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Abstract

Among the multicarrier modulation techniques considered as an alternative to orthogonal frequency division
multiplexing (OFDM) for future wireless networks, a derivative of OFDM based on offset quadrature amplitude
modulation (OFDM/OQAM) has received considerable attention. In this paper, we propose an improved joint
estimation method for carrier frequency offset, sampling time offset, and channel impulse response, needed for the
practical application of OFDM/OQAM. The proposed joint ML estimator instruments a pilot-basedmaximum-likelihood
(ML) estimation of the unknown parameters, as derived under the assumptions of Gaussian noise and independent
input symbols. The ML estimator formulation relies on the splitting of each received pilot symbol into contributions
from surrounding pilot symbols, non-pilot symbols and additive noise. Within the ML framework, the Cramer-Rao
bound on the covariance matrix of unbiased estimators of the joint parameter vector under consideration is derived as
a performance benchmark. The proposed method is compared with a highly cited previous work. The improvements
in the results point to the superiority of the proposed method, which also performs close to the Cramer-Rao bound.

Keywords: OFDM/OQAM, Joint estimation, Filter bank multicarrier, Carrier frequency offset, Sampling time offset,
Channel impulse response, Cramer-Rao bound

1 Introduction
Due to the several benefits of multicarrier modulation
(MCM) over single carrier modulation, the former has
been considered as the primary choice in the physical
layer implementation of telecommunication systems for
quite a long time. Among the MCM family, orthogonal
frequency division multiplexing (OFDM) has been largely
studied and adopted in many wireless and wireline stan-
dards [1, 2]. Still, as an alternative and promising form of
MCM for future generations of wireless networks, a vari-
ant of OFDM based on offset quadrature amplitude mod-
ulation (OFDM/OQAM) has attracted much research
interest in recent years, due to its many advantages over
classical OFDM, including higher spectral efficiency and
reduced sensitivity to timing and frequency mismatch
[3]. In spite of these advantages, accurate carrier fre-
quency and timing synchronization along with channel
estimation (for the purpose of equalization) remain of
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paramount importance for the successful application of
OFDM/OQAM in practical systems.
There exist three main categories of synchronization

and channel estimation methods for OFDM/OQAM sys-
tems: blind, semi-blind and pilot-based methods. While
blind methods, e.g., [4–7], provide higher spectral effi-
ciency by avoiding the overhead of training sequences, the
requirement of a longer observation window for accurate
estimation limits their tracking ability, rendering them
less popular in most practical applications. In contrast,
the semi-blind methods only require the transmission of
a small number of parameters to resolve an estimation
ambiguity, e.g., [8] and as such, they offer a useful trade-
off between spectral efficiency and estimation accuracy.
However, since in practical scenarios, the training symbol
overhead needed to obtain a better estimation perfor-
mance is usually tolerated, our focus here is on pilot-based
synchronization and channel estimation.
Compared to channel estimation, pilot-based car-

rier frequency offset (CFO), and sampling time off-
set (STO) estimation has received less attention in the
OFDM/OQAM literature. In [9], a maximum likelihood
(ML) symbol timing estimator is derived by using two
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training symbols per burst transmission. In [10], using the
same preamble structure, the authors extend this work
by proposing a joint ML-based estimator of the CFO and
STO. Then, to avoid the computational complexity of a
two dimensional ML search, a feasible joint estimation
method, called approximate maximum-likelihood (AML),
is developed by assuming a small CFO and using only one
OQAM preamble symbol per burst. The same authors,
in [11], propose a joint least-squares (LS) CFO and STO
estimation method by using two identical OFDM/OQAM
pilot symbols per burst transmission. Therein, as a time-
domain method, the estimation is performed before the
analysis filter bank (AFB) at the receiver. In [12], by using
a polyphase network implementation of OFDM/OQAM,
the preloading technique, and a conjugate-symmetric
preamble, the CFO and STO are separately estimated. The
CFO estimation exploits the phase difference between
the adjacent pilots while the frame detection and STO
estimation are derived based on the conjugate-symmetry
property. Moreover, in [13, 14], a joint CFO and STO
estimation method is proposed by using a four-column
preamble per burst transmission, which contains zeros
in every other subcarrier and every other symbol time
index.
In contrast to the CFO and STO estimation, during

the past decade, many pilot-based channel estimation
schemes have been proposed for OFDM/OQAM systems,
which can be broadly classified into frequency domain
and time domain methods. Frequency domain methods,
e.g., [15–23], rely on the assumption that the symbol dura-
tion is much longer than the maximum channel delay
spread. While these methods are generally characterized
by a lower computational complexity, when the above
condition is not satisfied, they will suffer from a perfor-
mance degradation. Time domain methods, e.g., [24–26],
attempt to estimate the channel impulse response (CIR)
by using sequences of pilot tones. In [24], a time domain
CIR estimator is proposed based on the multiple sig-
nal classification (MUSIC) and LS algorithms. In [25], a
per-subchannel estimator is proposed in which the CIR
on each subcarrier is estimated separately. In [26], the
authors exploit pilot tone structures in OFDM/OQAM
systems to derive two new CIR estimators, namely the lin-
ear minimum mean square error (LMMSE) and weighted
least-square (WLS) estimators. The former exploits a pri-
ori knowledge of the CIR covariance matrix while the
latter only requires the knowledge of the channel length;
both methods are benchmarked against the Cramer-Rao
bound (CRB). In a recent paper [27], based on a combina-
tion of the ideas of [15] and [28], a coded auxiliary pilot
scheme is proposed for frequency domain channel esti-
mation. The coded auxiliary pilots are carefully designed
to compensate for the inherent imaginary interference of
OFDM/OQAM.

Although the aforementioned synchronization and
equalization problems have been separately addressed
throughout the literature on OFDM/OQAM systems,
only a few research papers can be found, e.g., [29], that are
devoted to STO, CFO and channel estimation at the same
time, let alone a joint estimation approach based on a uni-
fied criterion. In fact, to the best of our knowledge, a joint
estimation method for OFDM/OQAM systems, account-
ing for all the three error sources, i.e., CFO, STO, and CIR,
has not yet been developed. Hence, our focus in this paper
is to develop and investigate a general estimation method
to fill this need.
Specifically, a new formulation of the joint parame-

ter estimation problem in OFDM/OQAM system is first
introduced, which is based on splitting the interference
term on the desired received pilot into adjacent pilot, non-
pilot and noise contributions. Then, by assuming Gaus-
sian noise and independent input symbols, a pilot-based
joint ML estimator of CFO, STO, and CIR is derived.
Such a general approach offers many advantages, includ-
ing a unified framework for the estimation of multiple
parameters using a common preamble/burst structure
and the proper treatment of different types of interfer-
ence in the estimator derivation. More importantly, a
significant performance improvement is expected in the
joint estimation of the aforementioned error sources as
opposed to their separate estimation. Through numeri-
cal simulations of wireless OFDM/OQAM transmission
over multipath fading channels, the proposed estimator
is evaluated by comparing the accuracy of the result-
ing parameter estimates to that obtained with a selected
benchmark approach among a few existing works where
all the three error sources of our focus are estimated1, as
well as to the CRB. The simulation results show that, the
proposed method is capable of significant improvements
in parameter estimation accuracy, performing close to the
CRB. In turn, this improved performance leads to a lower
bit error rate (BER) of the compensated (i.e., synchronized
and equalized) transceiver system.
This paper is a more developed and improved version

of our previous work [30] addressing the joint estima-
tion problem under a more restrictive set of assumptions.
Specifically, the new contributions of the current work
include the following:

• In [30], orthogonality of the OFDM/OQAM
analysis/synthesis filters in the complex domain is
assumed, as opposed to orthogonality in the real
domain only. The former condition leads to
important simplifications in the derivation of the ML
estimator, especially in the statistical properties of the
subband noise and data interference.
As a consequence of such simplifications, the
resulting estimator in [30] only qualifies as an
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approximate ML estimator, although it shows
performance improvements compared to earlier
work. In contrast, herein, by invoking the true
orthogonality condition of OFDM/OQAM in the real
domain, we can strive for an exact ML-based
estimator, which achieve even better estimation
accuracy.

• Another important contribution of this paper is the
analysis of the distributions of the subband noise and
data interference terms in the general OFDM/OQAM
framework, where the pilot tones can be scattered or
appended as preamble to the data. In particular, we
show that the subband noise contributions, after the
real operation, are uncorrelated along the time and
frequency axes, as a consequence of the exact
orthogonality relation. Furthermore, we show
through analysis and numerical simulations that the
data interference terms are well modeled by a
Gaussian distribution for which we derive the second
order statistics. We further show that the data
interference terms are only weakly correlated along
the time and frequency axes. We conclude that with a
carefully designed pilot distribution, their correlation
can be confidently approximated as zero.

• Based on this reformulation of the problem and
subsequent derivation of an accurate log-likelihood
function for the received pilot tones, we derive in
detail the CRB for the joint parameter estimation
problem under consideration. The former plays a key
role in demonstrating the near optimality of the
newly derived joint ML-based estimator, whose
performance (estimation error) comes within 1 dB or
less from the bound.

• In addition to the above new theoretical
contributions, the paper contains a number of
improvements, including a computational complexity
analysis and discussion of practical approaches to
reduce implementation complexity.

The paper is organized as follows. Section 2 is dedi-
cated to reviewing the OFDM/OQAM system model as
implemented in this work. In Section 3, the joint ML esti-
mator of the CFO, STO, and CIR is developed in details
based on a new formulation. Several related aspects are
also discussed, including: computational simplifications
for efficient implementation; evaluation of computational
complexity; CFO and STO compensation and channel
equalization. The CRB on the unbiased estimator of the
aforementioned parameters is derived in Section 4. The
methodology used in our simulations and the results are
provided in Section 5, while Section 6 concludes the paper.
Appendices A and B provide important developments
about statistical properties of the subband noise and data
interference terms.

Notations: Bold-faced letters indicate vectors andmatri-
ces, e.g., A. The (i, j)th entry of a matrix is represented
by [A]i,j. The superscripts T and H stand for the trans-
pose and Hermitian transpose of a vector or matrix,
respectively. The operator ∗ represents a linear convolu-
tion while the superscript ∗ denotes complex conjugation.
The identity and zero matrices are denoted by I and 0,
respectively. The paraconjugate operation on a matrix
function E(z) is defined by Ẽ(z) = E(1/z∗)H . The opera-
tors E{.}, R[ .] and I[ .] stand for the expected value, real
part and imaginary part of their arguments, respectively.
The floor operation is denoted by �.� while ||.|| represents
the second norm operation.

2 Problem formulation
In this section, the OFDM/OQAM system model is pre-
sented along with its input-output relation over a fre-
quency selective fading channel. The effects of the CFO
and STO on the reconstructed signal are discussed and
finally, the joint estimation problem for the CFO, STO,
and CIR is stated.

2.1 OFDM/OQAM SystemModel
The OFDM/OQAM system model, as implemented in
this work and commonly used in the literature, e.g., [31],
is illustrated in Fig. 1. OFDM/OQAM makes use of a
specific filter bank structure where the upsampling and
downsampling factor equals half the number of subcar-
riers, denoted by M. At each input symbol time, with
symbol duration Ts, a vector of discrete input symbols
is loaded on the M available subcarriers. The latter are
separated in frequency by Fs = 1/Ts, so that the system
occupies a total bandwidth ofW = MFs.
On the transmitter side, let xk,n ∈ A denote the complex

valued symbols at the input, where k ∈ {0, 1, . . . ,M − 1}
is the frequency index, n ∈ Z is the symbol time index,
and A is the digital constellation from which the symbols
are drawn. In the first stage of pre-processing, each xk,n is
converted to a pair of real symbols, dk,n, according to the
following equations,

dk,2n =
{
R

[
xk,n

]
, k even

I
[
xk,n

]
, k odd

dk,2n+1 =
{

I
[
xk,n

]
, k even

R
[
xk,n

]
, k odd

.

(1)

This complex-to-real (C2R) operation doubles the sam-
pling rate of the subcarrier signals. The second stage of
pre-processing involves multiplication of the real OQAM
symbols, dk,n, by the sequence θk,n = ej

π
2 (k+n), which

results in complex symbols

sk,n = dk,nθk,n = dk,nej
π
2 (k+n) . (2)
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Fig. 1 OFDM/OQAM system model

It is notable that the OQAM symbol duration is Ts/2, i.e.,
one half of the input symbol duration. Next, in the syn-
thesis filter bank (SFB), the input subcarrier signals sk,n
are first upsampled byM/2, and then passed through syn-
thesis filters with finite impulse responses (FIR) fk[m] of
length Lp and corresponding system functions Fk(z) =∑Lp−1

m=0 fk[m] z−m. Finally, the individual filter outputs are
added together to form the baseband output y[m] as
follows,

y[m]=
M−1∑
k=0

∑
n∈Z

sk,n fk
[
m − nM

2

]
. (3)

In a practical implementation of OFDM/OQAM, the
output signal y[m] is passed through a pulse shaping fil-
ter and up-converted to an appropriate frequency band
for transmission over the physical medium. In this work,
however, we consider an equivalent baseband channel
model for simplicity. Specifically, the channel is mod-
eled as a linear time-invariant system with FIR h[ l] of
length Q, and corresponding system function H(z) =∑Q−1

l=0 h[ l] z−l. The filter length Q is proportional to the
channel delay spread τds, that is, Q = �Mτds/Ts� + 1. The
channel coefficients h[ l] are assumed to remain constant
during the transmission time of one data block of N sym-
bols, i.e., block duration plus overall processing delay of
the transceiver system. Finally, the channel output is cor-
rupted by additive white Gaussian noise (AWGN) η[m],
assumed to be circularly complex with zero mean and
variance E[ |η[m] |2]= σ 2

η . A more detailed discussion of
the effects of fading channels, CFO and STO is provided
in Subsection 2.2.
On the receiver side, let ȳ[m] denote the received base-

band signal after transmission through the noisy chan-
nel. In the analysis filter bank (AFB), signal ȳ[m] is
passed through the analysis filters with FIR gk[m] of
length Lp and corresponding system functions2 Gk(z) =∑0

m=−Lp+1 gk[m] z−m, whose outputs are downsampled
byM/2 afterwards. The resulting symbols at the output of
the AFB can be represented as

s̄k,n =
∞∑

m=−∞
ȳ[m] gk

[
nM
2

− m
]
, (4)

where the range of summation over m is determined by
the finite support of the subband FIR filters.
The symbols s̄k,n then pass through the first post-

processing stage, which involves multiplication by the
sequence θ∗

k,n followed by taking the real part, i.e.,

d̄k,n = R
[
s̄k,n θ∗

k,n
] = R

[
s̄k,n e−j π2 (k+n)

]
. (5)

The second post-processing stage is the real-to-complex
(R2C) conversion, where two consecutive real valued sym-
bols are combined into a complex one as follows,

x̄k,n =
{
d̄k,2n + jd̄k,2n+1, k even ,
d̄k,2n+1 + jd̄k,2n, k odd . (6)

We consider a complex-valued, uniform modulated fil-
ter bank, where the subchannel filters are all generated
from a common low-pass prototype filter, p[m], by means
of exponential modulation as follows,

fk[m]= p[m] ej
2πkm
M , gk[m]= f ∗

k [−m] , (7)

where k ∈ {0, 1, . . . ,M − 1}.
The prototype filter used in this work is a near perfect

reconstruction (NPR), real-valued linear phase (symmet-
ric) FIR low-pass filter with length Lp and support region
m ∈ {0, 1, . . . , Lp − 1}. It is derived by using the frequency
sampling technique, as in [31], with overlap factor K, so
that its non-zero coefficients can be represented in closed
form as

p[m] = α

KM

(
1 + 2

K−1∑
l=1

(−1)lA[ l] cos
(
2π l
KM

(m + 1)
))

,

(8)

where the coefficients A[ l] satisfy A[ l]2 +A[K − l]2 = 1
for l = 1, 2, . . . , �K/2� and α is a normalization factor
such that

∑
m p[m]2 = 1.
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In particular, for the adopted value of the overlap factor,
i.e., K = 4, we have

A[ 1]= x, A[ 2]= 1/
√
2, A[ 3]=

√
1 − x2 , (9)

where A[ 1]= x can be determined by using various opti-
mization criteria. Since the LS criterion is used in this
work (i.e., minimizing stopband energy), we set A[ 1]=
0.97741677 according to Table 1 in [31]. Since the pro-
totype filter is linear-phase (symmetric), the overall pro-
cessing delay of the complete OFDM/OQAM transceiver
system will be LpTs/M.
By using the paraconjugates of the synthesis filters as

the analysis filters in the receiver, as specified in (7), the
orthogonality condition of the transceiver system can be
expressed as

R

{
θ∗
k,nθk′,n′

∞∑
m=−∞

f ∗
k

[
m − nM

2

]
fk′

[
m − n′M

2

]}
≈ δkk′δnn′ ,

(10)

where δkk′ denotes theKronecker delta function [3, 32, 33]3.

2.2 Effects of fading channel, carrier frequency offset,
and sampling time offset

In addition to channel fading and additive noise, as illus-
trated in Fig. 1, the received signal ȳ[m] at the front-end of
the receiver will be affected by CFO due to oscillator mis-
match or Doppler effect, as well as STO due to imperfect
sampling. These effects can bemathematically modeled as

ȳ[m] = (h[m] ∗y[m − τ0] ) e−j2πμ0m/M + η[m] (11)

=
⎛
⎝Q−1∑

l=0
h[ l] y[m − l − τ0]

⎞
⎠ e−j2πμ0m/M + η[m] ,

(12)

where τ0 is the normalized STO4 with respect to the sam-
pling period at the baseband transmitter output, Ts/M,
and μ0 is the normalized CFO with respect to Fs, the sub-
carrier frequency spacing. It is worth mentioning that,
similar to previous works on this subject (e.g., [12, 13])
the second-order effects, i.e., those of CFO, STO, and CIR
on one another, have been neglected in this model. It has
been observed through simulations that these effects are,
indeed, negligible.
From (12), (4), and (5), useful expressions can be

obtained for the real-valued output symbols d̄k,n that
appear in the OQAM post-processing module on the
receiver side in Fig. 25. Specifically,

d̄k,n = ζk,n + ηk,n , (13)

where ζk,n represents the contribution from the transmit-
ted data (pilot and information symbols) as given by

ζk,n =R

{
θ∗
k,n

( ∞∑
m=−∞

(h[m] ∗y[m − τ0] )

e−j2πμ0m/Mgk
[
nM
2

− m
])}

, (14)

and ηk,n represents the additive noise (i.e., the contribu-
tion from η[m]) passed through analysis filter bank and
first post-processing stage, as given by

Fig. 2 Block diagram of the OFDM/OQAM receiver with ML-based compensation
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ηk,n = R

{
θ∗
k,n

( ∞∑
m=−∞

η[m] gk
[
nM
2

− m
])}

. (15)

Substituting (3) into (14) and using (7), ζk,n can be
further developed as follows,

ζk,n = R

⎧⎨
⎩

Q−1∑
l=0

h[ l] λk,n(l,μ0, τ0)

⎫⎬
⎭ , (16)

where we define

λk,n(l,μ0, τ0) =
M−1∑
k′=0

∞∑
n′=−∞

dk′,n′γ k′,n′
k,n (l,μ0, τ0) , (17)

γ
k′,n′
k,n (l,μ0, τ0) = θ∗

k,nθk′,n′
∞∑

m=−∞
fk′

[
m − l − τ0 − n′M

2

]

f ∗
k

[
m − nM

2

]
e−j2πμ0m/M . (18)

The term γ
k′,n′
k,n (l,μ0, τ0) in (18), known as ambigu-

ity function [34], characterizes the level of the ‘intrinsic
interference’ of the n′th real input sample from the k′th
subband, dk′,n′ , on the nth output sample from the kth sub-
band, through the lth channel tap, h[ l], in the presence of
CFO, μ0, and STO, τ0. In the special case l = μ0 = τ0 =
0, the quantity γ

k′,n′
k,n (0, 0, 0) describes the level of com-

plex orthogonality of the analysis/synthesis filters of the
OFDM/OQAM transceiver system up to a multiplicative
factor θk′,n′ θ∗

k,n. The values of γ
k′,n′
k,n (0, 0, 0) for the filter

bank adopted in this work, with the prototype filter p[m]
and its parameters as described in Section 2.1, are given
in Table 1. We note that due to the finite length of the
subband filters fk[m], the summation in (18) is, in fact,
performed over a finite range.
For the same reason, the range of summation over the

symbol time index n′ in (17) is also finite.

2.3 Problem statement
If estimates of the CFO and STO are available, they can
be compensated at the receiver front-end to avoid their
degrading effects. Likewise, if estimates of the CIR coeffi-
cients are available, they can be used on the receiver side
to design a set of subband equalizers to compensate for
the distortion caused by the multipath fading channel6.
The estimation and compensation of these imperfections

is critical to achieve the low level of bit error rate (BER)
required for the practical operation of multi-carrier mod-
ulation in broadband communication systems.
The main focus of this work, therefore, lies in the joint

estimation and compensation of above imperfections for
the OFDM/OQAM system. To this end, the use of pilot-
based estimation is preferred over the blind approach,
since the latter generally requires a longer data record
to achieve a desired level of accuracy, which in turns
increases the computational complexity and limits appli-
cations to static or very slowly time-varying channels.
Furthermore, the framework of point estimation theory
is employed here, where the parameters under estimation
are modeled as unknown, yet deterministic quantities,
i.e., no prior distribution is assumed. By transmitting a
sequence of known pilot tones, and observing the received
sequence over a given time interval, our specific interest
lies in developing and investigating the properties of the
joint ML estimator of the CFO μ0, STO τ0 and CIR h[ l]
for the generic OFDM/OQAM transceiver system illus-
trated in Fig. 1 and described in mathematical terms in
Section 2.1.We shall denote the resultingML estimates by
μ̂, τ̂ and ĥ[ l], respectively.

3 Joint estimation
In this section, we first introduce our proposed approach
to the estimation problem by splitting a received pilot
symbol into pilot, data, and noise contributions. Next,
we formulate and develop a pilot-based joint ML esti-
mator of the CFO, STO and CIR. We then present
possible simplifications to reduce the implementation
complexity of the resulting joint ML estimator and dis-
cuss its computational requirements. Finally, we explain
how the jointly estimated parameters can be used
to compensate the detrimental effects of STO, CTO,
and CIR.

3.1 Structure of received pilots
In this work, for convenience in analysis, a real OQAM
symbol at time n is defined as the ordered set of M
subband symbols dk,n for k ∈ {0, 1, . . . ,M − 1}, as they
appear at the output of the C2R modules in the pre-
processing stage of the SFB in Fig. 1 To allow for flexibility
in the application of the derived pilot-based estimation
method, we consider a general framework for the alloca-
tion of pilots. Specifically, within a burst of N consecutive

Table 1 Transmultiplexer response γ
k′ ,n′
k,n (0, 0, 0) of the OFDM/OQAM system using Bellanger’s (also known as PHYDYAS) filter [41, 42]

with K = 4 (numerical values truncated to 4 digits)

n′ = n − 4 n′ = n − 3 n′ = n − 2 n′ = n − 1 n′ = n n′ = n + 1 n′ = n + 2 n′ = n + 3 n′ = n + 4

k′ = k − 1 0.0107 j 0.0506 j 0.1246 j 0.1980 j 0.2283 j 0.1980 j 0.1246 j 0.0506 j 0.0107 j

k′ = k -0.0002 0.0765 j -0.0005 0.5720 j 1 -0.5720 j -0.0005 -0.0765 j -0.0002

k′ = k + 1 -0.0107 j 0.0506 j -0.1246 j 0.1980 j -0.2283 j 0.1980 j -0.1246 j 0.0506 j -0.0107 j
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symbols (e.g., from time n = 0 to N − 1), a total of
Np symbols, denoted as dk,n ≡ d p

k,n, are transmitted as
pilots with time and frequency indexes (k, n) ∈ P , where
P ⊆ {0, . . . ,M − 1} × {0, . . . ,N − 1}. In order to sim-
plify the mathematical developments, we may consider a
rectangular distribution of pilots, as in P = S × T where
S ⊆ {0, . . . ,M − 1} and T ⊆ {0, . . . ,N − 1}; however,
the extension of the resulting estimator to an arbitrary
time-frequency grid P is straightforward. By definition,
the pilot symbols d p

k,n are deterministic quantities, known
to the receiver side.
For clarity in the presentation, the data or information

symbols (i.e., non-pilot) are denoted as dk,n ≡ d d
k,n where

(k, n) /∈ P . These symbols, unknown to the receiver, are
modeled as independent and identically distributed (i.i.d.)
random variables with zero-mean and variance 1

2σ
2
x .

As mentioned earlier, a demodulated pilot symbol on
the receiver side of the OFDM/OQAM system, assuming
a general pilot distribution P which is scattered among
the data symbols, consists of additive contributions from
surrounding pilot symbols, surrounding data symbols and
noise. Specifically, for the case (k, n) ∈ P , the real-valued
output symbol d̄k,n ≡ d̄ p

k,n in (13) can be written as

d̄ p
k,n = ζ

p
k,n + ζ d

k,n + ηk,n , (19)

where ζ
p
k,n and ζ d

k,n, respectively, denote the contributions
from surrounding pilots and data. The pilot contribution
can be expressed as

ζ
p
k,n = R

⎧⎨
⎩

Q−1∑
l=0

h[ l] λ̄k,n(l,μ0, τ0)

⎫⎬
⎭ , (20)

where

λ̄k,n(l,μ0, τ0) =
∑

(k′,n′)∈P
d p
k′,n′γ

k′,n′
k,n (l,μ0, τ0) . (21)

The data contribution, which can be interpreted as “data
interference”, can be expressed as

ζ d
k,n =

∑
(k′,n′)/∈P

d d
k′,n′R

⎧⎨
⎩

Q−1∑
l=0

h[ l] γ k′,n′
k,n (l,μ0, τ0)

⎫⎬
⎭ .

(22)

In the sequel, we use the described splitting of a
received symbol into pilot, data and noise contribu-
tions to develop the joint ML estimator of CFO, STO
and CIR for a general pilot-data distribution. When
the received symbol d̄k,n = d̄ p

k,n corresponds to a
transmitted pilot, in the aforementioned formulation in
(20) and (21), the various terms d p

k′,n′ represent the
contribution from the corresponding transmitted pilot(
i.e. d p

k,n

)
, as well as, depending on the pilot distribution,

possible contributions from surrounding pilot symbols

(
i.e. , d p

k′,n′ for (k′, n′) ∈ P and (k′, n′) �= (k, n)
)
. Since the

pilots are known symbols, this part can be accounted for
as a deterministic component (albeit dependent on the
unknown parameters μ0, τ0 and h[ l]) in the derivation of
the ML estimator. To further proceed with this derivation,
we therefore need to characterize the statistical prop-
erties of the noise term ηk,n and the data contribution
term ζ d

k,n in the decomposition (19) of the received pilot
symbol d̄ p

k,n.
From the AWGN assumption made earlier on the addi-

tive channel noise η[m], and the linearity of the processing
operations involved in the OFDM/OQAM receiver, it fol-
lows that the subband noise contribution ηk,n is a jointly
Gaussian (real) random process in the variables (k, n). Fur-
thermore, on account of the orthogonality property of the
analysis and synthesis filters, as stated in (10), it follows
that the various random variables ηk,n (for different pairs
(k, n)) are uncorrelated and therefore statistically inde-
pendent. Specifically, it can be shown (see Appendix A)
that

E {ηn,kηn′,k′ } = σ 2
η

2
δkk′δnn′ . (23)

The data contribution term ζ d
k,n in (22) is unknown to

the receiver and therefore should be modeled as a (real-
valued) random process. Based on the assumptions made
above on d d

k,n, we note that the expression (22) involves the
weighted sum of a large number of statistically indepen-
dent, zero-mean terms d d

k′,n′ . Hence, invoking the central
limit theorem, we shall assume that ζ d

k,n in (22) can be con-
veniently modeled as zero-mean (real-valued) Gaussian
random process. This assumption is further investigated
in Appendix B. In addition, under mild assumptions usu-
ally satisfied in applications, it can be shown that the
random variables ζ d

k,n (for different pairs (k, n)) are nearly
uncorrelated. Specifically (see Appendix B), we have that

E
{
ζ d
k,nζ

d
k′,n′

}
≈

σ 2
ζ d

2
δkk′δnn′ , (24)

σ 2
ζ d

= σ 2
x
2

∑
(k′,n′)/∈P

(
R

{∑
l
h[ l] γ k′,n′

k,n (l,μ0, τ0)
})2

.

(25)

From (19), (23), and (24) by introducing vk,n = ζ d
k,n+ηk,n

and assuming that the data and the additive noise are
statistically independent, it follows that the terms vk,n
are independent Gaussian random variables with variance
σ 2
v = σ 2

ζ d
+ σ 2

η

2 . Finally, by substituting vk,n in (19) we will
have

d̄ p
k,n = ζ

p
k,n + vk,n , (26)

which provides a convenient basis for the derivation of the
coveted ML estimator.
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3.2 Pilot-based joint ML estimator
Focusing on the pilot contribution in (20), we have

ζ
p
k,n = R

⎧⎨
⎩

Q−1∑
l=0

h[ l] λ̄k,n(l,μ0, τ0)

⎫⎬
⎭ (27)

=
Q−1∑
l=0

(
hR[ l] λ̄Rk,n(l,μ0, τ0) − hI [ l] λ̄Ik,n(l,μ0, τ0)

)
,

(28)

where the superscripts R and I are used in the sequel to
identify the real and imaginary parts of the underlying
quantity. Hence, by letting

λRk,n(μ0, τ0) =
[
λ̄Rk,n(0,μ0, τ0), λ̄Rk,n(1,μ0, τ0), . . . , λ̄Rk,n(Q − 1,μ0, τ0)

]
,

λIk,n(μ0, τ0) =
[
λ̄Ik,n(0,μ0, τ0), λ̄Ik,n(1,μ0, τ0), . . . , λ̄Ik,n(Q − 1,μ0, τ0)

]
,

hR =[ hR[ 0] , hR[ 1] , . . . , hR[Q − 1] ]T ,

hI =[ hI [ 0] , hI [ 1] , . . . , hI [Q − 1] ]T ,

we can obtain the relationship between the received sym-
bol and the channel taps as

ζ
p
k,n =

[
λR
k,n(μ0, τ0) λI

k,n(μ0, τ0)
]
1×2Q

[
hR

−hI
]
2Q×1

. (29)

By stacking d̄ p
k,n, λR

k,n(μ0, τ0) and λI
k,n(μ0, τ0), and vk,n

over the time index n and then over the frequency index
k, we arrive at the following matrix-vector equation,

[
D̄p]

Np×1 =[
�R(μ0, τ0) �I(μ0, τ0)

]
︸ ︷︷ ︸

�′(μ0,τ0) Np×2Q

[
hR

−hI
]

︸ ︷︷ ︸
h′ 2Q×1

+ [V ]Np×1 .

As a result of the AWGN assumption and the ensu-
ing assumptions on the noise and data interference terms
ηk,n and ζ d

k,n, V will be a real Gaussian random vector
with zero mean and a nearly diagonal covariance matrix
CV = E[VVT ]≈ σ 2

v I. Similarly, for given values of μ0,
τ0 and h, the observation D̄p is also a Gaussian random
vector with mean�′(μ0, τ0)h′ and covariance CD̄p ≈ σ 2

v I.
Hence, the probability density function (PDF) of D̄p can
be presented as,

f (D̄p;μ0, τ0,h′) = 1√
(2π)Np det(CD̄p )

exp
[
−1
2
(
D̄p−�′(μ0, τ0)h′)TC−1

D̄p

(
D̄p−�′(μ0, τ0)h′)].

(30)

Thus, the log-likelihood function (LLF) is written, up to
a constant, as,

L
(
D̄p;μ0, τ0,h′) = log

(
f
(
D̄p;μ0, τ0,h′))

= − 1
2σ 2

v

[
D̄p − �′(μ0, τ0)h′]T [

D̄p − �′(μ0, τ0)h′] .

(31)

The joint ML estimators of the CFO, CIR and STO can
be obtained by maximizing the derived LLF with respect
to the parameters μ0, τ0 and h′. Let the unknown search
parameters for CFO and STO be denoted by μ and τ . By
fixing μ and τ and varying h′ in C

2Q, the LLF achieves its
maximum at

h̃′(μ, τ) = �′(μ, τ)†D̄p , (32)

where �′(μ, τ)† = (�′(μ, τ)H�′(μ, τ))−1�′(μ, τ)H is the
pseudo-inverse of �′(μ, τ). By substituting the resulting
channel guess of (32) into the LLF we can obtain the
CFO and STO estimates using a two-dimensional search
according to

(μ̂, τ̂ ) = argmax
(μ,τ)

L(D̄p;μ, τ , h̃′) . (33)

The ML estimate of the CIR can be obtained by substi-
tuting the estimates (μ̂, τ̂ ), resulting in

ĥ′ = h̃′(μ̂, τ̂ ) = �′(μ̂, τ̂ )†D̄p . (34)

3.3 Computational simplifications
Herein, three simplifications are introduced in comput-
ing λ̄k,n(l,μ0, τ0) in (21) to speed up the calculation of
the LLF (31) significantly. To this end, we first consider
the term γ

k′,n′
k,n (l,μ0, τ0) in (18), whose definition includes

a summation over the length (pretty large) of the proto-
type filter p[m]. Since for the filter banks, we have fk[m]=
p[m] ej2πkm/M, we can write

γ
k′,n′
k,n (l,μ0, τ0) = θ∗

k,nθk′,n′ϕn,n′
k−k′(l,μ0, τ0)

exp
{
− j2π

M

(
k′(l + τ0)+M

2
(n′k′ − nk)

)}
,

(35)

where letting α = k − k′

ϕn,n′
α (l,μ0, τ0) =

∞∑
m=−∞

p
[
m − l − τ0 − n′M

2

]

p
[
m − nM

2

]
e

−j2π
M m(μ0+α) . (36)

In this way, instead of calculating γ
k′,n′
k,n (l,μ0, τ0) for all

the possible pairs of (k′, k), it is sufficient to compute
ϕn,n′

α (l,μ0, τ0) for only possible values of k − k′ = α and
find the corresponding γ

k′,n′
k,n (l,μ0, τ0) by multiplication

with a discrete phase factor as in (35). The number of pos-
sible values of α depends on the distribution of the pilots
over the frequency axis.
In the second simplification, regarding the calcula-

tion of the interference from the surrounding pilots,
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λ̄k,n(l,μ0, τ0), we might assume that, owing to the excel-
lent spectral containment of the prototype filters, the
main source of the CFO-induced interference on each
subband is due to its first few neighboring subbands; i.e,
the interference from more distant subbands is negligi-
ble. Hence, to derive the total interference from subbands
k′ on the subband with index k in (21), it suffices to take
into the account the interference from a few neighboring
pilot-carrying subbands on each side of the kth subband.
Consequently, (21) can be approximated as

λ̄k,n(l,μ0, τ0) ≈
k+β∑

k′=k−β

(k′,n′)∈(P)

d p
k′,n′γ

k′,n′
k,n (l,μ0, τ0) , (37)

where in practice, the value of β can be set7to 2.
To reduce the complexity of the estimator even further

andmake the two-dimensional search for CFO-STOmore
practical, the third compromise is to only consider the
first few channel taps in computing pilot contribution in
(27). This is due to the fact that these taps contribute the
most to the entire power of the channel. By considering
the implemented channel as described in Section 5.1, this
reduces the running time of the proposedmethod approx-
imately by three times. As our experiments confirm, this
simplification only introduces a marginal degradation to
the performance of the estimator, while maintaining it still
significantly superior to that of the benchmark.
It is notable that, from (32) to (34), a second iteration

of this estimation method can be performed by running
a two-dimensional search over (μ, τ) using the obtained
channel estimate and continuing to obtain a new set of
estimates. However, our experiments indicate that the
improvement gained by performing a second iteration is
not significant enough to justify the additional complex-
ity. Indeed, as it will be seen from the results, performing
close to the CRB, a single iteration suffices to provide a
significant improvement over the benchmark method.
As the LLF in (31) provides a closed form solution to

the estimation problem, the multi-dimensional ML esti-
mation is reduced to a two-dimensional search over the
unknown CFO and STO, μ and τ . The search is per-
formed in two stages, namely, a coarse search followed
by a fine one in proximity of the coarse estimate. The
decisive factor in the complexity of the proposed ML
estimator is the number of operations required for each
evaluation of the LLF. This is approximately calculated as
C  8MQN2

p + 8Q2Np + O(QNp) complex-valued oper-
ations where the first term is the cost of forming �′(μ, τ),
the second term is the cost of QR decomposition to solve
D̄p = �′(μ, τ)h̃′(μ, τ) and the third term is the cost
of forming the LLF. Since the first term is dominant for
typical Np and Q, we conclude that the overall complex-
ity is proportional to the squared number of pilot tones

in the burst. This complexity evaluation is based on the
case where none of the aforementioned practical simplifi-
cations above in Subsection (3.3) are applied. Employing
these simplifications reduces the complexity of the practi-
cal implementation by a factor ofO

(
QM2), where the first

two foregoing simplifications each reduce the complexity
by a factorO(M) and the third one by a factorO(Q).

3.4 Compensation of the estimated parameters
Figure 2 illustrates the block diagram of the
OFDM/OQAM receiver as implemented in the proposed
method for estimation and compensation of CFO, STO
and CIR. First, after passing through the AFB and mul-
tiplication by θ∗

k,n and real taking, the received symbols
are used to obtain the ML estimates of the CFO, STO and
CIR. The CFO and STO estimates are then fed back to
correct the signal at the front-end of the receiver. The
CFO-STO compensated signal can be written as

ȳc[m]= WI [m; τ̂ ] ∗
(
ȳ[m] e

j2πμ̂m
M

)
, (38)

where WI [m; τ̂ ] represents the hamming-windowed sinc
fractional-delay interpolation filter used for STO simu-
lation [35]. Next, the CFO-STO corrected symbols pass
through the AFB again where, this time, a single-tap per
subcarrier equalization is performed based on the DFT of
the estimated CIR according to the following equation,

ek = 1
Ĥ(z)

∣∣∣∣
z=ej2πk/M

, (39)

where ek for k ∈ {0, . . . ,M − 1} is the coefficient of the
equalizer for subband k and Ĥ(z) = ∑Q−1

l=0 ĥ[ l] z−l, ĥ[ l]
being the estimated CIR coefficients. It is notable that
although a single-tap per subcarrier equalizer is used here,
generalizations to other, more advanced types of equaliz-
ers are possible. This simple equalization scheme inverts
the channel at the center frequency of the corresponding
subcarrier and it works well in mildly selective channels as
long as the number of subcarriers is sufficiently large [36].
The equalized symbols can be represented as,

s̄ck,n =
( ∞∑
m=−∞

ȳc[m] gk
[
nM
2

− m
])

ek . (40)

The final received symbols are then obtained by under-
going the OQAM post-processing stage.
It is notable that the formulation of the problem

through the linear equations obtained from the LLF of
the received pilots, leads to performing the channel esti-
mation in the time domain. Furthermore, as mentioned
earlier in Section 1, the channel estimation methods in
time domain do not make assumption on the subchannels
being almost flat. In contrast, the channel equalization has
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been performed in the frequency domain by using one-
tap-per-subcarrier scheme, which is a common equaliza-
tion technique in MCM systems including OFDM and
OFDM/OQAM. In addition to simplicity, this technique
allows for flexibility of equalization in a multi-user sce-
nario where different subchannels need to be equalized
separately.

4 Joint Cramer-Rao bound analysis based on the
Gaussian assumption for data interference ζ d

k,n
In this section, assuming known transmitted symbols, i.e.,
pilots, the CRB on the covariance matrix of unbiased esti-
mators of the CFO, STO andCIR are derived [37]8. Letting
θ be the vector including the unknown (real) parameters
we have,

θ =
[
μ, τ , (hR)T ,

(
hI

)T]T
. (41)

Therefore, θ holds (2Q + 2) real entries with indexes
denoted by a and b ∈ {1, 2, . . . , 2Q + 2}. The Fisher infor-
mation matrix (FIM), J , is then (2Q + 2) × (2Q + 2).
For the covariance matrix CV , since for all a in the afore-
mentioned interval ∂CV/∂θa = 0, the entries of FIM are
given by,

[J (θ)]a,b = − E
{

∂2L(D̄p; θ)

∂θa∂θb

}

=∂(�′(μ, τ)h′)T

∂θa
C−1
D̄p

∂(�′(μ, τ)h′)
∂θb

, (42)

which results in,

[J (θ)]a,b = 1
σ 2
v

⎡
⎣ ∑

(k,n)∈P

∂
(
λR
k,n(μ, τ)hR − λI

k,n(μ, τ)hI
)

∂θa

∂
(
λR
k,n(μ, τ)hR − λI

k,n(μ, τ)hI
)

∂θb

⎤
⎦ .

(43)

Letting A � λR
k,n(μ, τ)hR − λI

k,n(μ, τ)hI , the partial
derivative of A with respect to θa for four different ranges
of the indexes a and b, namely a = 1, a = 2, 3 ≤ a ≤
Q + 2 and Q + 3 ≤ a ≤ 2Q + 2 can be written as,

∂A
∂θ1

= ∂A
∂μ

= ∂λR
k,n(μ, τ)

∂μ
hR − ∂λI

k,n(μ, τ)

∂μ
hI , (44)

∂A
∂θ2

= ∂A
∂τ

= ∂λR
k,n(μ, τ)

∂τ
hR − ∂λI

k,n(μ, τ)

∂τ
hI . (45)

Also, for 3 ≤ a ≤ Q + 2,

∂A
∂θa

= ∂A
∂hR[ l]

= λR
k,n(μ, τ)

∂hR

∂hR[ l]
= λ̄Rk,n(l,μ, τ) , (46)

where l = a − 2. In addition, for Q + 2 ≤ a ≤ 2Q + 2
∂A
∂θa

= ∂A
∂hI[ l]

= −λI
k,n(μ, τ)

∂hI

∂hI[ l]
= −λ̄Ik,n(l,μ, τ) . (47)

Thus, J (θ) can be written as

J (θ) =

⎡
⎢⎢⎣

J1,1 J1,2 ε κ

J2,1 J2,2 φ ρ

(ε)T (φ)T χ ψ

(κ)T (ρ)T (ψ)T ζ

⎤
⎥⎥⎦ , (48)

where according to (42)–(47) we have,

J1,1 = 1
σ 2
v

⎡
⎣ ∑

(k,n)∈P

∣∣∣∣∣
∂(λR

k,n(μ, τ))

∂μ
hR − ∂(λIk,n(μ, τ))

∂μ
hI

∣∣∣∣∣
2
⎤
⎦ ,

(49)

J2,2 = 1
σ 2
v

⎡
⎣ ∑

(k,n)∈P

∣∣∣∣∣
∂(λR

k,n(μ, τ))

∂τ
hR − ∂(λIk,n(μ, τ))

∂τ
hI

∣∣∣∣∣
2
⎤
⎦ ,

(50)

J1,2 = 1
σ 2
v

⎡
⎣ ∑

(k,n)∈P

⎛
⎝∂

(
λR
k,n(μ, τ)

)
∂μ

hR −
∂
(
λIk,n(μ, τ)

)
∂μ

hI
⎞
⎠

⎛
⎝∂

(
λR
k,n(μ, τ)

)
∂τ

hR −
∂
(
λI
k,n(μ, τ)

)
∂τ

hI
⎞
⎠
⎤
⎦ ,

(51)

J2,1 = J1,2 . (52)

Also, ε is a 1×Q vector whose entries can be written as

ε1,b = 1
σ 2
v

∑
(k,n)∈P

⎛
⎝∂

(
λR
k,n(μ, τ)

)
∂μ

hR −
∂
(
λIk,n(μ, τ)

)
∂μ

hI
⎞
⎠

λ̄Rk,n(b,μ, τ) , (53)

κ1,b = − 1
σ 2
v

∑
(k,n)∈P

(
∂(λRk,n(μ, τ))

∂μ
hR − ∂(λIk,n(μ, τ))

∂μ
hI

)

λ̄Ik,n(b,μ, τ) . (54)

Moreover, φ is a 1 × Q vector whose entries can be
represented as

φ1,b = 1
σ 2
v

∑
(k,n)∈P

(
∂(λRk,n(μ, τ))

∂τ
hR − ∂(λIk,n(μ, τ))

∂τ
hI

)

λ̄Rk,n(b,μ, τ) , (55)

ρ1,b = − 1
σ 2
v

∑
(k,n)∈P

(
∂(λRk,n(μ, τ))

∂τ
hR − ∂(λIk,n(μ, τ))

∂τ
hI

)

λ̄Ik,n(b,μ, τ) . (56)
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In addition, χ , ψ and ζ are Q × Q matrices with the
following entries,

χa,b = 1
σ 2
v

∑
(k,n)∈P

λ̄Rk,n(a,μ, τ)λ̄Rk,n(b,μ, τ) , (57)

ψa,b = − 1
σ 2
v

∑
(k,n)∈P

λ̄Rk,n(a,μ, τ)λ̄Ik,n(b,μ, τ) , (58)

ζ a,b = 1
σ 2
v

∑
(k,n)∈P

λ̄Ik,n(a,μ, τ)λ̄Ik,n(b,μ, τ) . (59)

The CRB of an unbiased estimator of θ , denoted as θ̂ ,
is expressed as Cov(θ̂) ≥ J (θ)−1. As a result, we
can compute the variance of the unbiased CFO estimator,
μ̂, as

Var(μ̂) ≥[ (J )−1]1,1 = CRBμ . (60)

Similarly, the variance of the unbiased STO estimator, τ̂ ,
is derived as

Var(τ̂ ) ≥[ (J )−1]2,2 = CRBτ . (61)

Finally, for the lth tap of the channel, the lower bound of
the unbiased estimator can be obtained as

Var(ĥ[ l] ) =Var(ĥR[ l] ) + Var(ĥI [ l] ) ≥[ (J )−1]l+2,l+2

=+[ (J )−1]Q+l+2,Q+l+2 CRBh[l] . (62)

The lower bound on the average variance of the CIR
estimator over different taps can be obtained by assuming
that the tap estimates are independent. Then, we can write

CRBh= 1
Q

(
tr[(J )−1(θ)]−[(J )−1(θ)]1,1−[(J )−1(θ)]2,2

)
.

(63)

It is worth emphasizing that in general the entries of
the vectors κ , ε, φ, ρ and χ are not negligible, i.e., there
is a coupling between the estimation errors that can be
achieved for μ, τ , and h. This means that, for example, the
CRB on μ with no channel knowledge will be greater than
the one obtained with a known channel, which could be
directly computed as the inverse of the first entry of the
FIM, i.e. (J1,1)−1. This also applies to the STO and CIR
estimators with or without knowledge of other parame-
ters. Furthermore, as it has been mentioned in [38], the
derivations imply that the CRB is a function of the par-
ticular channel realization. This has also been observed
through simulations. Also, it should be noted that in the
derivation and implementation of the CRB, the simplifi-
cations of Section 3.3 are not introduced, i.e., on a given

output symbol, the impact of all the subbands are taken
into account.

5 Performance evaluation
This section begins with the simulation setup and param-
eter settings for performance evaluation of the proposed
method compared to the existing one, followed by pre-
sentation and discussion on their estimation results and
complexity evaluation.

5.1 Methodology
The prototype filter of the transceiver system is obtained
using the frequency sampling technique with overlap fac-
tor K = 4 as described in [31] and used in [29]. The
data are modulated to a 4-QAM constellation. The input
sampling frequency is Fs = 175 kHz corresponding to a
channel bandwidth ofMFs = 11.2 MHz.
To obtain BER that are more representative of a

practical digital communications system, a punctured
convolutional channel coding scheme is applied to the
information sequence with the overall rate of 2/3 by using
constraint lengths vector [5 4] and vector of function
generators [23 35 0; 0 5 13]. A frequency selective
wireless channel is used with Q = 8 randomly gen-
erated coefficients h[ l] based on the ITU-Vehicular A
channel guidelines [39]. The channel is assumed constant
during the transmission of a burst but changes over differ-
ent transmissions910. During each transmission, the STO
and CFO obey a uniform distribution within the intervals[
−Ts

4
Ts
4

]
and

[
− Fs

4
Fs
4

]
. The root mean squared error

(RMSE) and BER results are obtained by running 500
independent Monte-Carlo simulations for given values of
the SNR per bit. The latter is expressed as Eb/N0, where
Eb denotes the bit energy and N0 is the noise power spec-
tral density level. Regarding the implementation results
of [29], we follow the estimation and equalization algo-
rithms and structure precisely as described in the paper.
This method is referred to as “Stitz” in Figs. 4, 5, 6 and 7.
We compare the proposed method to [29], one of a few

works that estimate all the three aforementioned parame-
ters in their paper. To this end, two different distributions
of pilots are considered in the implementation of the pro-
posed method. In the first distribution, the pilots are scat-
tered within each burst as mentioned in [29]. Specifically,
the size of the transmitted bursts in time and frequency
are according to DL-PUSC configuration as illustrated in
Fig. 3, with M = 64 subcarriers and N = 54 input sym-
bols. The other distribution, which also uses M = 64
subcarriers, adopts a full preamble of pilot tones of length
T = 4, followed by N − T = 50 data symbols. In this
way, the two bursts share the same data rate and hence are
comparable. The consideration of these two different dis-
tributions of pilot tones is useful to assess the performance
of different transmission modes.
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Fig. 3 Pilot distribution in WiMAX, DL-PUSC configuration [29]

5.2 Results and discussion
The performance and the complexity comparison of the
proposed estimator vis-a-vis the benchmark are, respec-
tively, presented in this subsection.

5.2.1 Estimation results
Figure 4 compares the proposed method with [29] in
terms of RMSE of CFO as a function of Eb/N0. The aver-
age CRB of the CFO estimation is also presented in the
figure. The estimation is jointly performed in the presence
of other sources of error, namely, a fixed STO of 2.5% with
respect to Ts, and Rayleigh fading channel as described
earlier. The figure indicates that the proposed method not
only outperforms the other method as implemented with
a preamble of full 64 × 4 pilot tones, but also, is capa-
ble of significant improvement when adopting the burst
structure of DL-PUSC. Especially in the former case, the

performance of the proposed estimator is very close to the
average CRB as a lower bound.
Comparison of the two methods and the average

CRB in terms of RMSE of STO is depicted in Fig. 5,
where a fixed CFO of 5% and the multi-path chan-
nel are used. The superior performance of the pro-
posed method implemented in both configurations can
be seen in the figure. Again, the best result belongs
to the one based on a full grid of pilot tones fol-
lowed by the data; although, the proposed method
remarkably reduces the estimation error with the same
burst structure as in [29]. Similar to the previous
figure, the average CRB runs closest to the full-preamble
case.
In Fig. 6 , the RMSE of CIR, in the presence of fixed CFO

and STO, is depicted for the three implementations along
with the average CRB. Similar to the previous figures,
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the proposed method achieves a lower estimation error
in both configurations. The figure indicates that the CIR
estimator performs very close to the average CRB over
different channels.
It is worth mentioning that, in this work, all the CRB

terms are inversely proportional to σ 2
v = σ 2

ζ d
+ σ 2

η

2 . This
explains the mild slope of the estimation error graphs with
respect to Eb/N0. In other words, in our range of inter-
est of Eb/N0, the dominant term is the power of the data

interference, σ 2
ζ d

rather than the noise power. However,
our experiments show that the noise power effect begins
to rise when applying lower SNR values with an abrupt
increase in the estimation error around Eb/N0 = −10 dB.
The coded BER performance of the methods, after esti-

mation and compensation, are compared in Fig. 7. The
figure indicates that, in both configurations, the proposed
method is capable of a significant decrease in BER of the
system especially at high input Eb/N0.
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5.2.2 Complexity evaluation and discussion
The complexity of the twomethods is compared in Table 2
in terms of the running time needed for the processing
of a burst transmission of size 64 × 54. For the proposed
method, three different implementations are considered
as follows:

• Prop 0 : the proposed method with the basic
simplification in (35)-(36);

• Prop 1 : as above with additional simplification (37);
• Prop 2 : as Prop 1, but by considering only the first

three channel taps in computing the pilot
contribution in (27).

In addition, Table 2 includes the RMSE figures of CFO,
STO and CIR (for Eb/N0 = 20 dB), to illustrate
the achievable trade-off between estimation accuracy
and computational complexity. The RMSE figures are
obtained based on the average of 500 burst transmissions
of size 64 × 54 with the scattered pilot distribution as
described in Section 5.1, on an ordinary quad-core PC
running MATLAB 2016 b. The table indicates that the
performance degradation due to the suggested simplifi-
cations is rather small, i.e., on the order of 10% for Prop
1 and 25% for Prop 2. Furthermore, by employing all the
foregoing simplifications, the obtained running time of
the proposed method comes within about two times that
of the benchmark, which implies that, by using state-of-
the-art DSP technology, the running time of the proposed
method remains practical. It should be noted that, as can
be seen from the results in Subsection 5.2.1, in mid and
specially low SNR regime, the performance gap between
the two methods is much larger than that presented in
Table 2 for Eb/N0 = 20 dB. Hence, considering the

performance gain of the proposed estimator presented in
Section 5.2, the complexity compromise seems justifiable.
From a theoretical perspective, a key advantage of the

proposed ML-based approach is to offer a unified treat-
ment leading to a compact solution format (i.e., near
closed form) for the joint estimation of CFO, STO andCIR
in OFDM/OQAM systems, in contrast to making use of
different signal processing techniques (correlation, phase
estimation, etc.) for the treatment of different impair-
ment sources. Another important motivation behind the
ML-based approach lies in its asymptotic optimality, as
observed in many practical situations of interest, under
conditions of high SNR or long observation time [37].
From a practical perspective, the proposed joint ML-

based estimator leads to significant improvements in
estimation accuracy compared to existing methods, as
demonstrated by the simulation results in this section.
Specifically, over the complete range of SNR consid-
ered (from 0 to 20dB), the proposed estimator achieves
the best performance for the three types of parameters,
i.e., CFO, STO and CIR coefficients. For each parameter
type, the resulting RMSE obtained with the joint-ML
estimators comes within 1dB of the CRB. In turn, the

Table 2 Comparative running time and RMSE estimation errors
of the simplified versions of the proposed method vs. Stitz for
Eb/N0 = 20 dB [29]

Prop 0 Prop 1 Prop 2 Stitz

Running time (s) 4617 65 28 15

RMSE CFO 1.1 × 10−2 1.2 × 10−2 1.4 × 10−2 2.0 × 10−2

RMSE STO 2.2 × 10−3 2.4 × 10−3 2.7 × 10−3 2.8 × 10−3

RMSE CIR 2.9 × 10−2 3.1 × 10−2 3.4 × 10−2 4.0 × 10−2
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improved estimation accuracy results in lower BER for
the OFDM/OQAM transceiver with ML-based compen-
sation.
Themain limitation of the proposedmethod is the addi-

tional computational burden. Indeed, the calculation of
the joint ML estimator involves several matrix operations
and a two-dimensional search over the CFO and STO
space. However, by allowing a number of possible sim-
plifications to reduce the processing time as discussed
in Section 3.3, the proposed method offers a trade-off
between complexity and performance.

6 Conclusions
A new general pilot-based ML joint estimation method
for OFDM/OQAM systems has been developed and eval-
uated. The CFO, STO, and CIR effects have been jointly
estimated and compensated. The CRB on the joint esti-
mator variance was also derived and implemented as a
reference to evaluate the performance of the proposed
algorithm. The comparison has been made with a highly-
cited method among the few research papers of the same
focus. The results have shown the significant improve-
ment that the proposed method offers in both transmis-
sion modes, i.e., as scattered pilots in data and as a full
preamble of pilot tones followed by the data. As it was
observed on the figures, the proposed estimator, espe-
cially when used in a full-preamble setup, performs close
to the CRB and can robustly estimate the CFO, STO, and
CIR. Furthermore, by comparing the performance and
running times of the simplified versions of the proposed
method to those of the benchmark, we conclude that
the former provides a significant improvement over the
estimation result while maintaining computational com-
plexity in a feasible range. This, in turn, offers a useful
trade-off between performance and complexity.

Appendix A: Statistical properties of the subband
noise ηk,n
Let η[m] be a zero-mean complex circular AWGNprocess
with variance σ 2

η . By definition, we have,

E {η[m] η[m′] }=0 , E {η[m] η∗[m′] }=δmm′σ 2
η , ∀m,m′ .

(64)

According to (15) and (7), we can write

ηk,n = R

{
θ∗
k,n

∑
m

η[m] f ∗
k

[
m − nM

2

]}
(65)

= 1
2

{
θ∗
k,n

∑
m

η[m] f ∗
k

[
m − nM

2

]

+θk,n
∑
m

η∗[m] fk
[
m − nM

2

]}
. (66)

Due to the linearity of this expression, it follows that ηk,n
is a (real) Gaussian random variable with zero mean. For
the second order moments we have,

E {ηk,nηk′,n′ }
= 1© + 2© + 3© + 4© , (67)

1© =1
4
θ∗
k,nθ

∗
k′,n′

∑
m

∑
m′

E{η[m] η[m′] }︸ ︷︷ ︸
0

f ∗
k

[
m − nM

2

]

f ∗
k′

[
m′ − n′M

2

]
= 0 , (68)

2© =1
4
θ∗
k,nθk′,n′

∑
m

∑
m′

E{η[m] η∗[m′] }︸ ︷︷ ︸
σ 2

η δmm′

f ∗
k

[
m − nM

2

]

fk′
[
m′ − n′M

2

]
(69)

=1
4
σ 2

η θ∗
k,nθk′,n′

∑
m

f ∗
k

[
m − nM

2

]
fk′

[
m − n′M

2

]
,

(70)
3© =complex conjugate of 2© , (71)
4© =complex conjugate of 1© . (72)

Therefore,

E {ηk,nηk′,n′ } =σ 2
η

4
θ∗
k,nθk′,n′

∑
m

f ∗
k

[
m − nM

2

]

fk′
[
m − n′M

2

]
+ 3© (73)

=σ 2
η

2
R

{
θk,nθ

∗
k′,n′

∑
m

fk
[
m − nM

2

]

f ∗
k′

[
m − n′M

2

]}
= σ 2

η

2
δkk′δnn′ . (74)

where we have used the orthonormality relation (10) for
OFDM/OQAM systems.

Appendix B: Statistical properties of the data
interference term ζ d

k,n
To further investigate the Gaussian assumption of the data
interference, the histogram of data contribution terms
at pilot locations is obtained and depicted in Fig. 8. To
acquire pure data interference, a data burst of the same
structure and size as described in Section 5.1 is trans-
mitted and received where pilots are replaced by zero
tones. No noise was added to the system. The histogram
of data interference terms at all the 512 pilot locations is
illustrated. A Gaussian distribution with zero mean and
a standard deviation of σ = 0.45 is also depicted for
comparison. The figure suggests that the statistical distri-
bution of the data interference terms tends towards the
PDF of a Gaussian distribution.
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Fig. 8 Histogram of ζ d
k,n at pilot locations in presence of fading channel, STO and CFO

In addition, to examine the covariance of these data
interference terms at pilot locations, let the data symbols
d d
k,n be i.i.d. (real) random variables with zero mean and

variance 1
2σ

2
x . By definition, we have

E
{
d d
k′,n′d d

k̄′,n̄′
}

= 1
2
δk′k̄′δn′n̄′σ 2

x . (75)

According to (22) we can write

ζ d
k,n =

∑
(k′,n′)/∈P

d d
k′,n′R

⎧⎨
⎩

Q−1∑
l=0

h[ l] γ k′,n′
k,n (l,μ0, τ0)

⎫⎬
⎭ .

Following the observation above in the opening of this
appendix, by invoking the central limit theorem and the
assumptions made on d d

k,n, it follows from (75) that ζ d
k,n

can be modeled as a zero-mean (real-valued) Gaussian
random process. For the second order moments, it follows
from (75) that

E
{
ζ d
k,nζ

d
k̄,n̄

}
= σ 2

x
2

∑
(k′,n′)/∈P

R

⎧⎨
⎩

Q−1∑
l=0

h[ l] γ k′,n′
k,n (l,μ0, τ0)

⎫⎬
⎭

R

⎧⎨
⎩

Q−1∑
l̄=0

h[ l̄] γ k′,n′
k̄,n̄ (l̄,μ0, τ0)

⎫⎬
⎭ . (76)

We note that the filter-bank response term γ
k′,n′
k,n

(l,μ0, τ0) tend to be non-zero only in the vicinity of (k, n).

Therefore, for a given (k′, n′) either γ
k′,n′
k,n (l,μ0, τ0) or

γ
k′,n′
k̄,n̄ (l,μ0, τ0) tend to be zero. Hence,

If (k̄, n̄) �= (k, n) =⇒ E
{
ζ d
k,nζ

d
k̄,n̄

}
≈ 0 , (77)

If (k̄, n̄) = (k, n) =⇒ E
{
ζ d
k,nζ

d
k̄,n̄

}
= E

{
(ζ d

k,n)
2
}
, (78)

for which we can write

E
{(

ζ d
k,n

)2}= σ 2
x
2

∑
(k′,n′)/∈P

⎛
⎝R

⎧⎨
⎩
Q−1∑
l=0

h[ l] γ k′,n′
k,n (l,μ0, τ0)

⎫⎬
⎭
⎞
⎠

2

.

(79)

It can be seen from (79) that the variance of the data
interference term depends on the particular channel real-
ization and the unknown CFO and STO parameters.
However, since the filter bank response γ

k′,n′
k,n (l,μ0, τ0)

does not profoundly vary with the aforementioned param-
eters, the effect of the channel has been approximated by
a fixed gain. This approximation can be further inspected
by the simulation result in Fig. 9. The figure illustrates the
covariance of data interference contributions with respect
to one another in the simulated OFDM/OQAM system
with the scattered pilot-data distribution considered in
this work. More specifically, it depicts the covariance of a
data interference contribution at a pilot location with data
interference contributions to other pilot locations in pres-
ence of 8-tap Rayleigh fading channel, 20% CFO, 25% STO
with no noise. For the considered pilot-data distribution
with length of 160 OQAM symbols, the second largest
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Fig. 9 Covariance of data interference at a pilot location with data interference in other pilot locations

covariance is less than 10% of the peak value. Although
only one sample is presented here, we were able to verify
the consistency of this result for different values of CFO
and STO with various fading channels, indicating that the
observed maximum off-center covariance value does not
exceed 14% of the peak value. This result is consistent with
our approximation above in (77) and (79).

Endnotes
1 The authors’ intention in the performance compari-

son is not to include the existing estimators in which
only one or two of the aforementioned error sources are
considered.

2 For convenience in our analysis,Gk(z) is assumed non-
causal; although, in practice, causality can be restored
simply by introducing an appropriate delay in the receiver.

3 The precise orthogonality condition corresponding
to the specific configuration of OFDM/OQAM system
adopted in this work does not exist in the literature. How-
ever, by applying appropriate modifications pertained to
the changes in the configuration, the presented orthogo-
nality condition can be derived.

4 In practice, non-integer STO can be modeled with
the help of an ideal low-pass interpolation filter (see
Section 3.4).

5Due to the inherent property of OFDM/OQAM, as
implied in (10), which only sustains real orthogonal-
ity, estimation is performed on the received pilots after
extracting the real part.

6 In this work, we develop a single-tap-per-subcarrier
equalizer, although generalizations to other, more

advanced types of equalizers are possible. This simple
equalization scheme inverts the channel at the center
frequency of the corresponding subcarrier and it works
well in mildly selective channels as long as the number of
subcarriers is sufficiently large [36].

7 This is only valid for the PHYDYAS filter. There
are other prototype filter functions in discussion for
OFDM/OQAM systems which may require a different
value for β [34].

8 It is worth emphasizing that the CRB derived in this
section is based on the approximation of Gaussian dis-
tribution for the data interference term ζ d

k,n; hence, it
provides a benchmark for the performance of the esti-
mators developed on such an assumption. Nevertheless,
as it can be seen later, the proposed estimator obtains
satisfactory results by a significant improvement over the
existing method.

9The authors have also evaluated the performance of
the proposed and the existing method by adopting a time-
varying fading channel in contrast to the static channel
used in the following simulations. However, the results
show the same relative trend among the curves corre-
sponding to the two methods and the two pilot distribu-
tion schemes described in this section.

10Although, in the proposed method, the channel
length is supposed to be known, the authors have inves-
tigated a mismatch in the presumed channel length with
the actual one and did not find a significant performance
degradation in CFO and STO estimation. Nevertheless,
the effect of such a mismatch on channel estimation and
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BER performance is considerable. In a practical system, to
mitigate this problem, as a conventional way to make the
channel estimation task more robust, the channel length
can be matched to a worst-case scenario and may be
modified adaptively [40].
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