running time is an
severalgoals. Theseinclude the classificationof the solutions increasingfunctionof in. k. q and p. Typical running times
of the system, the generationof new solutions from known (CPU)for an examplearegiven in section4.
ones, the simplification of the system by the method of
symmetry reduction, to name a few. In the case where Un usualfeaturesof theprogram

particular symmetriesmust be present, the symmetry group The flexibility of this programandthepossibility of using it in
can be used to determine the validity of the modeling a partly interactive mode, allow one to find the symmetry
differential equations. groups of essentially arbitrarily large systemsof equations.

This is the main justification for presentinga new symbolic
Methodof solution manipulation program in a field where several programs
The construction of the symmetry groups of differential alreadyexist. Furthermore,this program has been in use (at
equations is based on an adaptation of the notation, the theUniversité de Montréal and elsewhere)for over five years,
terminology and the method describedin ref. [I]. This proce- it hasbeen testedon hundredsof systemsof equationsand has
dure is translated into a MACSYMA [2,3] program that thusbeen comprehensivelydebugged.
performs the most elaborate part of the job, namely the
constructionof a completelist of determiningequationswhich References

is free of redundantfactors,repetitionsandtrivial differential [I) P.J. DIver. Applications of Lie Groups to Differential
consequences. Equations(Springer.New York. 1988).

[2] MACSYMA Reference Manual, Version 13. Computer
Restrictionson the complexityof the problem Aided Mathematics Group (Symbolics. Burlington. MA.
For complicated systems of differential equationsinvolving 1989).
derivativesof high order, time limits and availablecomputer [3] MACSYMA User’s Guide, ComputerAided Mathematics
memory may causerestrictions.Further limitations are dis- Group(Symbolics. Burlington. MA. 1988).
cussedin section3.5 of theLong Write-Up.

LONG WRITE-UP

1. Introduction

1.1. Theproblem

For the purposeof this article the “symmetry group of a systemof differential equations”is the largest
local Lie groupof local point transformations,actingon the independentanddependentvariablesof the
equationsand leaving the solution set of the systeminvariant. The symmetry group thus transforms
solutionsof the systemamongsteachother. A large body of old and new literatureexists on this topic;
herewe just refer to somerecentbooksandreviews[1,4—19].We also recommendthe specialissueof Acta
ApplicandaeMathematicaeon “Symmetriesof Partial Differential Equations” [20]. A major obstaclein
the application of Lie group theory to solving differential equationsis that usually a large number of
tediouscalculationsis involved. Thepurposeof this article is to presentandmakeavailablea MACSYMA
programfor the computerassistedcalculationof symmetrygroups.

The settingis an entirely generalone andthe methodis well known and describede.g. in ref. [1].
We considera systemof m differential equations

~‘(x, u~) = 0. 1 = 1, 2,..., m, (1)

of order k, with p independentand q dependentrealvariables,denotedby

x=(x
1,x2 x~)E~l?~, (2)

u=(u
1. u2,.., u~)E9~. (3)
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Westressthat m, k, p and q are arbitrary positive integers.The group transformationshavethe form

)~Ag(X,u), ii=Qg(x, u), (4)

where the functions Ag and f~gare to be determined.Note that the subscript g refers to the group
parameters.The approachis an infinitesimal one; insteadof looking for a Lie groupG, welook for its Lie
algebra .~°, realizedby vector fields of the form

(5)

The procedure[1] for finding the coefficients,~‘(x,u) and q1(x, u) is describedbelow. In essence,the
computerconstructsthe kth prolongationpr k ~aof the vector field a,appliesit to the systemof equations
(1) andrequeststhat the resultingexpressionvanisheson the solution set of (1),

pr~a~’j~i._o,i, j=1,...,m. (6)

Theresult of implementing(6) is a systemof linearhomogeneousPDEsfor ~i’andcp,, in which x and u
are independentvariables.Theseare the so-calleddeterminingequationsfor the symmetriesof the system.

The procedurethusconsistsof two major steps:deriving the determiningequationsand solving them.

1.2. Reviewof symbolicprograms

Severalcomputerpackages[15,21—47] exist for this purpose,andsomeotherprogramswerewritten for
specific examples[48].

The well-documentedREDUCE programdevelopedby F. Schwarz[15,21—25],is definitely going the
furthestin solving the determiningequationswith minimal interventionby the user.This program,called
SPDE,is distributedwith version 3.3 of REDUCE for various typesof computers,rangingfrom PCs to
CRAYs. Schwarz also rewrote SPDE [15,25] for use with SCRATCHPAD II, a symbolic manipulation
programdevelopedby IBM.

Based on Cartan’sexterior calculus, Edelen [26] and Gragert and Kersten [27] did some pioneering
work in usingREDUCE to calculatethe classicalLie symmetriesof differential equations.Kersten[28,29]
later developeda REDUCE software packagefor the calculation of the Lie algebra of infinitesimal
symmetries(and correspondingLie—Bäcklund transformations)of an exterior differential system.Eliseev
et al. [30]wrote a REDUCE programto generate(but not solve) the systemof determiningequationsfor
point andcontactsymmetries.FedorovaandKornyak [31]generalizedthe algorithmto include the caseof
Lie—Bäcklund symmetries.

Apart from packagesin REDUCE, we shouldmention the FORMAC programsby Fedorovaand
Kornyak [32] and Fushchichand Kornyak [33] that createthe systemof determiningequationsfor the
Lie—Bäcklund symmetries and solve these equations as far as possible. The FORMAC package
CRACKSTAR developedby Wolf [34] also allows investigationof Lie symmetriesof PDEs, besides
dealingwith dynamicalsymmetriesof ODEsandthe like.

TheprogramLIE by Head[35] is basedon version4.12 of muMATH, running on IBM compatiblePCs.
Head’sprogramcalculatesandsolves the determiningequationsautomatically.Interventionsby the user
are sometimesneededand thereforeare madepossible.

The SYMCON packagewritten by Vafeades[36] also uses muMATH to calculatethe determining
equations(without solving them). Furthermore,the programverifieswhether the symmetry group is of
variationalor divergencetype andcomputesthe conservationlaws associatedwith the symmetries.

Unfortunately, theseprogramsare confinedto the 256 K memory accessibleby muMATH and can
therefore presentlynot handlevery large systemsof equations.This limitation motivated Vafaedesto
rewrite his SYMCON programin MACSYMA syntax[37]. Although thisprogramis similar in missionto
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ours,Vafeades’programrequiresquite abit moreinteractionby the user.Geoff PrinceandJamesSherring
from LaTrobeUniversity(Melbourne,Australia)are working at a “translation” of the sourcecodeof LIE
into REDUCE.

The calculationof the Lie group by computerwas also proposedby Popov, who used the program
SOPHUSfor the calculationof conservationlaws of evolutionequations[38].

The packageDELiA by Bocharov[39] also runs on PC andclaims to perform varioustasks basedon
Lie’s approach,such as the computationof point symmetries,conservedcurrentsand conservationlaws;
simplification and partial integration of overdeterminedsystemsof differential equations,etc. The
marketingmaterial that comeswith the demonstrationdisk for DELiA does not specify any underlying
symbolic manipulationpackage.Webelievethat the programis written in PASCAL. In ref. [40] Bocharov
and BronsteinpresentSCoLAr, a packagebasedon standardPASCAL, for finding infinitesimal symme-
tries andconservationlaws of arbitrarysystemsof differential equations.

To the best of our knowledge,no packageis availableyet for the calculation of Lie symmetrieswith
MAPLE andMATHEMATICA.

For completeness,we mention the pioneeringwork by C. Wulfman and his masterstudentsDavison
and Nagao [41,42]. Already in the early seventies, Davison [41] developed computer algorithms in
SNOBOL, a now obsoletecomputerlanguage,thatcould handlesymbolic manipulationswith differential
operators.In 1980, Nagao [42] wrote the computerprogram DETERMININGEQS (in PASCAL) that
could approximateLie generatorsfor dynamicalsystems.

Last but not least,we discussthe programswritten in MACSYMA, the symbolicpackageour symmetry
program is based upon. Just as REDUCE, MACSYMA is currently available for various types of
computers,ranging from PCs to variouswork stationsand main-framecomputers(suchas VAX) andit is
usedall over the world.

Apart from an earlierversion of our program[47]and the work doneby Rosencrans[48], their are only
threeother MACSYMA-basedsymmetryprograms.The MACSYMA version of SYMCON by Vafeades
[37] was discussedabove. Schwarzmeierand Rosenau[43,44] made a program that calculates the
determiningequationsin their simplestform, but doesnot solve them automatically.

The program SYM_DE by Steinberg[45,46] was recently addedto the out-of-corelibrary of MAC-
SYMA. The programsolves some (or all) of the determiningequationsautomaticallyand, if needed,the
usercan (interactively) add extra information. Currently, Steinbergis working at the extensionof his
programso that it would include the calculationof generalized(i.e. derivativedependent)symmetries.

1.3. Theprogram SYMMGRP.MAX

The presentprogram, called SYMMGRP.MAX is a modification of a package[47] that has been
extensivelyusedover the last five yearsat the University of Montréalandelsewhere.It has beentestedon
hundredsof systemsof equationsandhas thusbeensolidly debugged.The flexibility of this programand
the possibility of usingit in a partly interactivemode,allow to find the symmetrygroup of in principal
arbitrarily largeand complicatedsystemsof equationson relatively small computers.Thereare the main
justifications for presentingyet anothernew symbolic programin a field whereseveralprogramsalready
exist.

The amount of interaction by the userwill dependon the complexity of the systemof differential
equationsandon the capacityof the computerused.Our experienceis that for systemsof equationsthe
most time consumingpart of the calculation(when done by hand) is the derivation of the determining
equationsandthe eliminationof redundantequationsfrom the system.

The actualsolving of the determiningequationscan usually be done by inspection,usingelementary
results from the theory of linear PDEs. Solving them on a computermay be time consuming,since the
simplestapproachvariesgreatlyfrom caseto case.Furthermore,a computerprogrammay accidentallynot
catch the mostgeneralresult and thereforemay return an incomplete symmetrygroup. The authorsare
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veryawareof this problemwhich occurredin testingsomeof the otherexistingprograms!Fortunately,as
soonas the new programsby Schwarz[49] and Reid [50—52],both for the determinationof the size of a
symmetrygroup, becomeavailable,this problemwill be easily detectable.

Let us briefly digresson this topic. Indeed, Schwarzand Reid independentlydevelopedalgorithmsto
determinethe size of a symmetry groupof Lie (point) symmetries.Schwarz’sprogramin REDUCE [49]
calculatesthe numberof parametersif the groupis finite andthe numberof unspecifiedfunctionsandits
argumentsif the group is infinite.

Recently, Reid [50—52]took up the same task. His program SYMCAL [51], written originally in
MACSYMA and currently being convertedinto MAPLE, computesthe dimensionand the structure

constantsof the Lie symmetry algebraof any systemof PDEs. An extensionof the algorithm [52] also
allows to classify differential equations(with variable coefficients) according to the structureof their
symmetrygroups.Furthermore,the approachadvocatedby Reidapplies to the determinationof symme-
tries of Lie, contact,and Lie—Bäcklundtype as well as potential symmetries.

In the interestof versatility andsimplicity, our presentMACSYMA programconcentrateson deriving
the determiningequations.It doesnot solve themneitherdoesit calculatethe sizeof the symmetrygroup.
Nevertheless,we believethat our programhassomedistinguishedfeaturesandadvantages:

(1) Theequations(6) canbe treatedsimultaneously,i.e. pr~”~acanbe appliedto all m equationsin the
system.The output is thena systemof determiningequationsthat is partly solved.This meansthat the
programtakesall “first-order equationswith one term” andtheir differentialconsequencesandusesthem
to simplify the remainingdeterminingsystem.This greatlydecreasesthe numberof equationsto be solved
manually.

(2) If the computercan be expectedto run out of spacewhenapplying the prolongationto thesystem
(1), it is possibleto apply pr~ato a subset of equations,for instancejust to one equation,say = 0.
Whenimplementingthe requirementpr k~a~’ = o = 0, (j = 1 m), of coursethe programtakesinto
accountthe entiresystem(1), not just theequationi.t’ = 0 itself.

(3) If the individual equationsin the system(1) are so complex that the computerstill runs out of
space,it is possible to derive only a subset of the determining equations, e.g. those that occur as
coefficientsof the highestderivativesin (6). Theseareusually singleterm equations.

(4) A feedbackmechanismhasbeenincorporated.Once someof thedeterminingequationshavebeen
solved,the informationobtainedaboutthe coefficientsi

1~and p~canbe submittedto the computer,which
will presenta new andsimplified systemof determiningequations.The new information usuallyincludes
that the ~j‘s and q ‘s are independentof somevariablesor dependlinearly on someof the othervariables.
This greatlysimplifies furthercalculationsand,after severalruns,makesit possibleto apply pr~’

1ato the
entiresystem(1), evenfor very complicatedones.The feedbackmechanismcanbe usedall the way to the
end. At the last stage,when the completelydeterminedforms of the i~‘s and q ‘s are submitted,the
programwill print out that thenumberof determiningequationsis zero,i.e. the solution is verified. Hence,
the program also allows to verify any solution previously calculatedby hand or by meansof other
programs.

To summarize,wheneverpr~acan be applied successfullyto the system(1), or a subsetthereof, it
producesa completelist of determining equations.This list is free of trivial factors,duplication and
differential redundancies.If, however, due to memory, time or space limitations, a complete list of
determining equationscannot be obtained, it is still possible to derive a subsetof the determining.
equations.In this case, heuristics are used to extract relevant information from that subset. This
informationis then fed into the programwhich resumesits calculations.

In this respect,the philosophyof the approachimplementedin the presentprogramis to follow the
path thatwould betaken in a manualcalculation.That is, obtain in as simplea manneras possibleall one
term equations,solve them and feed the information back to the computer.This can be done by first
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treatingjust oneequationof the given systemandusuallyby extractingonly the coefficientsof the highest
derivatives. All the necessarysubstitutionsand simplifications leading to the new determiningsystem,
which are error-proneif doneby hand,are carriedout automaticallyandcorrectly by this program.

2. Proceduresfor computing the determining equations

We closely follow the notations,the terminologyand the method for symmetry analysisused in ref. [1]
which are well adaptedto computerprogramming.Recall that the independentand dependentvariables
for the system(1) are denotedby (2) and(3), respectively.The partial derivativesof ut are represented
usinga multi-index notation: for J = (j~~12 J~)~ r%I’~, we put

(7)
8x~ax~... ~Jp

where J =j~+12 + ... +j~.Finally, u~ will denotea vector whose componentsare all the partial
derivativesof order 0 up to k of all the u’.

Using thesenotationsthe procedurefor obtainingthe determiningequationsinvolves the following five
steps:

(1) Constructthe kth prolongationof the vectorfield a in eq. (5) by meansof the formula

pr~a=a+ ~ ~ ~ 1� J~<k, (8)
1—I J iii

wherethe coefficients~ are definedas follows. The coefficientsof the first prolongationare

p
= D,q

1(x, u) — ~ u~D,s~~(x,u), (9)
J= 1

where.J~is a p-tuplewith I on the ith positionandzeroselsewhere,andD~is the total derivativeoperator

a “ / a
D=~—+ ~ ~ 0� JI �k. (10)

~

The higher-orderprolongationsare definedrecursivelyas

~ u), f �1. (11)

(2) Apply the prolongedoperatorpr~ato eachequation.~(x,u~) and require that

pr
taz~~

10=O, i, j=1 m. (12)

The meaningof condition(12) is that pr~avanisheson the solution set of the system(1). Preciselythis
conditionassuresthat a is an infinitesimal symmetrygeneratorof the transformation(4), i.e. that u(x) is a
solution of (1) wheneverü(~)is one.

(3) Choosem componentsof the vector u~,say V

1

0m, such that:
(a) Each v’ is equal to a derivative of a u

1 (I = 1 q) with respect to at least one variable x
(t=1 p).

(b) None of the v’ is the derivativeof anotheronein the set.



B. Champagneet aL / Computercalculation of Lie point symmetries 325

(c) The system(1) canbe solved algebraicallyfor the vi in termsof the remainingcomponentsof u~,
which we denotedby w. Hence,

v’=S’(x, w), i=1 m. (13)

(d) The derivativesof v’,

v~,=DjS’(x,w), (14)

whereD,, D?1D~2... D~,canall be expressedin termsof thecomponentsof w andtheir derivatives,
without ever reintroducingthe vi or their derivatives.

While the aboveproceduresoundscomplicated,for all specific systemsthat havebeenconsideredthe
choice of the appropriatevi has beenquite simple.For instance,for a systemof evolutionequations

x~1,t) = F’(xi x~1,t, u~), i = 1,..., m, (15)

whereu k) involvesderivativeswith respectto the variablesx, but not t, the appropriatechoice is clearly
vi = u~.

(4) Use(13) to eliminateall v
1 and their derivativesfrom the expression(12), so that all the remaining

variablesare now independentof eachother.

(5) Obtain the determiningequationsfor ~j’(x, u) and q
1(X, u) by equatingto zero the coefficientsof

all functionally independentexpressionsin the remainingderivativesu,
1~,.

The describedprocedureis well definedas long as the variablesv’ in eq.(13) exist. Furthermore,the
length andcomplexity of the calculationsincreaserapidly as p, q, m andespeciallyk increase.

3. Description of the program

We now presentthe MACSYMA programSYMMGRP.MAX that realizesthe procedurein section2
and that provides a set of determining equationsfor the Lie symmetriesof an arbitrary systemof
differential equations.

For this program we used MACSYMA release 412.61, which is usually implemented on VAX
computersoperating underVMS. Note howeverthat the program contains nothing beyond standard
MACSYMA statementsand it is therefore compatiblewith earlier versionsof MACSYMA, e.g. REX
MACSYMA 305 and MACSYMA 309.6(runningunderUNIX). The useris supposedto haveminimal
experiencewith MACSYMA. Information aboutthe syntaxof MACSYMA andmanyexamplesof its use
maybe found in refs. [2,3].

The program SYMMGRP.MAX consistsessentiallyof function definitions. In fact, an appropriate
function is definedfor eachmajor task in the process.As we will seelater, these functionsmay be used
individually providedthatcareis takenwith respectto their arguments.

The primary function is called SYMMETRY and it may be consideredas the main program.Once
called, it readsthe data,setsup the environmentfor the calculationandthengoesthroughthe major steps
in the calculationby sequentiallycalling the other functions.

In additionto function definitions, thereis a set of statementsat the top of the programthat serves
many purposesthroughoutthe execution.This set contains replacementRULE definitions, MATCH-
DECLARE statementsandPATTERN MATCHING definitions.

3.1. Description of theprincipalfunctions

PROVF(F): Applies the kth prolongation of a in eq. (5) to a function F(x, u~)and outputs the
result.
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TOTDF(I, F): Applies the operatorof total derivativeD, definedin (10) to a function F(x, u ~) and
outputs the result.

FPSI(L,J): Calculatesthe coefficients4if in eq. (8) through the use of the recursive formulae(9) and
(11). Actually, thesecoefficientsare storedin an arrayPSI[L,J] definedby PSI[L,J] := FPSI(L,J), so that

onemay call PSI insteadof FPSI.The reasonfor this is that we can clear the arrayPSI without clearing
the function definition usedto calculatethe it’. Note that accordingto the notationof section2, J mustbe
a MACSYMA list of p integers.

EXTSUBST(EXPR):Applies to an expressionEXPR dependingon x and u~ the substitutions(13)
and(14) until all the v’ and their partial derivativeshavebeeneliminatedfrom EXPR. It returnsthe new
expressionsoobtained.The function EXTSUBSTmaybe usedseparatelybut the information concerning
the basicsubstitution(13) must be given.This is doneby rewriting (13) tn the form

u~=S’(x,w), /=1 m, (16)

andaccordingto this, defining the following arraysbefore usingEXTSUBST:

INDJ[iJ:J’

INDL[i] : /‘ I = I m. (17)

SUB[i]: S’(x, w)

SEARCHOEFF(EXPR):Given an expressionEXPR which is a polynomial in the derivativesof u~
(exponentsof u~neednot be integersbut insteadmay be any real numbers),this function finds all the
coefficientsof the variouspartial derivativesof u andputsthesecoefficientsin oneof two lists according
to their length. More explicitly, at the end of the procedure,LODE[1] will be a list containingall the
coefficients which are monomials,and LODE[2] will be a list containing all the coefficientswhich are
polynomials(containing “+“ as the main operator).Note that in the presentcontext,thesecoefficients
will be preciselythe determiningequations.

SIMPEQNO: Given the two lists of determiningequationsin i~’ and ~, LODE[1] and LODE[2], this
function producesa uniquelist of determiningequationscalledLODE, equivalentto the union of the first
two lists but free of repetitionand differential redundancy.More precisely,
1. equationsof LODE will be orderedby increasinglength relative to the operator“+“ (beginningwith

the monomialsand endingwith the longestpolynomials);
2. monomialequationsof LODE will beorderedby increasingorder of differentiationwith respectto x,

and u’;
3. the list of equationsLODE will be free of repetitionand trivial differential redundancy;
4. any commonfactors,such as x,, ut, their productsand powersthereof,occurring in the equationsof

LODE will be factoredout andcanceled.The ELIMINATOR will also cancelall non-zeroparameters
(their productsandpowers)given explicitly in the data file (see further). There will be a messagefor
thesecancellationsprovided the parameterwarningsis set to true. As a precaution,at the end of the
simplifications the useris provided with a list of all the (non-trivial) factors that havebeencanceled
during the executionof SIMPEQN. Special warning messagesare given if division by parameters
occurs.Note that the programwill not clearsumsor differencesof parameters,derivativesof functions,
andthe like. This enablesthe userto determinehow the symmetrygroup is affectedby variouschoices
of free parametersand functions.

PRINTEQN(LIST):This function prints the elementsof a LIST in an equationlike form (seeTest Run
Output) at the endof this paper.

SYMMETRY(INDI, IND2, IND3): This function standsfor the main program.A call to it initiates
the computationwhile the three argumentsenable the user to partially control the execution. These
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Table I
Descriptionof the argumentsof SYMMETRY

Parameter Value Effect on theexecution

IND1 0 The programis usedin interactive mode
1 The program is usedin batch mode

IND2 0 The array PSI is clearedbefore thecomputation starts
1 PSI is not cleared,only new PSI will becomputed

IND3 0 No trace of thecalculations will begiven
I A traceof the calculationswill be given

argumentsmay take the values0 and1 and accordingto their values,different actionsare takenby the
programas shownin table1.

3.2. List of principal identifiers

The correspondencebetween the identifiers used in the program and the mathematicalsymbols
introducedin section1 and2 appearsin table2.

3.3. Inputdata

Everydatafile musthavethe following information:

1. Thenumberof independentvariables:p (positive integer).
2. Thenumberof dependentvariables: q (positive integer).
3. Thenumberof equationsin the completesystem:m (positive integer).
4. The list of non-zeroparameters(occurring in the given equations)that may be factoredout and

subsequentlycanceled;parameters:[al, si, aa,.. . ,w2]. If thereare no suchparametersthenparame-
ters: [].A discussionof namesfor parametersthat maynot be usedis given in section3.5.

5. Thenumberof equationsthe programhasto treat, controlledby sublisteqs.Forexample,sublisteqs:
[el] for the first equation; sublisteqs: [ei,. . . ,em] for the ith through the mth equations only;
sublisteqs:[all] for all the equationsin thesystem.

Table 2
List of the principal identifiers

Text Program Meaning

p P number of independentvariables
q Q number of dependentvariables
m M number of equationsin thesystem
x, XLII independentvariables (I C (1,2 P})
u

1 U[L] dependentvariables (L E (1, 2 Q))
J~ JEll canonical vectors, e.g.,J[2l = [0,1,0 0]

(It. 12 1,,) [J[ll,J[2l J[ ~ll list of canonical vectors
u~ U[L,Jl derivativesof ut

ETA[Il coefficient of a/ax, in thevectorfield
‘P1 PHI[LI coefficient of a/au’ in the vector field
‘Pt PSI[L,J] derivativesof’P,

El equationsin thesystem, El, E2, etc.
VI variables for thesubstitution, VI, V2, etc.
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6. The desiredsubsetof the determiningequationsis controlledby settinghighest_derivatives:s. where
s standsfor a positive integerindicating a count-downfor the ordersof derivativesin the prolonga-
tion. For example,1 refersto information from thehighestderivativesonly, 2 for highestandsecond
highest derivatives, etc., all will result in all the determiningequationssince all the terms in the
prolongationwereconsidered.

7. The flag warnings: true or false, controlsthe printout of messagesabout division by parametersand
othersimplifications.

8. The flag info_given: false or true, is used in connectionwith the feedbackmechanismfor solving the
determiningequations.Information aboutthe coefficients i~’ and the p~in the vectorfield a mustbe
enteredin a specific way as discussedand exemplifiedin section4.

9. The realequations~ in (1) mustbe given asei with i = I m. You only haveto put in the left
hand side of the equation,leaving out “= 0”. For complex equationsseesection 3.5.

10. The variablesv’ in eq. (13), chosenfor the substitutionare given as vi with i = 1 m.

Whetherthe programis usedin batchmodeor interactively, the datamust be enteredin an appropriate
way:

(1) Batch mode
This modeis definitely recommendedfor equationsof fairly highorder or for systemsof equations(see

section4). A simplebatch file containsthe MACSYMA commandsnecessaryto run the programand to
readthe data(mostoften given in a separatefile). Thedataare put into a file with the useof MACSYMA
assignmentstatements.This file is read before the function SYMMETRY is called(with INDI set to 1).

(2) Interactivemode
This mode is invoked by calling SYMMETRY with IND1 set to zero. It is only useful for single

equationsor fairly simplesystems,e.g. for equationsof ratherlow order of derivation. All parameterscan
be controlled interactively.The programwill prompt for the ten items listed aboveunder “input data”.

If info_given is set to true, the programwill prompt the user to put in the explicit forms of all the si’s
andthe p’s. If for someof thesefunctionsno explicit information is availableyet, thenone simply submits
their names,e.g. etal,phil, etc. The arraynotationis no longerallowedwheninfo is given,one hasto use
the “concatenated”notation! Informationaboutdependenciesmustbe given with a DEPENDSstatement
beforecalling the function SYMMETRY, otherwisedependencieshaveto be statedexplicitly asarguments
of the functions.

3.4. Outputdata

At the endof the computationthe determiningequationsare not automaticallyprintedbut insteadthey
are storedin a list of determiningequationscalledLODE. A printout of the determiningequationscanbe
obtainedwith the commandPRINTEQN(LODE).

For convenience,the function PRINTEQN is provided separatelyunder the namePRINTEQN.MAX.
If one wishes to use any other of the special functions described in section 3.2 separately, then
SYMMETRY must be called first with input dataconsistingonly of the p. q and with 0 assignedto m.

Table3 summarizesthe information availableat the end of the computationandhow to accessit.

3.5. Typeofsystems

As indicatedpreviously, the programcanbe appliedto systemsof m differential equationsof order k.
with p independentand q dependentvariables,where m, k, p and q are arbitrary positive integers.
Besideslimitationsdue to allowablecomputermemoryandCPU time, the main restrictionimposedon the
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Table 3
Information available at the end of the computation

Identifier Type Printout Contents

LODE list printeqn (lode); list of the determining equations
PSI array listarray(psi); ‘Pt evaluatedduring thecomputation
ALGSOLS list printeqn(algsols); algebraicsolutionof theequations

= 0 for thevariablesa’
DIFSUB array listarray(difsub); substitutionsusedto eliminatethe a’

andtheir derivatives
ETA array listarray(eta); componentsof ETA
PHI array listarray(phi); componentsof PHI

original system(1) is relatedto the substitutionproceduredescribedin step (3) of section 2. Indeed, it
mustbe possiblefor MACSYMA to solve the systemalgebraicallyfor the vi, as in eq.(13). Forinstance,
this might preventthe applicationof the programto a systeminvolving five-fold nestedradicalsof the u~.
Note,however,that in manyapplications,difficulties of this typecan be avoidedby a judiciouschoiceof
the v’. It is important to emphasizethat the individual equationscomposingthe systemneednot be
polynomial in the X

1, u
t and u~.

If only multiplicative and additive combinationsof powers(not necessarilyintegerones)of the u~
appearin eq. (12)after the substitutionprocedure,then the determiningequationscanbe useddirectly. If
irrational or transcendentalfunctionsof the u1, appearin (12), becausethey werepresentin the original
differential equationsor they were introducedduring the computations,then the determiningequationsin
theoutputwill also containsomeof the ~ in a irrational or transcendentalway. In thatcase,the userhas
the task of obtainingthe final list of independentdeterminingequationsfrom the output.

The systemof differential equationsfor which onewantsto computethe determininingequationsmay
containarbitraryparametersandevenarbitrary functionsof the variablesx, and u’. However, namesfor
the parametersor functions shouldnot be in conflict with any other identifiers usedin the program: in
particular, I, J, L, M, P, Q and El, E2,. . .,V1, V2,... may not be used.Note that MACSYMA is not
sensitiveto cases,e.g. vi is the sameVi, etc. For arbitrary functions, the dependenciesmust be declared
with the help of a DEPENDSstatementbeforecalling SYMMETRY.

The program assumesthat the ut are functionsfrom R ~—~R. If a systemof differential equations
containscomplexvalueddependentvariables,i.e. functionsfrom R ‘°—~C, thedecompositioninto realand
imaginaryparts mustbe madebeforeusingthe program(see section4).

In enteringthe orginal systemof differential equations,any use of Cl, C2,.. . , Di, D2 must be
avoidedsinceit mayconfuseMACSYMA which usesthesesymbolsto denotecommandanddisplaylines,
respectively.Furthermore,Greeklettersshouldbe avoided(for instance‘beta’ refersto theBeta function
and‘gamma’ to the Gammafunction). Before usingany specialcharacter,quickly checkthe indexof ref.
[2,3] to verify if the nameor symbol doesnot interferewith a function or commandnamein MACSYMA.

When the feedbackmechanismis used,avoid any confusionbetweensymbolsandparametersoccurring
in the original equationsandthoseusedin the explicit forms for the ii’s and p’s.

Note that MACSYMA startsthelabel for an arrayat 0. For instance,thefirst componentof the array
ETA is ETA[O]. Precautionary,we haveassignedthe value0 to the first componentsof such arrays.

4. Example: the Karpmanequations

This exampleshowshow the programSYMMGRP.MAX can be usedin batchmode.It also illustrates
the feedbackmechanismfor solving the determiningequations.
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TheKarpmanequations[53] describethe effect of modulation instability of a high-frequency(whistler)
wave due to its resonantparametricinteractionwith a low-frequencywave in a plasma.The normalized

complex amplitude qi of the whistler wave and the particle density v of the plasmaare given by the
non-linearsystem,

+ w
1~)+ ~ [si( ~xx + ~) + s2~I— a1v~= 0. (18)

p0 — (w2)
2(p~ + p~+p~)— a

2( ~ ~ + I ~ + I ~ ~)= 0,

where a1, a2, s1, S2, w1 and w2 arejust constants.
Sincethe programcannothandlethe complexvariable 4, we split it in its real andimaginarypartsby

putting

= p(x, y, z, t) exp(i~(x,y, z, t)). (19)

Thus,

p, + w1p + ~[s1(2p~~ +
2p~,.+ p~ + ~ + s

2(2p~+ p~)J= 0,

(20)

— (w2)
2(p~~+ + v.,) — 2a

2p(p~~+ p~+ p~)— 2a2(p~+ p~+ p~)= 0.

For the system(20) the MACSYMA calculationsare fairly lengthy andinvolved. On somecomputers.
in particularon PCs,it may not be possibleto run all the equationsat once.

Even on main frame computersit takesa long time. For example,on a VAX 8600, the determining
equationsin simplified form wereobtainedin about4 hoursof CPU time. On a VAX 8650 with a central
memory of 96 megabyte,this samecalculationtook 3 hours of CPU time. The numberof determinining
equationsbefore simplification was 2321. After automatic simplificationsonly 69 determiningequations
were left. The peakworking size being limited to about 16400 pages,MACSYMA 412.61 needed100
garbagecollectionsdueto dynamic0 and 1 spaceoverflow.

For usersof less sophisticatedcomputersor when working with still larger systemsof equations,the
strategyis to breakup the problemin smallerpieces.The ideais to obtain information aboutindependen-
cies as soon as possibleand to submit that information with a subsequentrun. This is done with a
judicioussettingof the parametersand with the feedbackmechanism.We illustrate this in all details for
the system(20).

For this examplethe numberof independentvariablesis p = 4, the numberof dependentvariablesis
q = 3 andthereare clearly m = 3 equations.The correspondencesare as follows:

x—*x[1], p—*u[1},

y—~x[2], 4—*u[2] (21

z—x[3], p~.—su[3},

t ‘-s x[4].

This permits to write eqs.(20) in a standardform acceptedby the program(seebelow under“ci” through
“e3”). Finally, oneselectsthe variablesneededfor the substitution(elimination) process:thesewill be p,,
q, and a,,. In the notationof the program,thesevariablesare calledvI, v2 andv3.

The “translation” of eqs.(20) is givenin the datafile KARPMANRUNI.DAT below. Forexample,p,
becomesu[1, [0,0,0,1]],etc.
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The batch file containing the MACSYMA commandsto run SYMMGRP.MAX is called KARP-
MANRUN1.COM. It contains:

batchload(“symmgrp.max”);
writefile (“karpmanruni.412”);
batch(“ karpmanruni.dat”);
symmetry(1, 0, 0);
printeqn(lode);
save(“ lodekarpmanruni.isp”, lode);
closefileO;
quiteO;

Foreverynew run this batchfile hasto beslightly updatedby changing“runi” into “run2”, etc. As for its
contents,apartfrom savingatranscriptof the sessionin KARPMANRUN1.412, we also savethe list of
determiningequations(LODE) as the LISP file LODEKARPMANRUN1.LSP, in caseonewants to use
theseequationsin a separateMACSYMA session.In turn, the above commandfile batchesthe file
KARPMANRUN1.DAT with the datafor the first run:

p: 4$
q: 3$
m: 3$
parameters:[al, a2, si, s2, wi, w2] $
warnings: true $
sublisteqs:[ei] $
info_given: false $
highest— derivatives:1$
el: u[l, [0, 0, 0, 1]] + wi*u[i, [0, 0, i, 0]] + (1/2)*(si*(2*u[1, [1, 0, 0, 0]]

*u[2 [1, 0, 0, 0]] + 2*u[i, [0, 1, 0, 0]]*u[2, [0, 1, 0, 0]] + u[iJ*u[2, [2, 0, 0, 0]]
+ u[i]*u[2, [0, 2, 0, 0]]) + s2*(2*u[i, [0, 0, 1, 0]]*u[2, [0, 0, 1, 0]]
+u[i]*u[2, [0, 0, 2, 0]]));

e2: u[2, [0, 0, 0, 1]] + wi*u[2, [0, 0, 1, 0]] — (1/2)*(si*(u[i, [2, 0, 0, 0]]/u[i]
+ u[i, [0, 2, 0, 0]]/u[i] — u[2, [1, 0, 0, 0]] 2 —u[2, [0, 1, 0, 0]] 2)
+s2*(u[i, [0, 0, 2, 0]]/u[i] — u[2, [0, 0, 1, 0]] 2)) + ai*u[3];

e3: u[3, [0, 0, 0, 2]] — v2 2*(u[3, [2, 0, 0, 0]] + u[3, [0, 2, 0, 0]] + u[3, [0, 0, 2, 0]])
_2*a2*u[i]*(u[i, [2, 0, 0, 0]] + u[i, [0, 2, 0, 0]] + u[i, [0, 0, 2, 0]])
_2*a2*(u[i, [1,0,0, 0112 + u[i, [0,1,0, 0]]~2+ u[i, [0,0, 1, 0]]~2);

vi: u[1, [0, 0, 0, 1]];
v2: u[2, [0, 0, 0, i]];
v3: u[3, [0, 0, 0, 2]];

All the parametersai, a2,.. . ,w2 are supposedto be non-zeroand may be canceled(as factors) in
simplifications. Since we selectedonly the first equationof the system(howeversubstitutingfrom the
entiresystem!)and since we extract only the simple determiningequations(from the coefficientsof the
highestderivativesin theprolongation),this run takesonly 20 minutesof CPU time on a VAX 8600.

The simplificationsimplementedin the programreducethe numberof determiningequationsfrom 20
to 6 singleterm equations.They are savedin KARPMANRUN1.412and theseequationsreveal that eta4
only dependson x[4] aslisted in table4. “No” standsfor “not dependenton” andthe subscripti refersto
the information obtainedfrom the first run, etc.

For the secondrun, we provide the programwith this information and we ask for the determining
equationscoming from the secondprolongationappliedto e2 ande3 only. We modify a few linesin the
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Table4
Dependencies for the Karpman case

x[1] x[2] x[3] x[4] u[1} u[2] u[3}

etal no
4 no4 no4 no~ no~ no,

eta2 no4 no4 no4 no3 no~ no,
eta3 no4 no4 no4 no4 no3 no3 no,

eta4 no1 no1 no1 no4 no1 no1 no~

phil no3 no,
phi2 no3 linear3 no3
phi3 no4 no4 linear4

datafile:

sublisteqs:[e2,e3j $
info_given: true $
depends([etal,eta2,eta3, phil, phi2, phi3], [x[1j, x[2], x[3], x[4], u[1], u[2], u[3]]);
depends(eta4,x[4]);

All the remaininglinesare the sameandwe savethe updatedfile asKARPMANRUN2.DAT. We run the
programagainwith a batch file similar to the one used for the first run. After I h 15 mm of CPU time,
four determiningequationsare obtained,they give new information aboutthe dependencies(see table4).

For the third run, in KARPMANRUN3.DAT we updatethe information about the dependencies(by
changingdependencydeclarationsas shown before) and we ask the program for all the determining
equationscoming from the first equation:

sublisteqs:[el]$
highest_derivatives:all$

In 6 mm of CPU time on the VAX 8600, the program extracted 130 determining equationsand
automaticallysimplified them to 26 equations.The information from the first 7 (single term) equationsis
addedto table4. At this point we want to solve some of the 19 remainingequations,to preparethe data
for thenext run. The determiningequationsare all linearandhomogeneous.Sothey usuallydo not require
any solution techniquesbeyond a straightforwardseparationof variables,occasionallya simple integra-
tion, at worst an applicationof the method of the characteristics.We first look for moreinformation on
dependencies.Sincephil andphi2 are independentof u[3] the (longest)equation,i.e..

2 w1 0phil + s2 u[I] ~
2phi2 + si u[1] a2phi2 + si u[l] 82phi2 + 2 8phil —2 al u[3] 0phil =

ax[3] ax[312 ~x[2]2 ax[l] 8x[4] 8u[2]

(22)

implies that phil is also independentof u[2]. With

1112aphi2+ aphil —0 23)

‘ au[l} 8u[2] —

we have that phi2 is independentof u[l].Next,

u[1] a
2phi2 + 0phii =0, (24)

au[2]2 8u[2]

gives that phi2 is linear in u[2]. We add thesethreeconclusionsto table4.
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From the threeremainingequations(with only two terms)we learn that

aeta3 [ s2 \ Betal
Bx[i] = ~ Bx[3] (25)

Beta3 / s2\ Beta2
Bx[2] = k~f)Bx[3] , (26)

Beta2 = — Betal 27
Bx[l] Bx[2]

Comparisonof threeequationswith 4 terms each,such as

Bphi2 ~ B~phi2 Beta4 — 2 Beta3 — 0 28

Bu[2] +u[ ‘Bu[l] Bu[2] + Bx[4] Bx[3] - ‘ ( )
leadsto

Beta3 = Beta2 — Betal 29
Bx[3] Bx[2]Bx[l]~

Upon integration of eq. (28) weget

phi2= (2~~ — ~ )u[2] + f2(x[l], x[2], x[3], x[4]), (30)

where f2 will be determinedlater. Substitutionof eq. (30) into

u[i] — u[i] + phil + u[l] — 2u[l] = 0 (31)

and integrationyields

phil = fl(x[l], x[2], x[3], x[4])u[i], (32)

wherefl will be determinedlater.
To savetime we shall not solve the rest of the equationsfor etai,eta2,eta3andphi3 but rathersubmit

the aboveinformation andcarry out the next run.
Hence, the datafile KARPMANRUM4.DAT containsthe information from table4 andalso the lines

sublisteqs:[all] $
depends([fi, f2], [x[i], x[2], x[3], x[4]]);
phil: fl*u[i];
phi2: (2*diff(etai, x[i]) — diff(eta4,x[4]))*u[2] + f2;
gradef(eta3,x[i], — (s2/si)*diff(etai, x[3]));
gradef(eta3,x[2], — (s2/si)*diff(eta2,x[3]));
gradef(eta2,x[l], — diff(etai, x[2]));
gradef(eta3,x[3], diff(etai, x[l]));
gradef(eta2, x[2], diff(etal, x[i]));

After 28 mm of CPU time, 30 simpledeterminingequationsare obtained(seethe TestRun Output).The
simplifications describedin the outline of the programactuallyreduced249 determiningequationsto 30
this time. Sincesi ~ s2, 10 of theseequationstogetherwith the conditions(25)—(27) and(29) lead to the
information listed in table4.
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A quick inspectionof the remainingequationsin the Test Run Outputallows to concludethat fi = k6 is
constant.Hence,with eq.(32) we get

phil=k6u[l]. (33)

Similarly, eq. (30) simplifies into

phi2=f2(x[4]). (34)

Further,we obtain phi3 up to an unknown function f4,

phi3 = 2 k6 u[3] + f4(x[l], x[2], x[3], x[4]). (35)

We also find that etal is linear in x[2], i.e.

etal = kl x[2] + k2, (36)

where kI and k2 are constants.The eqs. (25)—(27) and (29) then determine

eta2 = —kl x[l] + k3, (37)

eta3 = k4, (38)

eta4=k5. (39)

We againmodify the previousdatafile, to accountfor the info in table4, the forms of the eta’sandphi’s
and the dependenciesof f2 andf4:

depends(f2,x[4]);
depends(f4, [x[l], x[2], x[3], x[4]});
etal: kl*x[2]+k2;
eta2: _kl*x[l] + k3;
eta3: k4;
eta4: k5;
phil: k6*u[l];
phi2: f2;
phi3: 2*k6*u[3] + f[4];

andwith this file KARPMANRUN5.DAT we start the last run. Only 2 determiningequationsare left in
KARPMANRUN5.412:

2 u[3] al k6 + al f4 + Bx[4] = 0, (40)

2 ~2f4 2 82f4 2 82f4 B2f4w2 +w2 2 +w2 2 2=0. (41)
Bx[2] Bx[l] Bx[4]

The first onerequiresthat k6 = 0, hence,phil = 0, and also

Bx[4] = —al f4. (42)

Sincef2 dependsonly on x[4], f4 mustbeindependentof x[l], x[2] andx[3]. As a consequenceof eq. (41),
f4 is linear in x[4] and with eq.(42) the final solution is known,

f2 = al k7 x[4]2 + al k8 x[4] + k9, (43)

f4= —2k7x[4}—k8, (44)
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wherek7, k8 andk9 are freeconstants.Thesefunctionsdeterminethe final form of phi2 andphi3 in eqs.
(34) and(35).

Onecould submit thesedatafor verification.We havedoneso andno determiningequationswere left,
as expected.This final testof the solution took only 1 mm 30 s of CPU time.

Let us summarize.The general solution of the determining equationsleadsto a Lie algebrawith 8
infinitesimal generators.In terms of the original independentvariables x, y, z, t and the dependent
variablesp, 4 and a, the vectorfield reads:

(45)

where

.qxkiy+k2

= —k1x+ k3, q1~’= k7a1t
2+ k

8a1t + k9, 46

~= —2k7t—k8, ~

= k5.

Here k1 through k9 are independentarbitrary constants(k6 = 0 making cpP = 0). Recall that a1 is a
parameterin the Karpmanequations(18). The 8 infinitesimal generatorsfor theseequationsare

PI=Bx, L3=yB~—xB~,

P2=B~,, R1=B,,,,

P3=B,, R2=a1tB~—B~, (47)

P4=B,, R3=a1t
2B

4,—2tB~.

5. Conclusion

We presenteda MACSYMA programthat can assistin the calculation of the symmetrygroup of a
systemof differential equations.Among variousfeaturesof this program,let usemphasizea few.
(1) The program is applicable to a system of m equations of order k, with q unknowns and p

independentvariables,whereall theselabelsare arbitrarypositive integers.
(2) The output is a systemof determiningequationsthat is free of repetition andpartially solvedin the

sensethat higher-orderequationswhich are differential consequencesof lower-orderonesare auto-
matically eliminated.

(3) The parameters“sublisteqs” and“highest-derivatives”allow partial information to be extractedvery
rapidly. Theseparametershelp preventMACSYMA running out of space(and/or time) whenvery
largesystemsare submitted.

(4) Warningsremind the useraboutdivision by parametersthat were listed as different from zero.
(5) The feedbackmechanismallows the determiningequationsto besolvedstep by stepon the computer,

henceavoiding humanerror in the algebraicsimplifications.
(6) The programcanbe usedto testsolutionsof the determiningequationsandhencedetecterrorsin the

literatureon thesubject.
(7) The programcanbe usedinteractivelyandin batchmodeandthe amountof messagesthatare printed

out canbe adequatelycontrolled.
(8) The program needsvery little data and is straightforwardto use provided the userhas accessto

MACSYMA.
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Application of this program to determine the symmetry group of the Karpman equationshas been
straightforwardand has lead to new results.The developmentof a MACSYMA programthat solves the
determiningequationsin part is plannedfor the future. Upon modification of the algorithm,the program
can be extendedto the computationof moregeneralLie—Backlundtransformationgroups[7].
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Notesaddedin proof

One new parameter must be addedto the input dataas describedin subsection3.3 of this paper.The
parametersubst_derivof_vi: true, controlsthe substitutionof the partial derivativesof the v’ in eq. (12).
Thesederivativesare given by (14).

In somecasesit is not possibleto selectthe v’ in such a way that the differential consequenceswould
not reintroducelower order derivativesof the u’, hencecausing a loop! Therefore, we havemade the
substitution of the partial derivativesof the v’ optional. If only the v’ shouldbe replacedand not their
derivatives,oneputssubst_deriv_of_vi:false.

The resulting system of determining equations is “equivalent” with the one obtained using the
substitutionof all the partial derivativesof the v’. In the latercasethe systemof determiningequations
may be somewhat simpler, but the extra substitutionsconsumetime.

The authorsbecameawareof yet anotherREDUCE program for the calculation of Lie symmetries
(including Lie—B’ácklund symmetries)developedby Clara Maria Nucci at the School of Mathematics,
Georgia Institute of Technology,Atlanta, Georgia.
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TESTRUN OUTPUT

You are using the 3 equations of the system.

•~* Number of determining equations before simplifications: 249 .

2 2

WARNING We eliminated the factor: U Si S2

2 dPHt3 2

which was the coefficient of - U Si S2
1 dU

2 3 2
List of factors that are cancelled: (U A2 Si, U , U S2, U A2 Si, U A2,

1

3 2 2 2 2 2 •2 2 2
U A2, U Si W2 , U W2 • SI., S2, U Si, U Si S2 • U Si S2

1 1 1

~ Number of determining equations after simplifications: 30 .

~** These determining equations are stored in LODE. ~

(C32) PRINTEQN(LODE);

dPNI3
Equation 1 : — 0

dU

dPHI3
Equation 2 : — 0

dU
i

2
d PHI3

Equation 3 : — 0
2

dU

dETA3
Equation 4 : — 0

dx
4

dETA2
Equation 5 : — 0

dx
4

dETA1
Equation 6 : — 0

dX

Equation 7

2
dFl d ETA2

2 ——— + — 0
dx dx dx

3 2 3

Equation S

dETA4 dETA1
2 — 0

dx dx
4 1
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Equation 9 : Equation 19

2 2
d ETA2 dFi dETA1 dF2 d ETA1

S2—2———S10 Wl—’~’S12U S1~O
2 dx dx dx 2 2

dx 2 3 1 dx
3 1

Equation 10 : Equation 20

dETA2 2 2 2
(S2 — Si) = 0 d ETA1 dFl d ETA1 d ETA1

dx S2 — 2 ——— Si + SI. — 3 Si = 0

2 dx 2 2
dx 1 dX dx

EquatiOn 11 : 3 2 1

dETA1 Equation 21
(S2 — Si) = 0

dx 2
3 dETA4 dETA1 dF2 d ETA1

Wi Wi + ——— S2 + 2 U S2 = 0
Equation 12 : dx dx dx 2 ~x dx

4 1 3 1 3
dETA4 dETA1

— o Equation 22
dx dx

4 1 2 2 2
d ETA1 dFi d ETA1 d ETA1

Equation 13 : S2 — 2 ——— Si + ~ + = 0
2 dx 2 2

2 2 dx 1 dx dx
dPHI3 dETA4 3 2 1

2 — 0
du dx 2 Equation 23

3 4 dx

4 2 2 2 2
d ETA2 d ETA1 d PHI3 d ETA1

Equation 14 : S2 + S2 + 2 =
dx dx dx dx dU dx dx dx

2 2 2 3 1 3 3 3 1 3
d PHI3 d ETA2

2 — 0 Equation 24
dx dU 2

2 3 dx 2 2 2 2
d PHI3 d ETA1 d ETA1 d ETA1

2 — 0
Equation 15 dx dU 2 2 2

1 3 dx dx dx
2 3 2 1

an d ETA2

‘I ~ 0 Equation 25
2 dX dPHI3 dETA4 dETA1

2 Fl — 2 + 2 0dU dx dx
Equation 16

2 2

dFi d ETA2 d ETA1 Equation 26
2 ~_ + + 4 — 0

dx dx dx dX dx 2 2 2
3 2 3 1 3 dFl d ETA1 d ETAI. Cl ETA1

4 — 0

Equation 17 : dx 2 2 2
i dx dx dx

2 2 3 2 1

d ETA2 dFl d ETA1
52 — 2 ——— Si — 4 Si = 0 Equation 27

2 dx dx dx
dx 2 1 2 2 2 2

3 d ETA2 d ETA1 dFl d ETA1
S2 + S2 + 4 —-— Si SI. 0

Equation 18 dx dX dx dx dx dx dx
2 3 1 3 3 1 3

dETA2 dF2 d ETA1
Wi — ——— Si — 2 U Si — 0

dx dx 2dx dx
3 2 1 2



340 B. Champagne et al. / Computer calculation of Lie point symmetries

Equation 28

2 2 2 2 2 2
d PHI3 2 d PHI3 2 d P1113 2 d P1113 2 d Fl 2 d Fl

W2 + W2 + W2 + 2 U A2 ———— + 2 U A2
2 2 2 2 1 2 1 2

dx ~x dx dx dx dx

3 2 1 4 3 2

2 d Fl
* 2 U A2 ———— 0

1 2
dx

Equation 29

2 3 2 2 3
dFl d F2 d ETA1 d F2 d F2 d ETSI

2 ——— Wi + ———— S2 + 2 U S2 + ———— Si + ———— Si + 2 U Si

dx 2 2 2 2 2 2 3
3 dx dx dx dx dx dx

3 1 3 2 1 1

d ETA1 dFl
+ 2 U Si + 2 ——— 0

2 2 dx
dx dx 4

1 2

Equation 30

2 2 2 2
dF2 d ETA1 d Fl d Fl d Fl dF’2

2 ——— Wi + 4 U Wi S2 Si Si + 2 Al P1113 + 2
dX 2dx dx 2 2 2 dx

3 1 3 dx ~x dx 4
3 2 1

d ETA4 dETA4 dETA1

— 2 U + 4 U Al 4 U Al — 0
2 2 3 dx 3 dx

dx 4 1

(032) DONE


