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A MACSYMA program is presented that greatly helps in the calculation of Lie symmetry groups of large systems of
differential equations.

The program calculates the determining equations for systems of m differential equations of order k, with p independent
and g dependent variables, where m, k, p and g are arbitrary positive integers.

The program automatically produces a list of determining equations for the coefficients of the vector field. This list has been
parsed so that it is free of duplicate equations and trivial differential redundancies. Numerical factors and non-zero
parameters occurring as factors are also removed. From the solution of these determining equations one can construct the Lie
symmetry group.

An example shows the use of the program in batch mode. It also illustrates a feedback mechanism, that not only allows the
treatment of a large number of complicated partial differential equations but also aids in solving the determining equations

step by step.
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Nature of physical problem

The symmetry group of a given system of differential equations
modeling a physical phenomenon may be used to achieve
several goals. These include the classification of the solutions
of the system, the generation of new solutions from known
ones, the simplification of the system by the method of
symmetry reduction, to name a few. In the case where
particular symmetries must be present, the symmetry group
can be used to determine the validity of the modeling
differential equations.

Method of solution

The construction of the symmetry groups of differential
equations is based on an adaptation of the notation. the
terminology and the method described in ref. {1]. This proce-
dure is translated into a MACSYMA [2,3] program that
performs the most elaborate part of the job, namely the
construction of a complete list of determining equations which
is free of redundant factors, repetitions and trivial differential
consequences.

Restrictions on the complexity of the problem
For complicated systems of differential equations involving
derivatives of high order, time limits and available computer
memory may cause restrictions. Further limitations are dis-
cussed in section 3.5 of the Long Write-Up.

LONG WRITE-UP

1. Introduction

1.1. The problem

Typical running time

Given a system of m differential equations of order & with ¢
unknowns and p independent variables. running time is an
increasing function of m. k. ¢ and p. Typical running times
(CPU) for an example are given in section 4.

Unusual features of the program

The flexibility of this program and the possibility of using it in
a partly interactive mode, allow one to find the symmetry
groups of essentially arbitrarily large systems of equations.
This is the main justification for presenting a new symbolic
manipulation program in a field where several programs
already exist. Furthermore, this program has been in use (at
the Université de Montréal and elsewhere) for over five years,
it has been tested on hundreds of systems of equations and has
thus been comprehensively debugged.
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For the purpose of this article the “symmetry group of a system of differential equations”™ is the largest
local Lie group of local point transformations, acting on the independent and dependent variables of the
equations and leaving the solution set of the system invariant. The symmetry group thus transforms
solutions of the system amongst each other. A large body of old and new literature exists on this topic;
here we just refer to some recent books and reviews [1,4-19]. We also recommend the special issue of Acta
Applicandae Mathematicae on “Symmetries of Partial Differential Equations” [20]. A major obstacle in
the application of Lie group theory to solving differential equations is that usually a large number of
tedious calculations is involved. The purpose of this article is to present and make available a MACSYMA
program for the computer assisted calculation of symmetry groups.

The setting is an entirely general one and the method is well known and described e.g. in ref. [1].

We consider a system of m differential equations

A(x, u®)y=0, i=1,2,....,m, (1)
of order k, with p independent and ¢ dependent real variables, denoted by
x={(xy, X5,...,x,) ER’, (2)

u=(u', u?,... ut) eR. (3)
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We stress that m, k, p and g are arbitrary positive integers. The group transformations have the form
£=A,(x, u), it=80,(x, u), (4)

where the functions A, and {2, are to be determined. Note that the subscript g refers to the group
parameters. The approach is an infinitesimal one; instead of looking for a Lie group G, we look for its Lie
algebra .Z, realized by vector fields of the form

a= 7 (x, u) + o,(x, u) . (5)
i=1 axi =1 ! au[

The procedure [1] for finding the coefficients n'(x, u) and ¢,(x, u) is described below. In essence, the
computer constructs the k th prolongation pr*’« of the vector field a, applies it to the system of equations
(1) and requests that the resulting expression vanishes on the solution set of (1),

prf%l | o, i, j=1,...,m. (6)

The result of implementing (6) is a system of linear homogeneous PDEs for %' and ¢,, in which x and u
are independent variables. These are the so-called determining equations for the symmetries of the system.
The procedure thus consists of two major steps: deriving the determining equations and solving them.

1.2. Review of symbolic programs

Several computer packages [15,21-47] exist for this purpose, and some other programs were written for
specific examples [48].

The well-documented REDUCE program developed by F. Schwarz [15,21-25], is definitely going the
furthest in solving the determining equations with minimal intervention by the user. This program, called
SPDE, is distributed with version 3.3 of REDUCE for various types of computers, ranging from PCs to
CRAYSs. Schwarz also rewrote SPDE [15,25] for use with SCRATCHPAD 1I, a symbolic manipulation
program developed by IBM.

Based on Cartan’s exterior calculus, Edelen [26] and Gragert and Kersten [27] did some pioneering
work in using REDUCE to calculate the classical Lie symmetries of differential equations. Kersten [28,29]
later developed a REDUCE software package for the calculation of the Lie algebra of infinitesimal
symmetries (and corresponding Lie-Bicklund transformations) of an exterior differential system. Eliseev
et al. [30] wrote a REDUCE program to generate (but not solve) the system of determining equations for
point and contact symmetries. Fedorova and Kornyak [31] generalized the algorithm to include the case of
Lie-Biacklund symmetries.

Apart from packages in REDUCE, we should mention the FORMAC programs by Fedorova and
Kornyak [32] and Fushchich and Kornyak [33] that create the system of determining equations for the
Lie-Biacklund symmetries and solve these equations as far as possible. The FORMAC package
CRACKSTAR developed by Wolf [34] also allows investigation of Lie symmetries of PDEs, besides
dealing with dynamical symmetries of ODEs and the like.

The program LIE by Head [35] is based on version 4.12 of muMATH, running on IBM compatible PCs.
Head’s program calculates and solves the determining equations automatically. Interventions by the user
are sometimes needed and therefore are made possible.

The SYMCON package written by Vafeades [36] also uses muMATH to calculate the determining
equations (without solving them). Furthermore, the program verifies whether the symmetry group is of
variational or divergence type and computes the conservation laws associated with the symmetries.

Unfortunately, these programs are confined to the 256 K memory accessible by muMATH and can
therefore presently not handle very large systems of equations. This limitation motivated Vafaedes to
rewrite his SYMCON program in MACSYMA syntax [37]. Although this program is similar in mission to
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ours, Vafeades’ program requires quite a bit more interaction by the user. Geoff Prince and James Sherring
from LaTrobe University (Melbourne, Australia) are working at a ““translation” of the source code of LIE
into REDUCE.

The calculation of the Lie group by computer was also proposed by Popov, who used the program
SOPHUS for the calculation of conservation laws of evolution equations [38].

The package DELIA by Bocharov [39] also runs on PC and claims to perform various tasks based on
Lie’s approach, such as the computation of point symmetries, conserved currents and conservation laws;
simplification and partial integration of overdetermined systems of differential equations, etc. The
marketing material that comes with the demonstration disk for DELIA does not specify any underlying
symbolic manipulation package. We believe that the program is written in PASCAL. In ref. [40] Bocharov
and Bronstein present SCoLAr, a package based on standard PASCAL, for finding infinitesimal symme-
tries and conservation laws of arbitrary systems of differential equations.

To the best of our knowledge, no package is available yet for the calculation of Lie symmetries with
MAPLE and MATHEMATICA.

For completeness, we mention the pioneering work by C. Wulfman and his master students Davison
and Nagao [41,42]. Already in the early seventies, Davison [41] developed computer algorithms in
SNOBOL, a now obsolete computer language, that could handle symbolic manipulations with differential
operators. In 1980, Nagao [42] wrote the computer program DETERMININGEQS (in PASCAL) that
could approximate Lie generators for dynamical systems.

Last but not least, we discuss the programs written in MACSYMA, the symbolic package our symmetry
program is based upon. Just as REDUCE, MACSYMA is currently available for various types of
computers, ranging from PCs to various work stations and main-frame computers (such as VAX) and it is
used all over the world.

Apart from an earlier version of our program [47] and the work done by Rosencrans [48], their are only
three other MACSYMA-based symmetry programs. The MACSYMA version of SYMCON by Vafeades
[37] was discussed above. Schwarzmeier and Rosenau [43,44] made a program that calculates the
determining equations in their simplest form, but does not solve them automatically.

The program SYM _DE by Steinberg [45,46] was recently added to the out-of-core library of MAC-
SYMA. The program solves some (or all) of the determining equations automatically and, if needed, the
user can (interactively) add extra information. Currently, Steinberg is working at the extension of his
program so that it would include the calculation of generalized (i.e. derivative dependent) symmetries.

1.3. The program SYMMGRP.MAX

The present program, called SYMMGRP.MAX is a modification of a package [47] that has been
extensively used over the last five years at the University of Montréal and elsewhere. It has been tested on
hundreds of systems of equations and has thus been solidly debugged. The flexibility of this program and
the possibility of using it in a partly interactive mode, allow to find the symmetry group of in principal
arbitrarily large and complicated systems of equations on relatively small computers. There are the main
justifications for presenting yet another new symbolic program in a field where several programs already
exist.

The amount of interaction by the user will depend on the complexity of the system of differential
equations and on the capacity of the computer used. Our experience is that for systems of equations the
most time consuming part of the calculation (when done by hand) is the derivation of the determining
equations and the elimination of redundant equations from the system.

The actual solving of the determining equations can usually be done by inspection, using elementary
results from the theory of linear PDEs. Solving them on a computer may be time consuming, since the
simplest approach varies greatly from case to case. Furthermore, a computer program may accidentally not
catch the most general result and therefore may return an incomplete symmetry group. The authors are
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very aware of this problem which occurred in testing some of the other existing programs! Fortunately, as
soon as the new programs by Schwarz [49] and Reid [50-52], both for the determination of the size of a
symmetry group, become available, this problem will be easily detectable.

Let us briefly digress on this topic. Indeed, Schwarz and Reid independently developed algorithms to
determine the size of a symmetry group of Lie (point) symmetries. Schwarz’s program in REDUCE [49]
calculates the number of parameters if the group is finite and the number of unspecified functions and its
arguments if the group is infinite.

Recently, Reid [50-52] took up the same task. His program SYMCAL [51], written originally in
MACSYMA and currently being converted into MAPLE, computes the dimension and the structure
constants of the Lie symmetry algebra of any system of PDEs. An extension of the algorithm [52] also
allows to classify differential equations (with variable coefficients) according to the structure of their
symmetry groups. Furthermore, the approach advocated by Reid applies to the determination of symme-
tries of Lie, contact, and Lie-Backlund type as well as potential symmetries.

In the interest of versatility and simplicity, our present MACSYMA program concentrates on deriving
the determining equations. It does not solve them neither does it calculate the size of the symmetry group.
Nevertheless, we believe that our program has some distinguished features and advantages:

(1) The equations (6) can be treated simultaneously, i.e. pr’*’a can be applied to all m equations in the

system. The output is then a system of determining equations that is partly solved. This means that the
program takes all “first-order equations with one term” and their differential consequences and uses them
to simplify the remaining determining system. This greatly decreases the number of equations to be solved
manually.

(2) If the computer can be expected to run out of space when applying the prolongation to the system
(1), it is possible to apply pr'*’a to a subset of equations, for instance just to one equation, say A' = 0.
When implementing the requirement pr'®ad' |,,_,=0, (j=1,..., m), of course the program takes into
account the entire system (1), not just the equation A' = 0 itself.

(3) If the individual equations in the system (1) are so complex that the computer still runs out of
space, it is possible to derive only a subset of the determining equations, e.g. those that occur as
coefficients of the highest derivatives in (6). These are usually single term equations.

(4) A feedback mechanism has been incorporated. Once some of the determining equations have been
solved, the information obtained about the coefficients n' and ¢, can be submitted to the computer, which
will present a new and simplified system of determining equations. The new information usually includes
that the 5’s and ¢’s are independent of some variables or depend linearly on some of the other variables.
This greatly simplifies further calculations and, after several runs, makes it possible to apply pr'*a to the
entire system (1), even for very complicated ones. The feedback mechanism can be used all the way to the
end. At the last stage, when the completely determined forms of the n’s and ¢’s are submitted, the
program will print out that the number of determining equations is zero, i.e. the solution is verified. Hence,
the program also allows to verify any solution previously calculated by hand or by means of other
programs.

To summarize, whenever pr'®’a can be applied successfully to the system (1), or a subset thereof, it
produces a complete list of determining equations. This list is free of trivial factors, duplication and
differential redundancies. If, however, due to memory, time or space limitations, a complete list of
determining equations cannot be obtained, it is still possible to derive a subset of the determining .
equations. In this case, heuristics are used to extract relevant information from that subset. This
information is then fed into the program which resumes its calculations.

In this respect, the philosophy of the approach implemented in the present program is to follow the
path that would be taken in a manual calculation. That is, obtain in as simple a manner as possible all one
term equations, solve them and feed the information back to the computer. This can be done by first
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treating just one equation of the given system and usually by extracting only the coefficients of the highest
derivatives. All the necessary substitutions and simplifications leading to the new determining system,
which are error-prone if done by hand, are carried out automatically and correctly by this program.

2. Procedures for computing the determining equations
We closely follow the notations, the terminology and the method for symmetry analysis used in ref. [1]

which are well adapted to computer programming. Recall that the independent and dependent variables
for the system (1) are denoted by (2) and (3), respectively. The partial derivatives of ' are represented

using a multi-index notation: for J = (j;, j5..., j,) €N, we put
3l ly!
u‘// = J Ja Ja (7)
dxy" 9xz* - A

(k)

where |J| =/ +j,+ - +j,. Finally, '*" will denote a vector whose components are all the partial

derivatives of order 0 up to & of all the u'.
Using these notations the procedure for obtaining the determining equations involves the following five

steps:
(1) Construct the kth prolongation of the vector field « in eq. (5) by means of the formula
pr' a—a+22¢ uf)— ., 1< |J| <k, (8)
=1 J 8u,
where the coefficients ¢; are defined as follows. The coefficients of the first prolongation are
P
¥ =Dy (x, u) = ¥ u; Do/ (x, u), (9)
=1

where J. is a p-tuple with 1 on the /th position and zeros elsewhere, and D, is the total derivative operator

q
D=5y + Z}Zum 7 0= /] <k (10)
I1=1 J Uy
The higher-order prolongations are defined recursively as
P
[ =Dyl = X uj, D’(x, u), |21 (11)
Jj=1

(2) Apply the prolonged operator pr'*’a to each equation A'(x, u'*’) and require that
prf%d | =0, i, j=1,...,m. (12)

The meaning of condition (12) is that pr'®’a vanishes on the solution set of the system (1). Precisely this
condition assures that « is an infinitesimal symmetry generator of the transformation (4), i.e. that u(x)isa
solution of (1) whenever #(X) is one.

(3) Choose m components of the vector u‘*’, say v',..., v™, such that:
(a) Each v is equal to a derivative of a u' (/=1,...,g) with respect to at least one variable x,
(i=1,...,p)

(b) None of the v' is the derivative of another one in the set.
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(c) The system (1) can be solved algebraically for the v’ in terms of the remaining components of u‘%’,
which we denoted by w. Hence,

v'=S8"(x,w), i=1,...,m. (13)
(d) The derivatives of o',
v)=D,S(x, w), (14)

where D, = D{'D4* - - - D/», can all be expressed in terms of the components of w and their derivatives,
without ever reintroducing the v' or their derivatives.

While the above procedure sounds complicated, for all specific systems that have been considered the
choice of the appropriate v has been quite simple. For instance, for a system of evolution equations

1) =F'(xp, %, b, u®), =1, m, (15)

i
u,(xl,...,x 1) P_l’

p— b
where u'% involves derivatives with respect to the variables x, but not ¢, the appropriate choice is clearly
v'=u.

(4) Use (13) to eliminate all v and their derivatives from the expression (12), so that all the remaining
variables are now independent of each other.

(5) Obtain the determining equations for n'(x, u) and ¢,(x, u) by equating to zero the coefficients of
all functionally independent expressions in the remaining derivatives u’.

The described procedure is well defined as long as the variables v’ in eq. (13) exist. Furthermore, the
length and complexity of the calculations increase rapidly as p, g, m and especially k increase.

3. Description of the program

We now present the MACSYMA program SYMMGRP.MAX that realizes the procedure in section 2
and that provides a set of determining equations for the Lie symmetries of an arbitrary system of
differential equations.

For this program we used MACSYMA release 412.61, which is usually implemented on VAX
computers operating under VMS. Note however that the program contains nothing beyond standard
MACSYMA statements and it is therefore compatible with earlier versions of MACSYMA, e.g. REX
MACSYMA 305 and MACSYMA 309.6 (running under UNIX). The user is supposed to have minimal
experience with MACSYMA. Information about the syntax of MACSYMA and many examples of its use
may be found in refs. [2,3].

The program SYMMGRP.MAX consists essentially of function definitions. In fact, an appropriate
function is defined for each major task in the process. As we will see later, these functions may be used
individually provided that care is taken with respect to their arguments.

The primary function is called SYMMETRY and it may be considered as the main program. Once
called, it reads the data, sets up the environment for the calculation and then goes through the major steps
in the calculation by sequentially calling the other functions.

In addition to function definitions, there is a set of statements at the top of the program that serves
many purposes throughout the execution. This set contains replacement RULE definitions, MATCH-
DECLARE statements and PATTERN MATCHING definitions.

3.1. Description of the principal functions

PROVF(F): Applies the kth prolongation of a in eq. (5) to a function F(x, u'*’) and outputs the
result.
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TOTDF(I, F): Applies the operator of total derivative D, defined in (10) to a function F(x, u**’) and
outputs the result.

FPSI(L, J): Calculates the coefficients ¢; in eq. (8) through the use of the recursive formulae (9) and
(11). Actually, these coefficients are stored in an array PSI[L,J] defined by PSI[L.J]:= FPSI(L, J), so that
one may call PSI instead of FPSI. The reason for this is that we can clear the array PSI without clearing
the function definition used to calculate the ;. Note that according to the notation of section 2, J must be
a MACSYMA list of p integers.

EXTSUBST(EXPR): Applies to an expression EXPR depending on x and #'*’ the substitutions (13)
and (14) until all the »" and their partial derivatives have been eliminated from EXPR. It returns the new
expression so obtained. The function EXTSUBST may be used separately but the information concerning
the basic substitution (13) must be given. This 1s done by rewriting (13) in the form

uh=S'"(x,w), i=1l.....m, (16)
and according to this, defining the following arrays before using EXTSUBST:

INDJ[i]: J'
INDL[/]:/ i=1.....m. (17)
SUB[/]: S'(x, w)

SEARCHOEFF(EXPR): Given an expression EXPR which is a polynomial in the derivatives of u/}
(exponents of u’, need not be integers but instead may be any real numbers), this function finds all the
coefficients of the various partial derivatives of u and puts these coefficients in one of two lists according
to their length. More explicitly, at the end of the procedure, LODE[1] will be a list containing all the
coefficients which are monomials, and LODE[2] will be a list containing all the coefficients which are
polynomials (containing “+” as the main operator). Note that in the present context, these coefficients
will be precisely the determining equations.

SIMPEQN(): Given the two lists of determining equations in %' and ¢,, LODE[1] and LODE{2], this
function produces a unique list of determining equations called LODE, equivalent to the union of the first
two lists but free of repetition and differential redundancy. More precisely,

1. equations of LODE will be ordered by increasing length relative to the operator “+ " (beginning with
the monomials and ending with the longest polynomials);

2. monomial equations of LODE will be ordered by increasing order of differentiation with respect to x,

and u';

. the list of equations LODE will be free of repetition and trivial differential redundancy;

4. any common factors, such as x,, ', their products and powers thereof, occurring in the equations of
LODE will be factored out and canceled. The ELIMINATOR will also cancel all non-zero parameters
(their products and powers) given explicitly in the data file (see further). There will be a message for
these cancellations provided the parameter warnings is set to true. As a precaution, at the end of the
simplifications the user is provided with a list of all the (non-trivial) factors that have been canceled
during the execution of SIMPEQN. Special warning messages are given if division by parameters
occurs. Note that the program will not clear sums or differences of parameters, derivatives of functions,
and the like. This enables the user to determine how the symmetry group is affected by various choices
of free parameters and functions.

[9%]

PRINTEQN(LIST): This function prints the elements of a LIST in an equation like form (see Test Run
Output) at the end of this paper.

SYMMETRY(IND1, IND2, IND3): This function stands for the main program. A call to it initiates
the computation while the three arguments enable the user to partially control the execution. These



Table 1

Description of the arguments of SYMMETRY
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Parameter Value Effect on the execution
IND1 0 The program is used in interactive mode
1 The program is used in batch mode
IND2 0 The array PSI is cleared before the computation starts
1 PSI is not cleared, only new PSI will be computed
IND3 0 No trace of the calculations will be given
1 A trace of the calculations will be given

arguments may take the values 0 and 1 and according to their values, different actions are taken by the
program as shown in table 1.

3.2. List of principal identifiers

The correspondence between the identifiers used in the program and the mathematical symbols
introduced in section 1 and 2 appears in table 2.

3.3. Input data

Every data file must have the following information:

. The number of independent variables: p (positive integer).

. The number of dependent variables: q (positive integer).

The number of equations in the complete system: m (positive integer).

. The list of non-zero parameters (occurring in the given equations) that may be factored out and

subsequently canceled; parameters: [al, sl, aa,...,w2]. If there are no such parameters then parame-
ters: [ ]. A discussion of names for parameters that may not be used is given in section 3.5.

5. The number of equations the program has to treat, controlled by sublisteqs. For example, sublisteqgs:
[e1l] for the first equation; sublisteqs: [ei,...,em] for the ith through the mth equations only;
sublistegs: [all] for all the equations in the system.

Table 2

List of the principal identifiers

Text Program Meaning

p P number of independent variables

q Q number of dependent variables

m M number of equations in the system

X; X[1) independent variables (1 € {1, 2,...,P})

u U[L] dependent variables (L € {1,2,...,Q})

J; JI] canonical vectors, e.g., J2] =[0,1,0,...,0}

(s Jasees Jp) [LI2),.... 3 P list of canonical vectors

u UIL.J] derivatives of u’

7 ETA[I] coefficient of d/0x; in the vector field

@ PHI[L] coefficient of 3/3u’ in the vector field
7 PSI[L.J] derivatives of y,

4 EI equations in the system, E1, E2, etc.

o

VI

variables for the substitution, V1, V2, etc.
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6. The desired subset of the determining equations is controlled by setting highest _derivatives: s, where
s stands for a positive integer indicating a count-down for the orders of derivatives in the prolonga-
tion. For example, 1 refers to information from the highest derivatives only, 2 for highest and second
highest derivatives, etc., afl will result in all the determining equations since all the terms in the
prolongation were considered.

7. The flag warnings: true or false, controls the printout of messages about division by parameters and
other simplifications.

8. The flag info _given: false or true, is used in connection with the feedback mechanism for solving the
determining equations. Information about the coefficients n' and the ¢, in the vector field & must be
entered in a specific way as discussed and exemplified in section 4.

9. The real equations A’ in (1) must be given as ei: ..., with i=1,..._ m. You only have to put in the left
hand side of the equation, leaving out *“ = 0”. For complex equations see section 3.5.
10. The variables ¢v' in eq. (13), chosen for the substitution are given as vi: ..., with i=1,..., m.

Whether the program is used in batch mode or interactively, the data must be entered in an appropriate
way:

(1) Batch mode

This mode is definitely recommended for equations of fairly high order or for systems of equations (see
section 4). A simple batch file contains the MACSYMA commands necessary to run the program and to
read the data (most often given in a separate file). The data are put into a file with the use of MACSYMA
assignment statements. This file is read before the function SYMMETRY is called (with IND1 set to 1).

2) Interactive mode

This mode is invoked by calling SYMMETRY with IND1 set to zero. It is only useful for single
equations or fairly simple systems, e.g. for equations of rather low order of derivation. All parameters can
be controlled interactively. The program will prompt for the ten items listed above under “input data”.

If info_given is set to true, the program will prompt the user to put in the explicit forms of all the n’s
and the ¢’s. If for some of these functions no explicit information is available yet, then one simply submits
their names, e.g. etal, phil, etc. The array notation is no longer allowed when info is given, one has to use
the “concatenated” notation! Information about dependencies must be given with a DEPENDS statement
before calling the function SYMMETRY, otherwise dependencies have to be stated explicitly as arguments
of the functions.

3.4. Output data

At the end of the computation the determining equations are not automatically printed but instead they
are stored in a list of determining equations called LODE. A printout of the determining equations can be
obtained with the command PRINTEQN(LODE).

For convenience, the function PRINTEQN is provided separately under the name PRINTEQN.MAX.
If one wishes to use any other of the special functions described in section 3.2 separately, then
SYMMETRY must be called first with input data consisting only of the p, ¢ and with 0 assigned to m.

Table 3 summarizes the information available at the end of the computation and how to access it.

3.5. Type of systems

As indicated previously, the program can be applied to systems of m differential equations of order &,
with p independent and ¢ dependent variables, where m, k, p and ¢ are arbitrary positive integers.
Besides limitations due to allowable computer memory and CPU time, the main restriction imposed on the
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Table 3

Information available at the end of the computation

Identifier Type Printout Contents

LODE list printeqn (lode); list of the determining equations

PSI array listarray (psi); ¢] evaluated during the computation

ALGSOLS list printeqn (algsols); algebraic solution of the equations
A" =0 for the variables v’

DIFSUB array listarray (difsub); substitutions used to eliminate the v’
and their derivatives

ETA array listarray (eta); components of ETA

PHI array listarray (phi); components of PHI

original system (1) is related to the substitution procedure described in step (3) of section 2. Indeed, it
must be possible for MACSYMA to solve the system algebraically for the v', as in eq. (13). For instance,
this might prevent the application of the program to a system involving five-fold nested radicals of the u/.
Note, however, that in many applications, difficulties of this type can be avoided by a judicious choice of
the v’ It is important to emphasize that the individual equations composing the system need not be
polynomial in the x;, «' and u}.

If only multiplicative and additive combinations of powers (not necessarily integer ones) of the u,
appear in eq. (12) after the substitution procedure, then the determining equations can be used directly. If
irrational or transcendental functions of the u) appear in (12), because they were present in the original
differential equations or they were introduced during the computations, then the determining equations in
the output will also contain some of the uj in a irrational or transcendental way. In that case, the user has
the task of obtaining the final list of independent determining equations from the output.

The system of differential equations for which one wants to compute the determinining equations may
contain arbitrary parameters and even arbitrary functions of the variables x; and u'. However, names for
the parameters or functions should not be in conflict with any other identifiers used in the program: in
particular, I J, L, M, P, Q and E1, E2,...,V1, V2,... may not be used. Note that MACSYMA is not
sensitive to cases, e.g. vl is the same V1, etc. For arbitrary functions, the dependencies must be declared
with the help of a DEPENDS statement before calling SYMMETRY.

The program assumes that the u’' are functions from R”— R. If a system of differential equations
contains complex valued dependent variables, i.e. functions from R 7 — C, the decomposition into real and
imaginary parts must be made before using the program (see section 4).

In entering the orginal system of differential equations, any use of C1, C2,...,D1, D2,..., must be
avoided since it may confuse MACSYMA which uses these symbols to denote command and display lines,
respectively. Furthermore, Greek letters should be avoided (for instance ‘beta’ refers to the Beta function
and ‘gamma’ to the Gamma function). Before using any special character, quickly check the index of ref.
[2,3] to verify if the name or symbol does not interfere with a function or command name in MACSYMA.

When the feedback mechanism is used, avoid any confusion between symbols and parameters occurring
in the original equations and those used in the explicit forms for the n’s and ¢’s.

Note that MACSYMA starts the label for an array at 0. For instance, the first component of the array
ETA is ETA[0]. Precautionary, we have assigned the value 0 to the first components of such arrays.

4. Example: the Karpman equations

This example shows how the program SYMMGRP.MAX can be used in batch mode. It also illustrates
the feedback mechanism for solving the determining equations.
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The Karpman equations [53] describe the effect of modulation instability of a high-frequency (whistler)
wave due to its resonant parametric interaction with a low-frequency wave in a plasma. The normalized
complex amplitude ¢ of the whistler wave and the particle density » of the plasma are given by the
non-linear system,

l( ¢r+ Wlll/:) + %[Sl(ﬁbx.x + \P”,-) + SZ‘P::] - aly‘l/ = 0~

] ) (18)
b= (W) (v H v, ) —a (WL + IL+ 1¥12) =0.

where a,, a,, 5;, 55, w; and w, are just constants.
Since the program cannot handle the complex variable , we split it in its real and imaginary parts by
putting

y=p(x, y. 2, t) exp(io(x, p, z, 1)). (19)
Thus,

o + W10 + %[sl (2px¢x + 2p»¢) + p¢’xx + p¢’n) + 52(2P:¢_~ + p¢::)] = O~

px.\‘ p}’," 2 p::
, +T—¢f—¢‘,)+32(?—¢f”+alv=0, (20)

2
Vi — (WZ) (Vxx + Py + V:z) - 2a2p(pxx + Py + p::) - 2(12({)3 + p)2 + pf) =0.

b, + Wi, — %[51(

For the system (20) the MACSYMA calculations are fairly lengthy and involved. On some computers,
in particular on PCs, it may not be possible to run all the equations at once.

Even on main frame computers it takes a long time. For example, on a VAX 8600, the determining
equations in simplified form were obtained in about 4 hours of CPU time. On a VAX 8650 with a central
memory of 96 megabyte, this same calculation took 3 hours of CPU time. The number of determinining
equations before simplification was 2321. After automatic simplifications only 69 determining equations
were left. The peak working size being limited to about 16400 pages, MACSYMA 412.61 needed 100
garbage collections due to dynamic 0 and 1 space overflow.

For users of less sophisticated computers or when working with still larger systems of equations, the
strategy is to break up the problem in smaller pieces. The idea is to obtain information about independen-
cies as soon as possible and to submit that information with a subsequent run. This is done with a
judicious setting of the parameters and with the feedback mechanism. We illustrate this in all details for
the system (20).

For this example the number of independent variables is p = 4, the number of dependent variables is
g = 3 and there are clearly m = 3 equations. The correspondences are as follows:

x=x[1], p~—u[l],
v—x[2], ¢—uf2]
z—x[3], w»—u[3],
1 — x[4].

(21)

This permits to write egs. (20) in a standard form accepted by the program (see below under “el” through
“e3”). Finally, one selects the variables needed for the substitution (elimination) process: these will be p,,
¢, and »,. In the notation of the program, these variables are called v1, v2 and v3.

The “translation” of egs. (20) is given in the data file KARPMANRUNI.DAT below. For example, p,
becomes u[1, [0,0,0,1]], etc.
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The batch file containing the MACSYMA commands to run SYMMGRP.MAX is called KARP-
MANRUNI1.COM. It contains:

batchload (“symmgrp.max’);
writefile (“karpmanrunl.412”);
batch (“karpmanrunl.dat”);
symmetry (1, 0, 0);

printeqn (lode);

save (“lodekarpmanrunl.lsp”, lode);
closefile();

quite();

For every new run this batch file has to be slightly updated by changing “runl” into “run2”, etc. As for its
contents, apart from saving a transcript of the session in KARPMANRUN1.412, we also save the list of
determining equations (LODE) as the LISP file LODEKARPMANRUNI1.LSP, in case one wants to use
these equations in a separate MACSYMA session. In turn, the above command file batches the file
KARPMANRUNI1.DAT with the data for the first run:

p: 4%

q: 3%

m: 3§

parameters: [al, a2, s1, s2, wl, w2] §

warnings: true $

sublistegs: [el] §

info_given: false $

highest _derivatives: 1 §

el: u[l, [0, 0, 0, 1]] + wl*uf1, [0, 0, 1, O]] + (1,/2)*(s1*(2*u[L, [1, O, 0, 0]]
*u[2, [1, 0, 0, 0]] + 2*u[1, [0, 1, O, 0]]*u[2, [0, 1, O, O]] + u[1]*uf2, [2, 0, O, O]
+u[1]*u[2, [0, 2, 0, O]]) + s2*(2*u(1, [0, O, 1, O}J*u[2, [0, O, 1, 0]]
+uf1]*uf2, [0, 0, 2, 0])));

e2: u[2, [0, 0, 0, 1]] + wl*u[2, [0, 0, 1, 0]] — (1/2)*(s1*(u[1, [2, 0, 0, 0]] /u[1]
+u[l, [0, 2, 0, 0]]/u[1] — u[2, [1, O, O, O]] 2—u[2 [0, 1, 0, 0]} 2)
+52*(u[1, [0, 0, 2, 0])/u{1] — u[2, [0, 0, 1, 0]]"2)) + al*u[3};

e3: uf3, [0, 0, 0, 2]] - v2A2*(u[3, [2, 0, 0, 0]] + u[3, [0, 2, 0, O]] + u[3, [0, O, 2, 0]])
—2*a2*u[11*(u[l, {2, 0, 0, 0]] + ul[1, [0, 2, O, O]] + u[1, [0, O, 2, O]])
—2*a2*(u[1, [1, 0, 0, 0]]"2 + u[1, [0, 1, 0, 0] 2 + u[1, [0, 0, 1, O] 2);

vl: ufl, [0, O, O, 1]};

v2: u[2, [0, 0, O, 1]);

v3:uf3, [0, 0, O, 2]);

All the parameters al, a2,...,w2 are supposed to be non-zero and may be canceled (as factors) in
simplifications. Since we selected only the first equation of the system (however substituting from the
entire system!) and since we extract only the simple determining equations (from the coefficients of the
highest derivatives in the prolongation), this run takes only 20 minutes of CPU time on a VAX 8600.

The simplifications implemented in the program reduce the number of determining equations from 20
to 6 single term equations. They are saved in KARPMANRUN1.412 and these equations reveal that etad
only depends on x[4] as listed in table 4. “No” stands for “not dependent on” and the subscript 1 refers to
the information obtained from the first run, etc.

For the second run, we provide the program with this information and we ask for the determining
equations coming from the second prolongation applied to €2 and e3 only. We modify a few lines in the
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Table 4
Dependencies for the Karpman case

x[1] x[2] x[3] x[4] u(1] ul2] u(3]
etal noy noy noy no; no; no,
eta2 noy noy 10y no, no, no,
etal no, no, no, no, no, no, no,
etad no, no, no, no, no; no, no,
phil no; no,
phi2 no, linear, no;
phi3 no, noy linear,

data file:

sublistegs: [e2, e3] $

info_given: true $

depends([etal, eta2, eta3, phil, phi2, phi3], [x[1]. x[2]. x[3], x[4], u[1], uf2], u[3]]D):
depends(etad, x[4]);

All the remaining lines are the same and we save the updated file as KARPMANRUN2.DAT. We run the
program again with a batch file similar to the one used for the first run. After 1 h 15 min of CPU time.
four determining equations are obtained, they give new information about the dependencies (see table 4).

For the third run, in KARPMANRUN3.DAT we update the information about the dependencies (by
changing dependency declarations as shown before) and we ask the program for all the determining
equations coming from the first equation:

sublistegs: [e1]$
highest _derivatives: all$

In 6 min of CPU time on the VAX 8600, the program extracted 130 determining equations and
automatically simplified them to 26 equations. The information from the first 7 (single term) equations is
added to table 4. At this point we want to solve some of the 19 remaining equations, to prepare the data
for the next run. The determining equations are all linear and homogeneous. So they usually do not require
any solution techniques beyond a straightforward separation of variables, occasionally a simple integra-
tion, at worst an application of the method of the characteristics. We first look for more information on
dependencies. Since phil and phi2 are independent of u[3] the (longest) equation, i.e..

Sphit é—ph-n-?_ a-pm é—phi-z ephi aphd
2w 18[3]+52u[l] e [1] (2] u[1] 1] +23 Ix[4] 2a1u[3]a[] 0,
(22)
implies that phil is also independent of u[2]. With
2 8ph12 dphil
u[1] u[1] au[ i =0, (23)
we have that phi2 is independent of u[1].Next,
11275 =0, (24)

du[2]’ 8u[2]

gives that phi2 is linear in u[2]. We add these three conclusions to table 4.
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From the three remaining equations (with only two terms) we learn that

deta3 _ (2) detal

ox[1] ax[3]”’
detal (ﬁ) deta?
x[2] ax[3]"’
deta? detal

ax[1] ox[2]”
Comparison of three equations with 4 terms each, such as

gh12 + detad 9 deta3
ox[4] ax[3]

dphi2
3u2]

-i-u[l]a =0,

(1] 3u[2]
leads to

deta3 deta2 detal

ax[3]  ax[2]  ax[1]"

Upon integration of eq. (28) we get

detal detad

phi2 = 2m Eea) u[2] + 2(x[1], x[2], x[3], x[4]),
where 2 will be determined later. Substitution of eq. (30) into
ophi2 dphil detad detal

u[l] 7 2] ~ u[l] =7 3u[1] + phil + u[l] 5= ax[4] 2u[l] =7 3x[1] =0
and integration yields
phil = f1(x[1], x[2], x[3], x[4])u[1],

where f1 will be determined later.
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(25)
(26)

(27)

(28)

(29)

(30)

(31)

(32)

To save time we shall not solve the rest of the equations for etal, eta2, eta3 and phi3 but rather submit

the above information and carry out the next run.

Hence, the data file KARPMANRUM4.DAT contains the information from table 4 and also the lines

sublisteqgs: [all] $

depends([f1, f2], [x[1], x[2], x[3], x[4]]);

phil: f1*ufl];

phi2: (2*diff(etal, x[1]) — diff(etad, x[4]))*u[2] + f2
gradef(eta3, x[1], — (s2/s1)*diff(etal, x[3]));
gradef(eta3, x[2], — (s2/s1)*diff(eta2, x[3]));
gradef(eta2, x[1], — diff(etal, x[2]));

gradef(eta3, x[3], diff(etal, x[1]));

gradef(eta2, x[2], diff(etal, x[1]));

After 28 min of CPU time, 30 simple determining equations are obtained (see the Test Run Output). The
simplifications described in the outline of the program actually reduced 249 determining equations to 30
this time. Since sl # s2, 10 of these equations together with the conditions (25)—(27) and (29) lead to the

information listed in table 4.
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A quick inspection of the remaining equations in the Test Run Output allows to conclude that f1 = ké is
constant. Hence, with eq. (32) we get

phil = k6 u[1]. (33)
Similarly, eq. (30) simplifies into

phi2 = f2(x[4]). (34)
Further, we obtain phi3 up to an unknown function {4,

phi3 =2 k6 u[3] + f4(x[1], x[2]. x[3]. x[4]). (35)
We also find that etal is linear in x[2], 1.e.

etal =k1 x[2] + k2, (36)
where k1 and k2 are constants. The eqgs. (25)-(27) and (29) then determine

eta2 = —kl1 x[1] + k3, (37)

eta3 = k4, (38)

etad = kS. (39)

We again modify the previous data file, to account for the info in table 4, the forms of the eta’s and phi’s
and the dependencies of 2 and f4:

depends(f2, x[4]);

depends(f4, [x[1], x[2], x[3], x[4]D);
etal: k1*x[2] + k2;

eta2: —k1*x[1] + k3;

etal3: k4,

etad: k5;

phil: k6*u[1};

phi2: 2;

phi3: 2*k6*u[3] + fl4};

and with this file KARPMANRUNS.DAT we start the last run. Only 2 determining equations are left in
KARPMANRUNS5.412:
of2
ax[4]
2 2f4 2 2
P CHP I IO R )
0x[3] ax[2] ox[1] ox[4]

2 u[3] al k6 + al f4 + 0, (40)

The first one requires that k6 = 0, hence, phil = 0, and also

o
ax[4]

—al f4. (42)

Since f2 depends only on x[4], f4 must be independent of x[1], x[2] and x[3]. As a consequence of eq. (41),
f4 is linear in x[4] and with eq. (42) the final solution is known,

f2 = al k7 x[4]’ + al k8 x[4] + k9, (43)
f4 = —2 k7 x[4] — k8, (44)
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where k7, k8 and k9 are free constants. These functions determine the final form of phi2 and phi3 in egs.
(34) and (35).

One could submit these data for verification. We have done so and no determining equations were left,
as expected. This final test of the solution took only 1 min 30 s of CPU time.

Let us summarize. The general solution of the determining equations leads to a Lie algebra with 8
infinitesimal generators. In terms of the original independent variables x, y, z, ¢+ and the dependent
variables p, ¢ and v, the vector field reads:

a=77" +ﬂy%+ﬂz:_z+"rait+¢p%+q’¢%+‘p”%’ (45)
where

T =ky+k,. p* =0,

It pher ket e

o =ks.

Here k, through k, are independent arbitrary constants (k, = 0 making ¢ =0). Recall that a, is a
parameter in the Karpman equations (18). The 8 infinitesimal generators for these equations are

P =9, Ly=yd,—-x3,

P2= vy Rl=a¢,

P -3, R- (47)
3= 0,, s =ayt 0, — 3,

P4=a,, R3=L11l2 a¢_2t 8,,.

5. Conclusion

We presented a MACSYMA program that can assist in the calculation of the symmetry group of a
system of differential equations. Among various features of this program, let us emphasize a few.

(1) The program is applicable to a system of m equations of order k, with ¢ unknowns and p
independent variables, where all these labels are arbitrary positive integers.

(2) The output is a system of determining equations that is free of repetition and partially solved in the
sense that higher-order equations which are differential consequences of lower-order ones are auto-
matically eliminated.

(3) The parameters “sublisteqs” and “highest-derivatives™ allow partial information to be extracted very
rapidly. These parameters help prevent MACSYMA running out of space (and/or time) when very
large systems are submitted.

(4) Warnings remind the user about division by parameters that were listed as different from zero.

(5) The feedback mechanism allows the determining equations to be solved step by step on the computer,
hence avoiding human error in the algebraic simplifications.

(6) The program can be used to test solutions of the determining equations and hence detect errors in the
literature on the subject.

(7) The program can be used interactively and in batch mode and the amount of messages that are printed
out can be adequately controlled.

(8) The program needs very little data and is straightforward to use provided the user has access to
MACSYMA.
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Application of this program to determine the symmetry group of the Karpman equations has been
straightforward and has lead to new results. The development of a MACSYMA program that solves the
determining equations in part is planned for the future. Upon modification of the algorithm, the program
can be extended to the computation of more general Lie—Bicklund transformation groups [7].
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Notes added in proof

One new parameter must be added to the input data as described in subsection 3.3 of this paper. The
parameter subst_deriv _of _vi: true, controls the substitution of the partial derivatives of the v in eq. (12).
These derivatives are given by (14).

In some cases it is not possible to select the ¢’ in such a way that the differential consequences would
not reintroduce lower order derivatives of the ¢, hence causing a loop! Therefore, we have made the
substitution of the partial derivatives of the ¢' optional. If only the v should be replaced and not their
derivatives, one puts subst_deriv_of _vi: false.

The resulting system of determining equations is ‘“‘equivalent” with the one obtained using the
substitution of all the partial derivatives of the ¢v'. In the later case the system of determining equations
may be somewhat simpler, but the extra substitutions consume time.

The authors became aware of yet another REDUCE program for the calculation of Lie symmetries
(including Lie-Biacklund symmetries) developed by Clara Maria Nucci at the School of Mathematics.
Georgia Institute of Technology, Atlanta, Georgia.
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TEST RUN OUTPUT

You are using the 3 equations of the system.
**% Number of determining equations before simplifications: 249 . **%
2 2

WARNING ! We eliminated the factor: U sS1 S2
1

2 dPHI3 2
which was the coefficient of - U ----- S1 s2
1 du
2
2 3 2
List of factors that are cancelled: (U A2 81, U, U S2, U A2 51, U A2,
1 1 1 1 1
3 2 2 2 2 2 3 T2 2 2
U A2, U S1 W2 , U W2, S1, S2, U S1, U S1 S2 , U S1 S2 )
1 1 1 1 1 1

*** Number of determining equations after simplifications: 30 *hw

*+% These determining equations are stored in LODE. *#*x*

(C32) PRINTEQN (LODE) ;

dPHI3
Equation 1 : =«=-- =0
du
2
dPHI3
Equation 2 : ----- =0
du
1
2
d PHI3
Equation 3 : ~===-- =0
2
au
3
dETA3
Equation 4 : ~---- =0
dx
4
dETA2
Equation 5 : =w=wu- =0
dx
4
dETAl
Equation 6 : ——--- =0
dx
4
Equation 7
2
dF1 d ETA2
2 e 4 e -0
ax dx dx
3 2 3
Equation 8
dETA4 dETA1l
_____ _ Sl
dx dx
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Equation 9 :
2
d ETA2 4aFl
------ §2 -2 --— 51 =0
2 dXx
dax 2

1
]
]
|
1

P

)
~
]
2]
-

-
I

©

]
|
'
i
|
~
[7]
~
1
7]
=
<
L}
°©

Equation 12 :

dETA4 dETAl
e = m————= 0
dx dax
4 1
Equation 13 :
2 2
d PHI3 d ETA4
2 mmmmm—— = m——=—— =
du dx 2
3 4 dax
4
Equation 14
2 2
d PHI3 d ETA2
2 mem—em— = mm—e—— =
ax au 2
2 ax
3
Equation 15 :
2
dFl d ETA2
4 =-= = - =0
dx 2
2 dx
3
Equation 16 :
2 2
dFl d ETA2 d ETAl
2 wem 4 == + 4 —m—m—e— =0
dx dx dx dx dx
3 2 3 1 3
Equation 17
2
d ETA2 dF1l d ETAl
—————— §2 - 2 --- S§1 - 4 ----—-—-
2 dx dx dx
dx 2 1
3
Equation 18 :
dETA2 dF2 d ETAl
----- Wl - === S1 = 2 U =—==—=-
dx ax 2 dXx dX

3 2 1 2

Equation 19 :

2
dETAl dF2 d ETAl
----- Wl - === S1 ~2U =--=~---851=0
dx dax 2 2
3 1 dx
1
Equation 20
2
d ETAl dfF1 d ETAl d ETAl
------ §2 - 2 —=-- §1 + =—==-= 81 = 3 —==—-- S1 =
2 dx 2 2
dx 1 dax dx
3 2 1
Equation 21
2
dETA4 dETAl dF2 d ETAl
----- Wl - === W1l + === 82 + 2 U =-—==——- §52 =
ax dax ax 2 dx dx
4 1 3 1 3
Equation 22 :
2 2 2
d ETAl dFl d ETAl d ETAl
''''' §2 - 2 --- 81 + S1 + 81 =0
2 dax 2 2
dax 1 dax dx
3 2 1
Equation 23 :
2
d ETA2 d ETAl d PHI3 d ETAl
+ S2 + 2 S1 - ==m—==—-
dx dx dx d4ax du dX dx dx
2 3 1 3 3 1 3
Equation 24 :
2 2 2 2
d PHI3 d ETAl d ETAl d ETAl
2 - - - =0
dx du 2 2 2
1 3 dx dax ax
3 2 1
Equation 25 :
dPHI3 dETA4 dETA1
----- -2 Fl -2 ===== 4+ 2 === =
au ax dx
3 4 1
Equation 26 :
2 2 2
dF1 d ETAl d ETAl d ETAl
§ == = ———mem = mmmme— = ——e--= = 0
dx 2 2 2
1 ax dax dx
3 2 1
Equation 27 :
2 2 2
d ETA2 d ETAl dF1l d ETAl
S2 + 852 + 4 --- S1 = ==—=——= S1 =
dx dx dx dx dx dx dXx
2 3 1 3 3 1
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Equation 28 :

2 2 2 2 2 2
d PHI3 2 d PHI3 2 d PHI3 2 d PHI3 2 d F1 2 d F1
—————— W2 + —===-=- W2 4 --—>--- W2 - -==---+ 2 U A2 -——— + 2 U A2 ----
2 2 2 2 1 2 1 2
dx dx dax dx dx dx
3 2 1 4 3 2
2
2 d F1
+ 20 A2 ---- =0
1 2
ax

Equation 29 :

2 3 2 2 3
dF1 d F2 d ETA1l d F2 d F2 d ETA1
2 —-— Wl 4+ -=-- 82 + 2 U ------- S2 + —=-= S1 + ===~ S1 + 2 U ----=- S1
dx 2 2 2 2 2 2 3
3 dax dx dx dax dXx dx
3 1 3 2 1 1
3
d ETAl dr1
42U --—---- S1 +2 --- =0
2 2 ax
dx dx 4
1 2
Equation 30 :
2 2 2 2
dF2 d ETAl d F1 d F1 d F1 dF2
2 --- Wl + 4 U —------- Wl - -~-- 82 - ---- §1 - ---=- S1 + 2 Al PHI3 + 2 ~---
ax 2 dx dX 2 2 2 dx
3 1 3 dx dax dx 4
3 2 1
2
d ETA4 dETA4 dETA1
-2 U -=-=-=- + 4 U Al -~——- -4 U Al ----- =0
2 2 3 dax 3 dx
dx 4 1

(D32) DONE



