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Abstract: The authors propose two new realis-
ations of the broadband generalised sidelobe
canceller (GSC) which are based on a two-
dimensional (2D) extension of the transform-
domain LMS algorithm. In the first realisation,
the tap-input matrix of the GSC (following the
blocking network) is mapped into the transform-
domain via a 2D unitary image transform. Fol-
lowing this step, the transformed data are
weighted and summed to produce the GSC output
and the processor weights are updated via the self-
orthogonalising LMS algorithm in the transform-
domain. The second realisation uses a separable
2D transform and provides a narrowband decom-
position of the GSC. The computational complex-
ity of these new GSC realisations is analysed and
shown to be comparable to that of the fast
FLMS-GSC recently proposed by Chen and
Fang. However, as demonstrated by computer
simulations, the new GSC realisations have a
much faster convergence rate than the FLMS-
GSC when the eigenvalue spread of the tap-input
correlation matrix is large.

1 Introduction

A broadband adaptive beamformer consists of a multi-
input single-output processor together with an adaptive
algorithm. The processor lincarly combines the signals
received by an array of sensors while the adaptive algo-
rithm recursively adjusts the weights of the processor in
real time to respond to a signal coming from a desired
direction while discriminating against noises from other
directions {1]. Among early works on adaptive beam-
forming, we mention the so-called ‘constrained LMS’
algorithm of Frost [2]. In this approach, a lineary-
constrained stochastic-gradient least-mean-square (LMS)
algorithm with self-correcting capability is used to update
the processor weights. In effect, the algorithm attempts to
minimise the noise power at the array output while main-
taining a chosen frequency response in the direction of
interest (look-direction). In Reference 3, Griffiths and Jim
describe an alternative beamforming structure known as
the generalised sidelobe canceller (GSC) for realising the
constrained LMS algorithm. Through the use of a block-
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ing matrix, the GSC allows the constrained LMS
problem to be transformed into an unconstrained one.

In both Frost’s algorithm and the Griffiths-Jim GSC,
a vector of time-domain tap inputs is used to update the
processor weights at each iteration. As a result, these
algorithms suffer from a major drawback which is
common to most time-domain implementations of LMS-
type adaptive algorithms, namely: their convergence rate
decreases as the condition number (ie., the ratio of
maximum to minimum eigenvalues) of the input corre-
lation matrix increases. This difficulty can be overcome
by using adaptive algorithms based on least-squares or
Kalman filtering theory [4]. Realisations of the GSC
based on adaptive multichannel lattice and escalator
filters have also been proposed by Lee et al. [5].
However, the gain in convergence rate associated with
these algorithms is generally obtained at the expense of a
significant increase in computational requirements.

Recently, Chen and Fang [6] have proposed an altern-
ative realisation of the GSC using the frequency-domain
LMS algorithm with the self-orthogonalising property,
simply called the FLMS algorithm. In their approach,
each tapped-delay-line at the output of the blocking
matrix is transformed individually into the frequency-
domain via a one-dimensional discrete Fourier transform
(1D-DFT). The processor weights are applied to the
transformed data and are then updated via the self-
orthogonalising LMS algorithm in the transform-
domain, which is known to converge more rapidly than
its time-domain counterpart [7, 8]. The main advantage
of the Chen-Fang approach, identified here as the
FLMS-GSC, is that it can effectively accelerate the con-
vergence rate of the GSC, as demonstrated by computer
simulations, without a major increase in computational
requirements. This is particularly important for real-time
processing of non-stationary array signals.

In this paper, we present two new realisations of the
GSC based on a two-dimensional (2D) extension of the
transform-domain LMS algorithm. In both realisations,
the set of tap inputs following the blocking network of
the GSC is viewed as an image which is mapped into the
transform-domain via a 2D unitary transform. The trans-
formed data are then linearly combined to produce the
GSC output and the processor weights are updated using
the self-orthogonalising LMS algorithm in the transform-
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domain. The second realisation, restricted to separable
2D transforms, provides a narrowband decomposition of
the GSC. The two realisations offer a trade-off between
computational complexity and convergence rate. Com-
puter simulations show that these new GSC realisations
have faster convergence rates than the Chen-Fang
FLMS-GSC.

2 Chen-Fang FLMS-GSC

In the Chen-Fang FLMS-GSC (Fig. 1), the output
signals from an array of K sensors are fed to delay ele-
ments needed to steer the array in the desired look-
direction. Two different processing paths are then taken.
The upper path consists of a conventional beamformer
followed by a fixed ‘target signal filter’ used to control the
frequency response of the beamformer in the look-
direction. The lower path is the sidelobe canceller. It con-
sists of K — 1 subtractors followed by a set of K — 1
tapped-delay-lines (TDL), each with L — 1 unit-delay ele-
ments.

sensor steering
array delay

Let X(n) and U(n) respectively denote the (K — 1)L-
dimensional time-domain and frequency-domain tap-
input vectors obtained by concatenation of the X () and
U/(n) as follows:

X(n) 2 [XT(), X(n), ..., X§_,(m]” @
Un) & [Uin), US), ..., Ug_ 01" &)
Then, from eqns. 1, 4 and 5, it is clear that
Un) = 2X(n) (6)
where
D 0 0
gal® D 0 ™
00 D

Following the transformation (6), the output of the
adaptive sidelobe canceller, y(n), is obtained as a linear
combination of the elements of the vector U(n). Let W(n)

fixed target
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Fig. 1 The Chen-Fang FLMS-GSC

Let x{n),i=1,..., K — 1, denote the output of the ith
subtractor at time n. In the FLMS-GSC, the time-
domain tap-input vector of the ith TDL, X(n), is trans-
formed into the frequency-domain vector U{n) by means
of the L-point 1D-DFT, represented here by the matrix
D:

Ufn) = DX (n) (1
where

X{m & [xfn), x{n — 1), ..., x{n — L + 1)]7 ()

Udn) 2 Lo, {n), gy, 4n), .., up g {m)]" 3)
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denote the (K — 1)L-dimensional weight vector of all the
TDLs at the nth iteration, i.e.,

W(n) & [Win), Wi, ..., Wg_(m]" ®)

Win) & [wo {n), wy {n), ..., wp_y {m]" ®)
Then

yn) = WHn)U(n) (10)

The weight vector W(n) is continually updated so as to
minimise the power of the error signal,

en) = dn) — yn) (1
271



between the output of the conventional beamformer, d(n),
and that of the sidelobe canceller, y(n). To this end, a
self-orthogonalising LMS algorithm with accelerated
convergence rate is used [9]. In this algorithm, the gra-
dient estimate is premultiplied by the inverse correlation
matrix of U(n), so that the weights are updated as
follows:

Wn + 1) = W(n) + 2yRy{ Un)e*(n) (12)
where
Ryy £ E[UMU"(n)] (13)

is the correlation matrix of U(n) and y is the step-size
parameter, which must satisfy the condition 0 <y < 1/
(K — 1L to ensure convergence of the algorithm.

The role of Ry in eqn. 12 is to reduce the eigenvalue
spread of the matrix governing the adaptation process. In
practice, Ry is unknown and must be estimated from
the data. In the FLMS-GSC, the following approach is
used (see also Reference 8). First, Ry, is approximated by
a diagonal matrix, ie.,

Ryy = diag (ry, 4, .- s PLog k1)

(14)

where r,v,‘éE[lu,,,‘(n)lzj is the power of the Ith fre-
quency component of the kth TDL. The diagonal ele-
ments ry , are then estimated recursively through the
equation

Fradn) = Bfyun — 1) + (1 — BYlu, ) (15)

where § (0 < B < 1) is a smoothing constant. Finally, the
desired estimate of Ry is given by

ﬁﬁz} = diag (l/fo,l"--’ ]/;L~1,K-1) (16)

The purpose of the Chen—Fang approach is to accelerate
the convergence of the conventional GSC by first
mapping the tap-input vector of each TDL into the
frequency-domain via an L-point 1D-DFT and then
using the self-orthogonalising LMS adaptive algorithm.
In this respect, the role of the 1D-DFT is to remove the
temporal correlation between the tap-inputs of each
TDL. The effectiveness of this approach is confirmed by
computer simulations in Reference 6.

In almost all GSC applications, there is also spatial
correlation between adjacent TDL channels because of
the propagating nature of the received signals. We note,
however, that the FLMS-GSC cannot remove this spatial
correlation. Indeed, each TDL in Fig. 1 is transformed
individually with a 1D-DFT, which amounts to
(approximately) diagonalising only the principal sub-
matrices of the correlation matrix of the tap-input vector
X(n)eqn. 4). Accordingly, the spatial correlation between
adjacent channels is not removed and the frequency-
domain correlation matrix Ry, is not block diagonal in
general, contrary to the assumption in eqn. 14. Under
these conditions, the use of the estimate (eqn. 16) in the
weight update eqn. 12 is not ‘optimal’ and the potential
improvement in convergence rate offered by the self-
orthogonalising transform-domain LMS algorithm is not
fully achieved. This represents a fundamental limitation
of the FLMS-GSC. )

oTe- e To k-1

3 New GSC realisations using 2D
transform-domain LMS algorithms

In the light of the above discussion, it appears possible to
increase the convergence rate of the GSC further by
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removing both spatial and temporal correlations between
the tap-inputs of all the TDLs prior to the application of
the self-orthogonalising LMS algorithm. In this Section,
we propose two new realisations of the GSC based on
2D extensions of the transform-domain LMS algorithm,
in which both types of correlations are removed (at least
partially). These realisations are described separately in
Sections 3.1 and 3.2. Related computational issues are
discussed in Section 3.3.

3.1 The 2D-TDLMS-GSC

A block diagram of the proposed 2D-TDLMS-GSC
(where TD stands for transform-domain) is shown in Fig.
2. Its basic principles of operation are similar to those of
the FLMS-GSC. However, instead of transforming the
tap-input vectors of each TDL individually with a
ID-DFT, the set of all tap-input vectors is viewed as an
image which is mapped into the transform-domain via a
2D unitary transform, whose purpose is to remove both
temporal and spatial correlations between the tap inputs
of all the TDLs. Following this step, the transformed
data are weighted and summed as in the conventional
GSC. Finally, the self-orthogonalising LMS algorithm in
the transform-domain is used to update the processor
weights. Additional details are provided below.

To unify the presentation, we use the same vector
notation as in Section 2. Hence, the images formed by the
tap-inputs, the transform coefficients and the correspond-
ing weights are represented by X(n) (eqn. 4), U(n) (eqn. 5)
and W(n) (eqn. 8), respectively. In image terminology, this
corresponds to a lexicographic line-ordering [10]. Using
this notation, the relationship between the tap-input
image and its transform can be expressed as

Un) = 7 X(n) 17

where J is the (K — 1)L x (K — 1)L matrix of the 2D
unitary transform under consideration.

Since the purpose of eqn. 17 is to remove both temporal
and spatial correlations between the elements of X(n), the
Karhunen-Loeve transform (KLT) is, at least in theory,
the most appropriate choice for 7. To see this, let us
briefly review some relevant properties of the KLT [10].
Let Ry, = E[X(n)X*¥(n)] denote the correlation matrix of
X(n), which is assumed to have zero mean. Let {¥, ) bea
complete orthonormal set of eigenvectors of Ryy and let
{44, 4} denote the corresponding eigenvalues. That is,

RXX l/’I.k = 'll,k'pl,k’ 'lek '//l'. = 5!, v 5k,k’ (18)

where 4, , > 0 if R,y is positive-definite. By definition,
the KLT for the image X(n) is given by the unitary
matrix

f=[‘//o,1a~--,l/’L—1,1,-'

] l/’L*l,l{—l]”
(19)

Now, if the KLT is used in eqn. 17, ie. if 7 = X, it
follows from eqn. 18 that

Aoy x-1] (20)

This result, referred to as the decorrelation property of
the KLT, signifies that the transformed coefficients
{u;,n)} are uncorrelated, which is the desired property.
Except for the use of different transform matrices (i.c.,
eqn. 17 instead of eqn. 6), the 2D-TDLMS-GSC is similar
to the FLMS-GSC. In particular, the output of the
adaptive sidelobe canceller, y(n), is given by eqn. 10 and
the self-orthogonalising transform-domain LMS algo-
rithm, eqns. 11 and 12, is used to update the weight vector

i '//O,Kfl’ .

Ryy = diag [4g 4, ..

IEE Proc.-Radar, Sonar Navig., Vol. 141, No. 5, October 1994



W(n). Moreover, the range of permissible values for the
step-size parameter y is unchanged (ie. 0 <y <1/
(K — 1)L). To estimate the inverse matrix R;} needed in

sensor steering
arrgy  delay

ble 2D transform and by making additional modifi-
cations. We begin with a brief review of separable 2D
transforms.

Fig. 2

The 2D-TDLMS-GSC

eqn. 12, we follow the same procedure as in Section 2.
This time, however, the use of a 2D transform provides a
much sounder foundation for the approximation made in
eqn. 14. In particular, when the KLT is used in eqn. 17,
ie. when J = ', eqn. 14 is exact and the matrix con-
trolling the convergence of the adaptive process is equal
to the identity matrix, which is consistent with the correct
application of the self-orthogonalising technique [9].

We note, however, that the KLT is signal-dependent
and does not have a fast algorithm in general. Hence, its
implementation in real time poses serious practical prob-
lems. In such cases, it is necessary to use suboptimal
transforms that are signal-independent and for which fast
algorithms exist. Typical candidates include the 2D dis-
crete cosine transform (2D-DCT), the 2D-DFT and
several others [10]. When suboptimal transforms such as
the 2D-DCT or the 2D-DFT are used in the 2D-
TDLMS-GSC, the matrix Ry, (eqn. 13) is only approx-
imately diagonal. Nevertheless, the advantages offered by
the 2D-TDLMS-GSC in terms of accelerated con-
vergence of the adaptive algorithm are preserved. This is
confirmed by computer simulations in Section 4.

3.2 The 2D-NDLMS-GSC

Most of the 2D unitary transforms commonly used in
image processing applications are separable. Here, we
present an alternative realisation of the GSC which is
obtained from the 2D-TDLMS-GSC by using a separa-
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An L-point unitary transform of a 1D data sequence
x(n) can be written in the form

L-1
u(n) = ay(r) z;o x(n — D)# y(r, D),

r=0,1..,L—1 (21)

where a,(r) is the normalisation coefficient and # ,(r, ]) is
the kernel of the transform. In the case of the normalised
1D-DFT, we have

ag(r) =1/\/L
Wofr, ) = e 2L 2)
For the 1D-DCT, we have
gL, r=o0
%) = {J(z/L), r=1,..,L—1
W (r, ) = cos [(21 + V)rm/(2L)] 23)

Now, consider the (K — 1) x L image formed (at time n)
by the tap-inputs {x,n~0), k=1, ..., K, [ =0, ...,
L — 1} in the 2D-TDLMS-GSC of Fig. 2. For this image,
a possible 2D extension of the 1D transform (eqn. 21) is
given by

K~1L-1
U, p(n) =g (Nag_(p—1) Z Z x(n— 1)

k=1 1=0
XWr, )# g 1p— 1L k~—1) (24
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forr=0,1,...,L—land p=1,2,..., K — 1. This 2D
unitary transform is said to be separable, for both its nor-
malisation coefficient and kernel can be expressed as the
products of two 1D normalisation coefficients and
kernels, respectively. The 2D-DFT and 2D-DCT are
obtained as particular cases of eqn. 24 when eqns. 22 and
23 are used, respectively.

Being separable, the 2D transform (eqn. 24) can be
realised as a succession of two sets of 1D tranforms. To
illustrate this point, suppose that eqn. 21 represents a
1D-DFT. According to eqn. 24, the tap-input vectors of
each TDL are first transformed into the frequency-
domain via K — 1 parallel L-point 1D-DFTs, as in the
Chen-Fang approach. Then, the spatial sequences of
ID-DFT coefficients obtained from successive TDLs for
each frequency bin are transformed individually into the
spatial frequency-domain via L parallel (K — 1)-point
1D-DFTs.

Following this interpretation of eqn. 24, the use of a
separable 2D transform in the 2D-TDLMS-GSC can be
viewed as a narrowband decomposition of the GSC in
which the first set of 1D transforms provides the desired
narrowband decomposition of the tap-input data and the
second set of 1D transforms remove the remaining spatial
correlation between the transformed coefficients so as to
accelerate the convergence of the adaptive process. We
note, however, that the reference signal d(n) and the side-
lobe canceller output y(n) in the 2D-TDLMS-GSC are
time-domain signals. Hence, even when a separable 2D
transform is used, the 2D-TDLMS-GSC does not have a
pure narrowband decomposition structure because the
adaptation process is based on temporal information.

In Fig. 3, we present an alternative GSC realisation,
called the 2D-NDLMS-GSC (where ND stands for nar-
rowband decomposition), which has a genuine narrow-
band decomposition structure. The 2D-DFT is assumed
in Fig. 3 to simplify the presentation; however, any sepa-

sensor steering
array delay

fixed
filter

rable 2D unitary transform of the type (eqn. 24) can be
used. The mathematical operations involved in the 2D-
NDLMS-GSC are specified below.

Step 1: Map the reference signal d(n) into the
transform-domain via an L-point unitary transform as in
eqn. 21

L-1
dn) = “L(r)l_zod(n —D# i, D,

r=0,1,...,L—1 (25)

Note that the fixed target signal filter in Fig. 3 can be
implemented in the transform-domain following the
transformation (eqn. 25).

Step 2: Map the tap-inputs {x(n— )} into the
transform-domain using the corresponding (K — 1) x L-
point separable 2D transform, as given by eqn. 24.

Step 3: Forr=0, 1, ..., L — 1, perform sidelobe can-
cellation independently:

K-1
yim) = 3w, ) 26)
) = dy(n) — y,(m) @

Step4: For r=0, 1, ..., L — 1, update the weight
vector [w, y(n), ..., w, x_(n)]T using a different version
of the transform-domain self-orthogonalising LMS algo-
rithm:

28)

where 7,, is obtained as in eqn. 15 and 0 <y < 1/(K — 1)
to ensure the convergence of the algorithm. Note that
eqn. 28 is different from the weight update eqn. 12 used in
the FLMS-GSC and the 2D-TSLMS-GSC, since a differ-
ent error signal is used for each frequency bin.

Step 5: Obtain the time-domain output e(n) of the
GSC via an inverse L-point transform. Note that only

w, (n+ 1) = w, (1) + 29F u, (neXn)

(L-point)

rth bin

g
=]

(L-point)

Fig. 3  The 2D-NDLMS-GSC
Realisation based on the 2D-DFT
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the first component of the inverse transform is needed.
For instance, if eqn. 25 represents an L-point 1D-DFT,
then e(n) can be recovered simply as

1 L-1
en) = \/ (Z) 2. en) (29)
r=0

Because of their ability to remove the spatial correlation
between adjacent TDL channels, both the 2D-TDLMS-
GSC and the 2D-NDLMS-GSC are expected to have
faster convergence rates than the Chen-Fang FLMS-
GSC. However, it is more difficult to predict which one
of these new methods has the fastest convergence rate. In
the Appendix, we show that the matrices governing the
adaptation of each narrowband component of the 2D-
NDLMS-GSC have a smaller eigenvalue spread than the
matrix governing the adaptation of the 2D-TDLMS-
GSC. It is therefore reasonable to believe that the 2D-
NDLMS-GSC has a faster convergence rate than the
corresponding 2D-TDLMS-GSC. This is confirmed by
simulations in Section 4.

3.3 Computational complexity

In this Section, the new GSC realisations proposed above
are compared with the Chen—Fang FLMS-GSC [6] and
the Griffith-Jim GSC [3] in terms of the number of
complex multiplications required per adaptation cycle.
To simplify the presentation, we assume that the
2D-DFT is used in both the 2D-TDLMS-GSC and the
2D-NDLMS-GSC. However, a similar comparison of the
computational complexity can be made for other types of
separable 2D tranforms. Related issues pertaining to the
recursive implementation of the 1D and 2D-DFT are
also addressed.

The original GSC realisation proposed by Griffith and
Jim is based on plain time-domain LMS adaptation.
Hence, it requires on the order of 2L(K — 1) complex
multiplications per cycle (even if different normalised
convergence factors are used for each TDL, as is the case
in our simulations).

In the FLMS-GSC, the tap-input vector of each TDL
is mapped into the frequency-domain via an L-point
1D-DFT. Assuming that L is a power of 2 and that the
radix-2 FFT algorithm is used, each L-point 1D-DFT
requires approximately L log, L complex multiplications
(and Llog, L complex additions) [11]. Since there are
K — 1 TDLs, a total of (K — 1)L log, L complex multi-
plications are required. Following this transformation
step, each iteration of the self-orthogonalising LMS algo-
rithm (eqns. 10-16) requires 3.5L(K — 1) complex multi-
plications.

Now consider the 2D-TDLMS-GSC based on the
2D-DFT. Being separable, the 2D-DFT can be realised
as a succession of two sets of 1D-DFTs. Moreover the
sequence of 1D-DFT operations is reversible. In this case,
the most efficient approach is first to transform each
column of tap-inputs in Fig. 2 using (K — 1)-point 1D-
DFTs, and then transform each line of the resulting

image using L-point 1D-DFTs. Indeed, one will note that
the columns of tap-inputs in Fig. 2 are shifted down to
the right by one position every iteration. Hence, only one
(K — 1)-point 1D-DFT is actually needed for the first
column of tap-inputs entering the TDLs, which corres-
pond the new data; the 1D-DFTs of the other columns
are available from previous iterations. Accordingly, the
2D-DFT requires a total of (L — 1) logy(K ~ 1) +(K
— 1)L log, L complex multiplications. An additional
35L(K — 1) complex multiplications per cycle are
required for the self-othogonalising LMS algorithm.

The computational requirements of the 2D-NDLMS-
GSC are similar to those of the 2D-TDLMS-GSC, except
that an additional L log, L complex multiplications are
required to implement the 1D-DFT of the reference
signal d(n) in eqn. 25. The results of this discussion are
summarised in Table 1. Based on these results, we con-
clude that the computational complexity of the new GSC
realisations proposed in this paper only marginally
exceeds that of the Chen—Fang FLMS-GSC.

More efficient implementations of the proposed GSC
realisations are possible based on recursive forms of the
ID-DFT and the 1D-DCT [6, 7]. For instance, the
ID-DFT of the tap-inputs of the kth TDL, i.e. {x,(n — 1),
I1=0,1,..., L —1}, can be evaluated recursively over
time as follows:

u, k(n) = U, k(n — l)e*j21u/l,
+ L7000 — xdn — L)] (30)

where 0 <r<L—1and 1 €k <K — 1. To reduce the
computation time of the FLMS-GSC, Chen and Fang
[6] have suggested the use of eqn. 30 for each of the
K — 1 TDLs in Fig. 1. The possibility of using a similar
recursion with the new GSC realisations proposed above
is also obvious.

However, simulation experiments with the FLMS-
GSC have revealed some stability difficulties associated
with the recursion (eqn. 30). These difficulties, similar to
those encountered with the frequency-sampling structure
for FIR filters [11], are due to the pole of eqn. 30 at
z = exp (—j2nr/L) on the unit circle. As a result, small
round-off errors in the calculation or incorrect initial
conditions generate oscillations in the transform-domain
coefficients, which also propagate to the output of the
beamformer. This type of behaviour would pose particu-
lar problems in a low-resolution fixed-point implementa-
tion.

One way to overcome these difficulties is to introduce
an exponential window on the tap-input signals x,{n — [).
The corresponding recursion is then given by

u, {n) = au, (n — 1)e =L
+ L xdn) — abxfn = L)) G1)

where 0 < a < 1. The effectiveness of this approach in the
FLMS-GSC was verified by computer simulations. In
our experiments, a value of o slightly less than one
(typically 0.95) was sufficient to eliminate the stability

Table 1: Number of complex multiplications per cycle for
various GSC realisations (figures based on the use of FFT

algorithm)

GSC realisations

Complex multiplications per cycle

Griffiths—Jim GSC
FLMS-GSC
2D-TDLMS-GSC
2D-NDLMS-GSC

2L(K-1)

(K-1)L log, L +3.5(K—-1)L
(K=1)L log, L +35(K-1)L+(K—1) log,(K-1)
KLlog, L +3.5(K—1)L+(K~1)log,(K—-1)
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difficulties associated with eqn. 30, without affecting the
overall performance of the system.

The recursion (eqn. 31) can be used to reduce the com-
putational load of the proposed GSC realisations in a

MSE, dB
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iteration number

Fig. 4  Learning curves of various GSC realisations
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significant way. For instance, when eqn. 31 is used fol-
lowing the (K — 1)-point 1D-DFT on the first column of
tap-inputs, the number of complex multiplications per

@
©
c
[
o
~100L— L " L " L " L L
-80 -60 -40 -20 O 20 40 60 80
incident angle, deg
Fig. 6  Beampatterns of FLMS-GSC at frequency f, = 0.3

After 250, 500 and 1000 iterations
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Fig. 7  Beampatterns of 2D-DCT-based 2D-TDLMS-GSC at fre-
quency f, =03

After 125, 250 and 500 iterations

cycle needed for the 2D-DFT is reduced to (K —1)
logy(K — 1) + 1.5(K — 1)L.

4 Simuiation results

Computer simulations were used to study the con-
vergence performance of the new GSC realisations pro-
posed above, in relation to that of the FLMS-GSC and
the Griffith-Jim GSC. Note that several different imple-
mentations of the ‘transform-domain GSCs’ are possible
depending on the type of unitary transform being used.
In the following discussion we consider four practical and
computationally efficient combinations based on the
DFT and the DCT families, namely: DFT-based FLMS-
GSC, two different versions of the 2D-TDLMS-GSC
based on the 2D-DFT and the 2D-DCT, and DFT-based
2D-NDLMS-GSC.

The simulation scenario is similar to that of Reference
6. The wave field consists of one target signal (the
‘desired” signal) and three jammers in additive uncor-
related background noise. The target signal and the
jammers are stationary narrowband plane waves with
different directions of arrival. The background noise is a
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zero-mean Gaussian white noise process. Specific values
of the simulation parameters are given below, where f;
and 6, respectively denote the normalised frequency and
incident angle (relative to broadside) of the plane wave
signals and where SNR and JNR respectively denote the
signal-to-noise and jammer-to-noise ratios:

Target signal: f, = 0.1, 0, = 0°, SNR = 10 dB.
Jammer 1: f; = 0.3, 0, = 34°, JNR! = 20 dB.
Jammer 2: f, =04, 0, = —49°, INR2 = 40 dB.
Jammer 3: f; =025, 6; = —24°, INR3 = 30 dB.

The wave field is spatially sampled with a uniform linear
array of K = 17 sensors, which is steered in the direction
of the target signal. The sensor spacing is equal to half
the wavelength at some prescribed maximum frequency
of interest, say f,.., and the sensor outputs are tempo-
rally sampled at the corresponding Nyquist rate, ie.,
2fpmax - In all the GSC realisations, the number of taps per
TDL in the sidelobe canceller is set to L = 8, with each
unit delay element introducing a physical delay of T, =
1/(2f,a)- Moreover, the fixed target signal filter is an all-
pass, linear phase (i.e., distortionless) filter with a gain
1/K and a pure delay of L — 1 time samples. The follow-
ing values of the step-size parameter were used initially:
Griffith-Jim GSC: y=121x 1073, FLMS-GSC:
y=12x1073; 2D-TDLMS-GSC: y =1.116 x 1073;
2D-NDLMS-GSC:y = 7.1 x 1073, The value of y for the
FLMS-GSC is taken within the interval 0 <y < 1/
(K — 1)L =7.81 x 1073 to ensure the converge of the
algorithm. The other values of y are chosen empirically to
achieve the same steady-state value of the mean-squared
error (MSE), which is defined here as Ef|e(n) — s(n)|*],
where e(n) is the GSC output and s(n) is the desired target
signal. In all cases, the smoothing constant 8 occuring in
eqn. 15 is set to 0.7.

The learning curves of the five adaptive beamformers
are plotted in Fig. 4. These curves show the MSE at the
output of each GSC during the adaptation and are
obtained by ensemble averaging over 200 independent
runs. As expected, the 2D-TDLMS-GSC based on the
2D-DFT converges more rapidly than the FLMS-GSC.
The 2D-TDLMS-GSC based on the 2D-DCT has a still
larger convergence rate that its 2D-DFT counterpart,
which can be attributed to the better ability of the
2D-DCT to remove correlation between the random ele-
ments of the tap-input image. The 2D-NDLMS-GSC
provides the largest convergence rate, in agreement with
the result of theorem 1 in the Appendix. The waveforms
of the error signal e(n) at the output of the FLMS-GSC,
2D-TDLMS-GSC based on the 2D-DCT and the 2D-
NDLMS-GSC are shown in Fig. 6, together with the
original target signal s(n) (single run). The results are con-
sistent with those of Fig. 5.

Fig. 6 shows the adaptive beampatterns of the FLMS-
GSC at frequency f; = 0.3 after k = 250, 500 and 1000
iterations, respectively (K =15, y=2232x 103,
100-run average). Fig. 7 shows the adaptive beampatterns
of the 2D-DCT-based 2D-TDLMS-GSC under the same
conditions but after 125, 250 and 500 iterations, respect-
ively. In both cases, the level of suppression in the direc-
tion of Jammer 1 (6, = 34°) increases with time as the
filter weights converge to the optimal solution, reaching a
steady-state value of approximately 60 dB. However,
comparison of Figs. 6 and 7 reveals that it takes con-
siderably less time for the 2D-TDLMS-GSC to achieve a
given level of suppression than for the FLMS-GSC. For
instance, in this particular example, steady-state is
reached at around k =500 iterations for the 2D-

1EE Proc.-Radar, Sonar Navig., Vol. 141, No. 5, October 1994

TDLMS-GSC compared with k = 1000 for the FLMS-
GSC. 1t is interesting to note that here the use of the
2D-DCT results in a reduction of about 12.3 dB in the
estimated eigenvalue spread of the correlation matrix of
the transformed image U(n) (eqn. 17), compared with the
FLMS-GSC. Finally, we observe that despite following
different adaptive trajectories, the steady-state beam-
patterns of the two methods are very similar. The adapt-
ive beampatterns of the 2D-DFT-based 2D-TDLMS-
GSC and 2D-NDLMS-GSC (not shown) also converge
more rapidly than those of the FLMS-GSC, in agreement
with the results in Fig. 5.

5 Conclusion

Several extensions of this work are possible. A first issue
of interest is the perfomance prediction of various 2D
transforms in the proposed GSC realisations and the
selection of the most appropriate transform in a given
application. The performance index recently proposed in
Reference 12 could be used to investigate this matter.
Another issue of interest is that of partially adaptive
beamforming [13]. Indeed, whenever the interference
field consists of a few strong narrowband jammers in
additive noise, many of the transform-domain coefficients
uy(n) in eqn. 17 are relatively small. In this case, partially
adaptive versions of the proposed GSC realisations can
be obtained by setting the smaller coefficients to zero. In
practice, this can be achieved by comparing #,(n) (eqn.
15) with a threshold at repeated time intervals. Finally,
we note that the GSC realisations proposed in this paper
can be extended to two-dimensional arrays by using 3D
unitary transforms.
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7 Appendix

In this appendix, we show that the matrices governing
the adaptation of each narrowband component of the
2D-NDLMS-GSC have a smaller eigenvalue spread than
the matrix governing the adaptation of the 2D-TDLMS-
GSC. We begin with some related matrix properties. The
main result is stated in theorem 1.

Property 1: Let S be a principal submatrix of a positive-
definite Hermitian matrix R. Then,

x(8) < R (32)

where x(.) denotes the condition number of its matrix
argument.

Proof: See Reference 14.

Definition: Let ;=1 when i = and 6;; = 0 when i # j.
Let o(i) denote an arbitrary permutation of the integers
{1, 2, ..., m}. The m x m matrix P with elements pij =
O4), o(j 18 called a permutation matrix,

Property 2: Let P be a permutation matrix. The follow-
ing properties hold: (i) P is unitary, ie. P~ = P¥_(ii) pre-
muitiplying a matrix R by P has the effect of transferring
the initial row with index o(i) into the new row with
index i; (ili) post-multiplying R by PT produces a similar
exchange of the columns.

Proof: See Reference 15.

Property 3: The simultaneous permutation of both lines
and columns of a Hermitian matrix R, with the same per-
mutation, does not change its condition number.

Proof: According to property 2, such a rearrangement
can be expressed as PRPT, where P is a permutation
matrix. Since P is unitary, it follows that PRPT is a
unitary similarity transformation, which does not modify
the eigenvalues of R [15]. Hence x(PRPT) = y(R).

Property 4: Let Q and R be m x m positive-definite Her-
mitian matrices. Then

HQ7'R) = y(Q '?RQ "' (33)
Proof: 1t can be verified easily that Q 'R and
Q '?RQ™'2 have the same characteristic polynomial,

ie, det(Q 'R — Al) = det(Q~V?RQ~ Y2 — iI).  Hence,
Q'R and Q" >RQ™'/2 have the same eigenvalues and
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thus the same condition number. This completes the
proof.

Now, consider the 2D-TDLMS-GSC and the 2D-
NDLMS-GSC proposed in Section 3. To compare their
convergence rates, suppose that the same separable 2D
unitary transform is used in both cases to map the tap-
input vector X(n) (eqn. 4) into the transform-domain.
Under this condition, the transform-domain coefficients
u, ,(n) are given by eqn. 24 and are identical for both
realisations. These coefficients are used to update the
adaptive processor weights.

In the 2D-TDLMS-GSC, the processor weights are
updated via eqn. 12 so that the convergence rate of the
adaptive process is governed by the matrix Ry} Ry,
where Ry, is defined in eqn. 13 and R is given by eqns.
15 and 16. In the 2D-NDLMS-GSC, a separate self-
orthogonalising LMS adaptive algorithm is used for each
value of the index r. According to eqn. 28, the con-
vergence rate of the rth (narrowband) adaptive process is
governed by the matrix R, ', Ry, ., where here,

Ry,p, = ELU,(mU}(n)] (34)
U.(n) 4 (4, 1(n), u, on), ..., U, x- 1(”)]T (35
Ry'y, = diag (1/7, 1, ..., 1/F, x ) (36)

and 7, ,(n) is given by eqn. 15.

Theorem 1: For r=0, 1, ..., L — 1, there holds the
inequality
AR o, Ryp) < xRy Ryy) (37

Proof: We note that U (n) (eqn. 35) can be obtained by
first permuting the elements of U(n) (eqn. 5) and then
retaining only the first K — 1 clements of the resulting
vector. Hence

Un) = [l -1, 0]PU(n) (38

where P is an appropriate permutation matrix and 0 is a
zero matrix of proper dimension. Using this decomposi-
tion, it is not difficult to verify that R }?R,, ;, Rg Y% is a
principal submatrix of PR;}/2R,, Ry/?PT. Now, using
properties 4, 1, 3 and 4, in that order, we have

X(ﬁz;,i/, Ry,p) = X(ﬁﬁ.lv/,z Ry, U,ﬁﬂ,}ll,z
< 2(PRgy*Ryy Ry 12PT)
= X(ﬁﬁl}lzkuu ﬁ;l}/z)
= x(Ry¢ Ryy) (39
This completes the proof.
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