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ABSTRACT Owing to the vulnerability of relay-assisted communications, improving wireless security
from a physical layer signal processing perspective is attracting increasing interest. Hence, we address the
problem of secure transmission in a relay-assisted network, where a pair of legitimate user equipments (UEs)
communicate with the aid of a multiple-input multiple output (MIMO) relay in the presence of multiple
eavesdroppers (eves). Assuming imperfect knowledge of the eves’ channels, we jointly optimize the
power of the source UE, the amplify-and-forward relaying matrix, and the covariance of the artificial
noise transmitted by the relay, in order to maximize the received signal-to-interference-plus-noise ratio
at the destination, while imposing a set of robust secrecy constraints. To tackle the resultant non-convex
optimization problem with tractable complexity, a new penalized difference-of-convex (DC) algorithm is
proposed, which is specifically designed for solving a class of non-convex semidefinite programs. We show
how this penalized DC framework can be invoked for solving our robust secure relaying problemwith proven
convergence. In addition, to benchmark the proposed algorithm, we subsequently propose a semidefinite
relaxation-based exhaustive search approach, which yields an upper bound of the secure relaying problem,
however, with significantly higher complexity. Our simulation results show that the proposed solution is
capable of ensuring the secrecy of the relay-aided transmission and significantly improving the robustness
toward the eves’ channel uncertainties as compared with the non-robust counterparts. It is also demonstrated
the penalized DC-based method advocated yields a performance close to the upper bound.

INDEX TERMS Amplify-and-forward, difference-of-convex, eavesdropping, multiple-input
multiple-output, physical layer security, relaying, robust optimization.

I. INTRODUCTION
With the proliferation of smartphones storing more
sensitive personal data ranging from social networking to
online banking, wireless end-users have become vulnerable
targets of hackers. According to a recent report on mobile
cyber threats, the number of cyber attacks to mobile users
has been dramatically growing, e.g., by nearly 10-fold from
August 2013 to March 2014 [1]. Within this context, how
to ensure information security is becoming a critical issue
for wireless service providers. Although the classic bit-level

encryption technique has been deemed to be most effective
way of achieving this goal, a recent report by the Washington
Post has drawn public attention to the potential security risks
of wireless technologies, even when advanced encryption
is used.1 Against this background, physical layer security

1In [2], it is reported that two German researchers have demonstrated how
to exploit the security flaws in the Signaling System 7 (SS7) to eavesdrop
on all incoming and outgoing calls indefinitely from anywhere in the world.
They have shown how to decode the messages by requesting each caller’s
carrier to release a temporary encryption key through the SS7.
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is emerging as a promising alternative to complement the
encryption and to further enhance the security of wireless
networks.

Since Wyner opened this new avenue of security provision
by introducing the notion of secrecy capacity [3], researchers
have sought to enhance security for a wide range of commu-
nication channel models, as discussed in [4]–[6] and the refer-
ences therein. Recently, physical layer security has attracted
increased interest, driven by new techniques such as cooper-
ative relaying, which has found its way into the Long-Term
Evolution (LTE) standard. Although the diversity advantages
gleaned from user cooperation have been recognized in the
context of generic relay-assisted networks [7]–[9], ensuring
secrecy in message relaying remains a key issue. Specifi-
cally, when additional intermediate nodes assist in forwarding
the source messages, the information confidentiality may
be more readily compromised, unless the relaying scheme
is appropriately designed. It was demonstrated in [10] that
relaying is capable of improving the level of security. This
seminal work has led to further research endeavors devoted
to investigating the secrecy of relay-assisted communications
from the physical layer perspective [11]. Following this trend,
in this paper emphasis will be on new signal processing
techniques conceived for improve wireless relaying security.
Below we briefly review related works on this research topic
and summarize our main contributions.

A. RELATED WORKS
A wireless relay can adopt either the amplify-and-
forward (AF) or the decode-and-forward (DF) strategy for
forwarding source messages. For DF relaying, the optimal
weights that achieve the maximum secrecy capacity are
derived in [12] and [13]. The optimal power allocation
scheme betwen the information and jamming signals for the
DF relay is derived in [14]. As compared to DF, AF relaying
offers its inherent advantages of lower signal processing com-
plexity and latency, and hence will be the focus of our atten-
tion. A variety of relaying solutions such as beamforming,
cooperative jamming and artificial noise (AN) generation, or
a hybrid of the aforementioned options, have been studied
in [15]–[26]. For instance, the optimal AF relaying weights
maximizing the achievable secrecy rate of a single-antenna
relay network are derived in [15], without consideration of
the source information leakage to eves. Joint optimization of
beamforming, power and jamming signals for single-antenna
relay networks is further investigated in [26] with the objec-
tive maximizing the secrecy rate. When multiple antennas
are employed at both the source and relay, joint transmit
precoding and power allocation relying on the generalized
singular value decomposition (GSVD) is proposed in [16].
Finally, joint source precoding andmulti-antennaAF relaying
is investigated in [17] assuming an untrusted relay node.

The contributions [15]–[17] assume perfect knowledge of
each eve’s channel state information (ECSI) at the legiti-
mate nodes. In practice, due to the lack of explicit coop-
eration between the latter and eves, at best an inaccurate

estimate of the ECSI may be available. In [27], knowledge
of specific distribution of the ECSI errors (e.g., Gaussian) is
assumed, and an intercept probability constrained maximum
SINR beamforming scheme is proposed for an MIMO relay
network. Assuming that the ECSI errors lie in a predefined
norm-bounded region, joint relay beamforming and jamming
signal design in a single-antenna relay network is developed
in [18] and [19] with the objective of maximizing the worst-
case secrecy rate. Extension of this approach to a more gen-
eralized model where multi-antenna is employed at the relay
is considered in [20] and [21], see, also [25] for the scenario
of multiple multi-antenna eves. Minimization of the mean
square error (MSE) of the received signal at the destination,
subject to a set of signal-to-interference-plus-noise (SINR)-
based secrecy constraints, is considered in [22]. Using the
same uncertainty model, the problem of total relaying power
minimization is studied in [23] and [24] by simultaneously
guaranteeing a predefined quality-of-service (QoS) level at
the destination and a certain secrecy level against eaves-
dropping. Finally, [21] assumes a more general relay system
configuration, where some of the prior works can be viewed
as a special case. In this work, a globally optimal solution
is obtained resorting to a bi-level optimization framework,
where the upper-level problem is tackled by one-dimensional
search, while the inner-level problem is solved by semidefi-
nite relaxation (SDR) [28].

B. CONTRIBUTIONS
This paper considers a general wireless communication sce-
nario, where a source (S) transmits its confidential data to
a destination (D), assisted by a multi-antenna AF relay (R).
Although a similar system model was stuided in [21], the
present paper assumes that both phases of the two-hop trans-
mission are overheard by a set of independent eves, which
was bypassed by [21]. The power of S, the AF relaying
matrix and the covariance matrix of the AN emitted by R have
to be jointly optimized for protecting the message confi-
dentiality. As an alternative to most of the prior contribu-
tions [12], [13], [15], [16], [18]–[21], where the main focus
has been on the maximization of the (worst-case) secrecy
rate when either perfect or imperfect ECSI is available, we
investigate the secrecy problem in MIMO relaying network
from a practical communication performance perspective.
Specifically, assuming that the ECSI errors reside in a prede-
fined spherical region, we aim for maximizing the received
SINR at D, subject to power constraints, while satisfying a
set of robust secrecy constraints at eves. The formulated
optimization problem can be represented as a nonlinear non-
convex semidefinite program (SDP) with a bilinear equality
constraint due to the joint nature of the optimization variables.
Such a class of problems are in general difficult to solve with
tractable computational complexity. Towards this end, we
propose a new penalized difference-of-convex (DC) algorith-
mic framework specifically designed for the class of nonliner
non-convex SDP with bilinear equality constraints. One of
the feature of the proposed penalized DC algorithm is that
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it eliminates the need for a non-trivial feasible initialization
as required by conventional iterative algorithm [29] since
finding such an initialization for a non-convex problem is in
general a difficult task. We explicitly prove that the solution
sequence generated by the algorithm converges to a stationary
point of the original problem. We further solve the secrecy
constrained relaying problem by the proposed algorithm effi-
ciently. To benchmark our solution approach, we also derive
a upper bound for the secrecy constrained relaying problem
by relying on the SDR technique along with one-dimensional
search algorithm. We show by numerical simulations that our
proposed penalized DC algorithm is capable of achieving
a performance close to the upper bound at a significantly
reduced complexity.

C. ORGANIZATION AND NOTATIONS
The rest of the paper is organized as follows. Section II
introduces the relay system model and formulates our
secrecy-constrained robust relaying problem. In Section III,
we propose a new penalized DC algorithmic framework
and characterize its convergence. We then invoke the pro-
posed framework for solving our secure relaying problem in
Section IV. In Section V, a benchmarker relying on the SDR
and one-dimensional exhaustive search is derived for com-
parison purpose. The performance of the proposed solution
is quantified via numerical simulations in Section VI. Finally,
we conclude in Section VII.

Boldface uppercase (lowercase) letters denote matrices
(vectors), while normal letters denote scalars; (·)∗, (·)T , (·)H ,
and (·)−1 denote the conjugate, transpose, Hermitian trans-
pose and inverse, respectively; ‖·‖ represents the Euclidean
norm of a vector, while ‖·‖F denotes the Frobenius norm of a
matrix; Tr(·), vec(·), and⊗ stand for the matrix trace, vector-
ization and the Kronecker product, respectively; CM×M and
HM denotes the spaces of (M ×M )-element matrices having
complex entries andM×M Hermitian matrices, respectively;
Re{·} denotes the real part of a complex number.

FIGURE 1. MIMO relay network in the presence of multiple
single-antenna eves.

II. SYSTEM MODEL AND PROBLEM FORMULATION
Consider the wireless network as depicted in Fig. 1, where
source S communicates with destination D, assisted by
a trusted AF relay R operating in a half-duplex mode.

The signals transmitted during the S → R and R → D hops
are overheard by K independent eves, Ek for k ∈ K ,
{1, 2, · · · ,K }. We assume that S, D and Ek , ∀k ∈ K are
single-antenna UEs having limited signal processing capabil-
ities and low power budgets. By contrast, R is equipped with
NR ≥ 2 antennas. It is assumed that no direct link is available
between S–D due to the severe pathloss.
A narrowband flat-fading channel model is considered,

where we denote the S–R channel by h1 ∈ CNR×1 and the
Hermitian transpose of the R–D channel by h2 ∈ CNR×1. Let
s denote the S information symbol, modeled as a zero-mean
Gaussian random variable with a power of σ 2

S ≤ PS, where
PS denotes the S power budget. During the first transmission
slot, the signal received at R is given by

z = h1s+ nR, (1)

where nR is a zero-mean additive noise vector with covariance
of σ 2

RINR . Then R applies a linear AF transformation matrix
W ∈ CNR×NR to the received signal, and superimposes an
AN vector onto the linearly processed signal. Hence, the
signal to be forwarded to D is given by

r =Wz+ v =Wh1s+WnR + v, (2)

where v denotes the AN vector with zero mean and covari-
ance of E{vvH } = 999 � 0 to be optimized. The relay R
has the power constraint of σ 2

S‖Wh1‖2 + σ 2
R‖W‖

2
F +

Tr(999) ≤ PR, where PR denotes its power budget. During the
second transmission slot, D receives the following signal:

yD = hH2 Wh1s+ hH2 WnR + hH2 v+ nD, (3)

where nD is an additive noise with zero mean and a variance
of σ 2

D .
We adopt, as a metric of transmission reliability, the

received SINR at D given by

SINRD =
σ 2
S |h

H
2 Wh1|2

σ 2
R‖h

H
2 W‖

2 + hH2 999h2 + σ 2
D

. (4)

During the transmission, each Ek is potentially capable of
overhearing the signals transmitted both from S and R. Let
g1k and g2k ∈ CNR×1, respectively, denote the S–Ek chan-
nel and the Hermitian transpose of the R–Ek channel. Then
the signals observed by Ek from S and R, respectively, are
given by

ySE,k = g1ks+ nE,1k (5)

yRE,k = gH2kWh1s+ gH2kWnR + gH2kv+ nE,2k , (6)

where nE,1k and nE,2k are additive noise terms with zero mean
and a variance of σ 2

E,k . In our work, it is reasonable to assume
that Ek , for k ∈ K, relies on selection diversity combining of
ySE,k and yRE,k for the sake of simpler exposition (However,
our work can be extended to the case of maximum ratio
combining (MRC), see Remark 1 for more justifications.).
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On this basis, the mutual information leakage to each Ek can
therefore be expressed as

CE,k (σS,W,999)

=
1
2
max

{
log2

(
1+

σ 2
S |g1k |

2

σ 2
E,k

)
,

log2

(
1+

σ 2
S |g

H
2kWh1|2

σ 2
R‖g

H
2kW‖

2 + gH2k999g2k + σ 2
E,k

)}
, (7)

where the coefficient 12 is due to the fact that the relay-assisted
transmission requires a pair of orthogonal time slots in half-
duplex mode.

In practice, due to the lack of explicit cooperation between
the legitimate UEs and eves, only imperfect estimates of the
ECSI may be available at the legitimate UEs. Like most of the
prior contributions in the robust transceiver design literature,
we model the unknown ECSI by taking into account the error
terms 1g1k and 1g2k , yielding:

g1k = ĝ1k +1g1k , g2k = ĝ2k +1g2k , (8)

where ĝ1k and ĝ2k denote the imperfect ECSI estimates, while
again, 1g1k and 1g2k represent the corresponding uncer-
tainties. Hereby we assume that the ECSI errors lie in some
predefined bounded sets, yielding:

G1k ,
{
1g1k : |1g1k |2 ≤ ε1k

}
(9)

G2k ,
{
1g2k : ‖1g2k‖2 ≤ ε2k

}
, (10)

where εik , i = 1, 2 denotes the radius of the uncertainty
region. The above bounded error model has been extensively
used in robust MIMO transceiver optimization literature to
capture the effects of channel estimation errors or quanti-
zation errors due to the finite-rate feedback, see, e.g., [30]
for more details. The above error model is also applicable
in some secure communication scenarios. A notable example
is the device-to-device (D2D) discovery and communication
defined in 3GPP LTE Rel. 12 [31]. Each UE (including
the potential eves) periodically broadcasts its own beacon
signals and listens to others using a subset of resources
reserved for D2D operations. In this way, each UE is able to
discover the presence of other UEs (including potential eves
in its proximity) and subsequently infers an imprecise ECSI
estimate based on the channel reciprocity. In this case, the
bounded error model can be invoked to quantify the channel
estimation errors.

In a practical communication system, S can operate at
a fixed data rate of Rd with specific modulation and cod-
ing scheme (MCS), i.e., during a specific scheduling period
in LTE. The objective of our secure relaying design is to
jointly optimize σS, W and 999, subject to the power con-
straints, in order to maximize the received SINR at the legit-
imate end-user D, while satisfying a set of robust secrecy
constraints at the eves. Mathematically, this problem can be

formulated as

max
σS,W,999

SINRD (11a)

s.t. CE,k (σS,W,999;1g1k ,1g2k ) ≤ κRd ,

∀1g1k ∈ G1k ,1g2k ∈ G2k , k ∈ K (11b)

σ 2
S‖Wh1‖2 + σ 2

R‖W‖
2
F + Tr(999) ≤ PR (11c)

σ 2
S ≤ PS, 999 � 0. (11d)

In the above formulation, (11b) denotes the so-called robust
secrecy constraints, which aims to guarantee the secrecy for
all possible realizations of the ECSI errors 1g1k and 1g2k
within uncertainty regions as defined in (9) and (10), respec-
tively. The parameter κ is used to introduce more flexibility
in controlling the security level of the communication. Before
leaving this section, two important remarks are presented:
Remark 1 (On the assumption of eves’ receive

combining): It is worth pointing out that in contrast to
prior contributions, hereby we assume information leakage
during both the two-hop relay-assisted transmission. This
more general assumption grants the eves the opportunities
of enhancing their quality of reception via diversity combin-
ing. Two popular diversity combing schemes are available,
namely, SC and MRC. The implement of MRC requires an
accurate estimate of the phases of the received signals during
the two stages of relay-assisted transmission. When channel
estimation errors are in general invoked, the performance of
MRC would significantly deteriorate. Additionally, to coher-
ently combine the signals from the two-stage transmission,
eves’ clocks need to be perfectly synchronized to that of
the legitimate network, which is quite challenging if the
eves are not part of the legitimate network. It is observed
in [32] that the MRC with two branches only yields marginal
performance gain over the SC, however, at the expense of
higher complexity. Hence, to bypass the aforementioned
requirements, it is reasonable to assume that eves adopt
the SC, also for the sake of lower hardware complexity.
However, to better appreciate the generality of our proposed
algorithm, in Remark 4 of Section IV, we will elaborate on
how the proposed algorithm can be applied to solve the secure
relaying problem when the MRC is employed by eves. �
Remark 2 (On the problem formulation of (11d)): In lit-

erature, another popular approach for improving the trans-
mission secrecy is to maximize the secrecy capacity of the
relay-assisted network from the perspective of information
theory. The latter in general relies on the underlying assump-
tion that there exists a capacity-achieving coding scheme
based on non-constructive random coding theorem. Such
design approach is therefore useful as a benchmark from sys-
tem design viewpoint. In practical communication systems
whereby specific MCSs are used, e.g., 3GPP LTE-Advanced,
it is better to consider a physical layer design approach,
which can be readily incorporated into on-going standards.
The proposed design approach well suits several use cases in
LTE-Advanced such as the D2D broadcast scenarios. Specif-
ically, by enforcing the mutual information leakage CE,k to
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fall below the data rate of the legitimate UE, i.e., CE,k <

κRd ,eves are impossible to perfectly decode the confidential
messages from the legitimate UEs. �

III. THEORY: PENALIZED DC ALGORITHMIC
FRAMEWORK
In this section, we propose a new penalized DC algorithmic
framework, which aims to solve a class of nonlinear non-
convex SDPs. Following some preliminary, we first present
the framework, which can be considered as an evolutionary
variant of the conventional DC framework [33]. However, the
results of convergence analysis in the literature of conven-
tional DC algorithm is not directly applicable to the proposed
framework. Hence as a further contribution, we explicitly
state the convergence properties of this new algorithm.

A. PRELIMINARY
Wefirst provide some definitions which will be used through-
out the subsequent derivations of algorithm.
Definition 1 (Positive Semi-Definite (PSD)-Convex

Mapping): A matrix-valued mapping FFF(·) : Cn → Hp is
called PSD-convex on a convex subset � ⊆ Cn, if for all
x, y ∈ � and θ with 0 ≤ θ ≤ 1, we have

FFF (θx+ (1− θ )y) � θFFF(x)+ (1− θ )FFF(y). (12)
The PSD-convex mapping is a generalization of a convex
function by noting that any convex function with f (·) : Cn→
R is PSD-convex in conjunction with p = 1. The derivative
of a matrix-valued mapping FFF(·) at a point x is defined as a
linear mappingDFDFDF : Cn→ Cp×p given by
Definition 2 (Directional Derivative of Matrix-Valued

Mapping):The directional derivative of a matrix-valuedmap-
ping FFF at x is a linear mappingDFDFDF : Cn → Cp×p, which is
defined by

DFDFDFh =
n∑
i=1

hi
∂FFF
∂xi

(x), ∀h ∈ Cn. (13)

For a given convex subset � ⊆ Cn, the matrix-valued map-
ping FFF(·) is said to be differentiable on � if its directional
derivativeDFDFDF exits at every x ∈ �. For ease of discussion, we
assume that all the functions and matrix-valued mappings are
twice differentiable on their corresponding domains through-
out the paper.

The first-order condition for a PSD-convex mapping is
given in the following proposition:
Proposition 1 (First-Order Condition): A mapping FFF is

PSD-convex if and only if for all x, y ∈ Cn, the following
inequality holds

FFF(y) � FFF(x)+DFDFDF(x)(y− x). (14)
Now we can proceed to the definition of a PSD DC map-

ping.
Definition 3 (PSD DC Mapping): A matrix-valued map-

pingHHH(·) is called a PSDDCmapping ifHHH can be represented
as a difference of two PSD-convex mappings, i.e.,

HHH(x) = FFF(x)−GGG(x), (15)

whereFFF(·) and GGG(·) are PSD-convex mappings.

Note that the concept of the PSDDCmapping generalizes the
conventional scalar-valued DC scalar-valued function, i.e.,
h(x) = f (x)− g(x).

B. OPTIMIZATION OF A PSD DC PROGRAM WITH
BILINEAR MATRIX EQUALITY CONSTRAINT
To simplify the exposition, in this subsection let us use matrix
X ∈ Cm×n as an optimization variable instead of using
x ∈ Cn. The reason is that in the problem formulation of
our interest, there exists a bilinear matrix equality constraint,
as will seen below. However, it should be pointed out that
any matrix variable X ∈ Cm×n can be equivalently expressed
in the vector form, i.e., x ∈ Cmn×1 via x = vec(X). Since
the vectorization is a linear operation, the aforementioned
PSD-convexity is preserved under linear operation.

We are interested in solving the following problem:

min
X

f0(X)− g0(X) (16a)

s.t. FFF i(X)−GGGi(X) � 0, i = 1, 2, · · · , I − 1 (16b)

X2 = X0X1 (16c)

X ∈ �, (16d)

where the optimization variable X is defined as X =

(X0,X1,X2, · · · ,XN−1), � ⊆ Cn is a non-empty, closed
convex subset, f0(·), g0(·) are convex functions on �, and
FFF i(·), GGGi(·) are PSD-convex mappings on �. For the ease
of presentation, we use (16c) to represent that some of the
optimization variables are nonlinearly coupled in the bilinear
form. However, it can be conveniently extended to the case
of Xi = XjXk for i, j, k ∈ {0, 1, · · · ,N − 1}. Clearly, if the
matrix equality constraint (16c) is absent, then (16) becomes
a so-called PSD DC program.

Next, we rely on the following lemma to show that (16) can
be equivalently rewritten as a PSD DC program.
Lemma 1 (Lemma 1, [34]): Given X0, X1 and X2 of

appropriate dimensions, which satisfy the following relation:

X2 = X0X1, (17)

then the above matrix equality is equivalent to the following
two constraints:  Y1 X2 X0

XH
2 Y2 XH

1

XH
0 X1 I

 � 0 (18)

Tr (Y1)− Tr
(
X0XH

0

)
≤ 0 (19)

where Y1 and Y2 are auxiliary matrix variables with appro-
priate dimensions. �

It is observed that (18) is a linear matrix inequality (LMI)
constraint and (19) is a DC constraint. Therefore, we can
conveniently embed (18) into the convex subset � and its
convexity remains unaffected. Additionally, since the DC
function in (19) is a special case of the PSDDCmapping with
p = 1, we can incorporate (19) into (16b), and re-express (16)
as a standard PSD DC program, which is defined as follows:
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Definition 4 (PSD DC Program): A PSD DC program
assumes the form of

min
x
ϕ(x) , f0(x)− g0(x) (20a)

s.t. FFF i(x)−GGGi(x) � 0, i ∈ I , {1, 2, · · · , I } (20b)

x ∈ �, (20c)
where x collectively denotes all the optimization variables
and auxiliary variables with appropriate linear transforma-
tion, i.e., x , (vec(X), vec(Y1), vec(Y2)). The above PSD
DC program represents a generalization of the conven-
tional DC program [29], where the DC inequality constraint,
e.g., fi(x) − gi(x) ≤ 0 is now extended to the generalized
inequality � on the PSD cone. If the convex subset � is a
polyhedral (which is true for most MIMO-aided transceiver
optimization problems), the formulation in (20) can properly
represent several classes of optimization problems:
• If at least one of f0, g0,FFF i and GGGi for i ∈ I is nonlinear,
then (20) is a nonlinear SDP;

• If g0 and GGGi for i ∈ I are linear, then (20) subsequently
becomes a convex nonlinear SDP

• If at least one of g0 and GGGi for i ∈ I are nonlinear, (20)
represents a general nonlinear non-convex SDP.

C. ISSUES WITH THE CONVENTIONAL DC ALGORITHM
Since (20) can be considered as a direct extension of a conven-
tional DC program involving only scalar-valued functions, a
natural question arises as to whether the conventional DC
algorithm developed in [29] is applicable to solving (20)?
Following the line of [29], an iterative algorithm can be
developed for (20), where the key ingredient is to find a local
linear approximation of the non-convex parts of the objective
function (20a) and the PSD DC constraints (20b), i.e.,−g0(·)
and −GGGi(·), around the solution x(n−1) obtained in the pre-
vious iteration, such that the resultant sub-problem becomes
a convex SDP. The original non-convex problem can then
be iteratively solved by a sequence of these ‘‘convexified’’
SDPs. Assuming that x(n) is a solution obtained at the nth

iteration, the linearized sub-problem is then given by

min
x

f0(x)− g0(x(n))−∇gT0 (x
(n))(x− x(n)) (21a)

s.t. FFF i(x)−GGGi(x(n))−DGDGDGi(x(n))(x− x(n)) � 0, i ∈ I
(21b)

x ∈ �. (21c)

Since f0 and FFF i are convex function/mapping in x and the
remaining terms are linear in x, the above problem is a convex
(nonlinear) SDP. The iterative algorithm therefore generates
a sequence of intermediate solutions {x(n)}∞n=0. Before pro-
ceeding to analyze the feasibility of {x(n)}, we first define the
feasible set of the original PSD DC program in (20) as

D , {x ∈ � : FFF i(x)−GGGi(x) � 0, i ∈ I}, (22)

and the relative interior of D as

ri(D) , {x ∈ ri(�) : FFF i(x)−GGGi(x) ≺ 0, i ∈ I}. (23)

In order to guarantee that the obtained solution sequence
{x(n)} lies in the feasible set D, a strictly feasible initial-
ization, i.e., x(0) ∈ ri(�) is required by the conventional
DC algorithm.2 Hence, the following requirements are nec-
essary for the conventional DC algorithm:
Requirement 1 A strictly feasible initialization x(0) ∈

ri(D) is required by the conventional DC algorithm.
Subsequently, it is straightforward to have
Requirement 2 The relative interior of the feasible set is

nonempnty, i.e., ri(D) 6= ∅.
We now explain the practical difficulties in satisfying the

above requirements. As mentioned earlier, since D is a non-
convex set, finding a strictly feasible initialization within
a non-convex set corresponds to the following non-convex
feasibility search problem

Find x s.t. x ∈ D, (24)

which in principle is not a simple task. In fact, solving the
above feasibility search problem would require the same
amount of computational efforts as solving the original PSD
DC program (20). Otherwise, if the algorithm starts with
an infeasible point, then it can lead to further infeasibility
problems during the successive iterations.

Additionally, the following claim also prevents the direct
application of the conventional DC algorithm to (20).
Claim 1 The relative interior of the feasible set of (20) is

empty, i.e., ri(D) = ∅.
Proof: We show by contradiction. Recall that a strictly

feasible solution to (20) has to satisfy

Tr(Y1)− Tr(X0XH
0 ) < 0. (25)

By applying the Schur complement to (18), we have[
Y1 X2
XH
2 Y2

]
−

[
X0
XH
1

] [
XH
0 X1

]
� 0

⇐⇒

[
Y1 X2
XH
2 Y2

]
−

[
X0XH

0 X0X1
XH
1 X

H
0 XH

1 X1

]
� 0

H⇒ Y1 � X0XH
0 , (26)

which obviously contradicts (25). Therefore, we must have

Tr(Y1)− Tr(X0XH
0 ) = 0, (27)

which implies that ri(D) = ∅.
Based on the above analysis, it is known both require-

ments of the conventional DC algorithm cannot be satisfied.
Motivated by the latter, we shall propose a new approach
where the concept of penalized DC algorithm is developed
for the considered PSDDC program. The proposed penalized
DC algorithm, which can be considered as an evolutionary
variant of the conventional DC algorithm, can solve a wider
range of PSD DC programs. In particular, it eliminates the
requirements of a non-trivial initialization and of a feasible
set with non-empty relative interior.

2This is due to the fact that the first-order Taylor series expansion of the
concave function −GGGi(·) is its upper bound, such that we have FFF i(x) −
GGGi(x) � FFF i(x)−GGGi(x(n))−DGDGDGi(x(n))(x− x(n)) � 0 for all x ∈ �.
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D. PENALIZED PSD DC ALGORITHMIC FRAMEWORK
Instead of solving (21), hereby we introduce a set of matrix
auxiliary variables {Si}Ii=1 and penalize (21a) with a linear
regularization term, i.e.,

min
x,S

ϕ̂(n)(x,S; x(n))

, f0(x)− g0(x(n))

−∇gT0 (x
(n))(x− x(n))+ τ (n)

I∑
i=1

Tr(Si)

(28a)

s.t. FFF i(x)−GGGi(x(n))−DGDGDGi(x(n))(x− x(n)) � Si (28b)

Si � 0, i ∈ I (28c)

x ∈ �, (28d)

where τ (n) ≥ 0 denotes the weight associated with the
penalty term at the nth iteration and S collectively denotes
S , (S1, · · · ,SI ). The auxiliary variable Si ∈ Hpi can be
viewed as an abstract measure of the extent to which the ith

constraint in (21b) is violated. Specifically, Tr(Si) = 0 reveals
that the ith constraint is satisfied while Tr(Si) > 0 indicates
the opposite. Therefore, a feasible solution x ∈ � is found if

I∑
i=1

Tr(Si) = 0. (29)

With the introduction of the penalized sub-problem (28),
we now develop an iterative procedure for solving the PSD
DC program (20). The rationale of the proposed penalized
DC algorithm is that it starts with an arbitrary point within
the convex subset�, i.e., x(0) ∈ �, as opposed to x(0) ∈ ri(D)
(hence possibly infeasible), and a small penalty τ such that
it facilitates a fast descent of the objective function at the
beginning while the constraints are temporarily allowed to
be violated, i.e, Si � 0. As iterations evolve, the value of τ
gradually increases according to some designed rule in order
to enforce the solution to be closer to and finally lie in the
feasible region D.

The penalized DC algorithm, which iteratively solves a
sequence of sub-problems (28) with a specifically designed
updating rule of τ is then described as Algorithm 1.

We now discuss a few important implementation aspects
of Algorithm 1.
1) Initialization: Instead of finding an initialization within

the relative interior of a non-convex feasible set [c.f. (23)],
i.e., x(0) ∈ ri(D), Algorithm 1 can now be initialized with
a point x(0) ∈ �, which corresponds to a more computa-
tionally efficient convex feasible search problem. For imple-
mentation, one may rely on the general-purpose optimization
solvers to find x(0). More importantly, in many practical
problems, x(0) can be easily found by exploiting the specific
structure of the convex subset � in that problem, (see the
considered secure relaying design problem in Section IV).
2) Termination Criterion: In practical implementation,

Algorithm 1 needs to be terminated within a maximum of
number iterations. Thus, a reasonable termination criterion is

Algorithm 1 Penalized DC Algorithm

Intialization: An initial point x(0) ∈ �, τ (0) > 0, δ1 > 0
and δ2 > 0. Set n = 0.
repeat

1. Convexify: Compute the first-order approximates

g0(x) ≈ g0
(
x(n)

)
+∇gT0

(
x(n)

) (
x− x(n)

)
GGGi (x) ≈ GGGi

(
x(n)

)
+DGDGDGi

(
x(n)

) (
x− x(n)

)
2. Solve: Compute x(n+1) by solving (28)
3. Update τ : Obtain the dual variable888(n+1)

i
associated with (28b) and set

τ (n+1) =

{
τ (n) if τ (n) ≥ r (n)

τ (n) + δ2 if τ (n) < r (n)
(30)

where

r (n) , min

{
‖x(n+1) − xn‖−1, λmax

[ I∑
i=1

888
(n+1)
i

]
+ δ1

}
4. Update iteration: n← n+ 1

until Termination criterion is satisfied or a maximum
number of iterations are reached

Output: The optimized x∗.

that the successive difference in the solution becomes small,
i.e., ‖x(n+1) − x(n)‖ ≤ δ and x(n) is (nearly) feasible, i.e.,∑I

i=1 Tr(Si) ≈ 0. If the criterion cannot be satisfied within a
maximum number of iterations, we claim that the algorithm
fails to find a feasible solution given a limited time frame.
3) On the Updating Rule (30): The updating rule of τ

in (30) is motivated by the theory of exact penalty function
methods for nonlinear optimization problem [35], [36]. The
theory suggests that if the penalty τ is larger than all the
dual variables {888i} associated with (28b) (in our case, it is
in the form of PSD ordering), i.e., τ I �888i for all i, then (28)
and (21) become equivalent. Also from the definition of r (n)

below (30), we see that the unboundness of {τ (n)} leads to
the unboundness of {888(n)

i } and ‖x
(n+1)
− xn‖ → 0. This key

property will be exploited later in proving the convergence of
Algorithm 1.
4) Solving the Convex Sub-Problem (28): As mentioned

earlier, (28) is a general nonlinear convex SDP, which can
be solved by a general interior-point method. To our best
knowledge, the external solvers supporting a general non-
linear SDP is still limited, i.e., some widely-used solvers
such as SeDuMi and MOSEK do not support nonlinear SDPs
at current stage while PENLAB is the only public nonlinear
SDP solver. However, many MIMO transceiver optimization
problems exhibit some common structures. Specifically:

1) The convex subset � can be represented by a finite
number of LMIS, i.e.,

� , {x :AAAl(x)+ Cl � 0, l = 1, · · · ,L}, (31)

whereAAAl(x) is a linear mapping of x.
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2) The mappings FFF i(x) for i ∈ I are so-called Schur
PSD-convex mappings, which assumes the form of

FFF i(x) , SSS i(x)RRR−1i (x)SSSHi (x)−QQQi(x), (32)

whereRRRi(x) = RRRH
i (x) and QQQi(x) = QQQH

i (x) are linear
mappings of x andRRRi(x) � 0;

3) The function f0(x) in the objective function is quadratic
in x:

f0(x) = xHBx+ 2Re{bHx} + c. (33)

Below we show the sub-problem (20) with the above struc-
ture can be equivalently transformed into a standard SDP,
which can be efficiently solved by state-of-the-art optimiza-
tion tools. The transformation simply invokes the Schur com-
plement and the introduction of auxiliary variables. In this
case, one can transform (28) into a standard SDP:

min
x,S,
t,{Ti}

t −∇gT0 x
(n))x+ τ (n)

I∑
i=1

Tr(Si) (34a)

s.t. Ti −DGDGDGi(x(n))x− Si � 0 (34b)

AAAl(x)+ Cl � 0, l = 1, · · · ,L (34c)[
QQQi(x)+ Ti SSS i(x)
SSSHi (x) RRRi(x)

]
� 0, i ∈ I (34d)[

x
1

]H [ B b
bH c− t

] [
x
1

]
� 0, (34e)

where t and {Ti} are auxiliary variables. The above problem
now is in the form of a standard SDP.

E. CONVERGENCE ANALYSIS OF THE
PENALIZED DC ALGORITHM
Since Algorithm 1 is designed to start with a possibly infeasi-
ble initialization, the iterative procedure may admit an infea-
sible final solution to the original PSD DC program (20).
Therefore, two important aspects regarding the convergence
of Algorithm 1 need to be examined:

1) whether the solution generated by Algorithm 1 is fea-
sible to the PSD DC program (20)?

2) whether the convergence properties of conven-
tional DC algorithm still hold for the penalized
DC algorithm?

In this subsection, the convergence properties of Algorithm 1
are analytically established. Let x̄ be a point within the convex
subset �, i.e., x̄ ∈ �. The PSD DC constraint (20b) at
x̄ is called inactive if the strict inequality holds, that is,
FFF i(x̄)−GGGi(x̄) ≺ 0. Otherwise, the PSDDC constraint is called
active, i.e.,FFF i(x̄)−GGGi(x̄) ⊀ 0. Let us denote the set of active
constraints at x̄ by

U(x̄) ,
{
i ∈ I

∣∣FFF i(x̄)−GGGi(x̄) ⊀ 0
}
. (35)

We call a vector h ∈ cone(�− x̄) a feasible direction to (20)
at x̄ if we have

(DFDFDF i(x̄)−DGDGDGi(x̄))h ≺ 0, ∀i ∈ U(x̄). (36)

We now make our first assumption, which is called
the extended Mangasarian-Fromovitz constraint qualifica-
tion (MFCQ) [37]:
Assumption 1 For any x̄ ∈ �, there exists a feasible

direction h ∈ cone(�− x̄) to (20).
The extended MFCQ is a quite common constraint qualifi-
cation in nonlinear optimization theory such that it guaran-
tees the KKT necessary conditions to hold at a local point.3

A geometric interpretation of the extended MFCQ can be
described as follows. The gradients of the active inequality
constraints (recall thatFFF i(x̄)−GGGi(x̄) ⊀ 0) at x̄ form a pointed
cone, and there exists a feasible direction in this cone that is
tangent to the surface formed by active inequality constraints.

In addition, we also make the following common
assumptions:
Assumption 2 � is bounded and the objective function

ϕ(x) = f0(x)− g0(x) is bounded from below on �.
Assumptions 2 is a mild assumption from practical perspec-
tive. In Assumption 2, � is bounded due to the power con-
straints imposed in the design problem, whilst the objective
function is usually a performance metric such as the SINR or
MSE, which is lower-bounded by zero.

Before formally stating the convergence theorem, we first
present the following lemma, which shows that 1x(n) ,
x(n+1) − x(n) is a descent direction of the PSD DC pro-
gram (20). The latter is a key property in proving the con-
vergence of Algorithm 1.
Lemma 2 Let us denote the penalized objective function

by ϕ̂(n)(x,S) , f0(x) − g0(x) +
∑I

i=1 τ
(n) Tr(Si). Suppose

that {x(n), n = 0, 1, · · · } is a sequence of solutions generated
by Algorithm 1. Then we have:

1) The following inequality holds for n ≥ 0:

ϕ̂(n)(x(n),S(n))− ϕ̂(n)(x(n+1),S(n+1))

≥
ρf + ρg

2
‖x(n+1) − x(n)‖2, (37)

where ρf and ρg denote the convexity parameters of f0
and g0, respectively, i.e., ρf , ρg > 0 if f0 and g0 are
strongly convex function and ρf , ρg = 0 otherwise.

2) If either f0 or g0 is strongly convex, i.e., ρf + ρg > 0,
then 1x(n) is a sufficient descent direction of (20) for
all n ≥ 0.
Proof: Please see Appendix A.

Subsequently, we assume that
Assumption 3 Either f0(·) or g0(·) is strongly convex.

The above assumption is needed to ensure1x(n) is a sufficient
descent direction of (20) for all n ≥ 0. To justify this
assumption, let us consider aDC function f (x) = f1(x)−f2(x),
then it is trivial to observe that f (x) = (f1(x) +

ρ
2 ‖x‖

2) −
(f2(x)+

ρ
2 ‖x‖

2) for any given ρ > 0. Therefore, without loss
of generality, we can always find a DC decomposition f1, f2
where both f1 and f2 are strongly convex.

3A similar example in convex optimization theory is that the Slater con-
dition guarantees that the sufficient KKT conditions hold at some points for
a convex problem.
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The following theorem states the convergence properties
of Algorithm 1:
Theorem 1 Let

{
x(n)

}
be the solution sequence generated

by Algorithm 1. Suppose (20) is feasible and A.1)–A.3) hold
for (20), then one of the following scenarios applies:

1) Algorithm 1 terminates after a finite number of n̆ itera-
tions and x(n̆) is a stationary point of (20);

2) Algorithm 1 generates an infinite sequence
{
x(n)

}
, then

every limit point of {x(n)} is a stationary point of (20).
Proof: Please see Appendix B.

Based on the above theorem, we can further obtain that the
sequence of the objective function

{
ϕ(x(n))

}
of (20) obtained

by Algorithm 1 is also convergent.

IV. APPLICATION: SECURE MIMO AF RELAYING
OPTIMIZATION
In this section, we apply the proposed penalized DC algo-
rithm in the previous section to our secureMIMOAF relaying
optimization problem (11d). We first show that the latter can
be reformulated as a PSD DC program (20) by exploiting the
so-called S-procedure and by performing changes of vari-
ables. Subsequently, the penalized DC algorithm is adapted
to solve the transformed optimization problem.

A. TRANSFORMATION OF (11d) INTO A PSD DC PROGRAM
The robust secure relaying optimization (11d) can be equiv-
alently written as the following after substituting (4) and (7)
into (11d),

max
σS,W,999

σ 2
S |h

H
2 Wh1|2

σ 2
R‖h

H
2 W‖

2 + hH2 999h2 + σ 2
D

(38a)

s.t. max
1g1k∈G1k

σ 2
S |g1k |

2

σ 2
E,k

≤ γ, k ∈ K (38b)

max
1g2k∈G2k

σ 2
S |g

H
2kWh1|2

σ 2
R‖g

H
2kW‖

2 + gH2k999g2k + σ 2
E,k

≤ γ,

k ∈ K (38c)

σ 2
S‖Wh1‖2 + σ 2

R‖W‖
2
F + Tr(999) ≤ PR (38d)

σ 2
S ≤ PS, 999 � 0, (38e)

where γ = 22κRd − 1. Constraint (38b) can be equivalently
rewritten as the following by exploiting the Cauchy-Schwarz
inequality:

σS ≤ min
k∈K

{
γ σ 2

E,k∣∣|ĝ1k | + √ε1k ∣∣2
}
. (39)

Then to tackle the infiniteness associated with (38c), after
some manipulations, we can rewrite (38c) as

1gH2k222(W,999)1g2k + 2Re
{
ĝH2k222(W,999)1g2k

}
+ĝH2k222(W,999)ĝ2k − γ σ 2

E,k ≤ 0, ∀1g2k ∈ G2k (40)

where we have defined222(W,999) ,W
(
σ 2
Sh1h

H
1 − γ σ

2
RINR

)
WH
−γ999. As a popular technique of tackling the infiniteness

in the robust optimization theory, we invoke the so-called S-
Procedure [38] for equivalently recasting (40) as

PHk 222(W,999)Pk −333k (ρk ) � 0, (41)

where we have333k (ρk ) = blkdiag(ρkINR , γ σ
2
E,k − ε2kρk )

and Pk = [INR , ĝ2k ] with blkdiag(·, ·) denoting the con-
struction of a block diagonalmatrix from the input arguments.

To further transform (38) into a PSD DC program in the
form of (20), let us introduce an auxiliary variable t . Plugging
(40) and (41) back into (38), we obtain

max
σS,W,999

σ 2
S |h

H
2 Wh1|2

t
(42a)

s.t. σ 2
R‖h

H
2 W‖

2
+ hH2 999h2 + σ 2

D ≤ t (42b)

σS ≤ min
k∈K

{
γ σ 2

E,k∣∣|ĝ1k | + √ε1k ∣∣2
}

(42c)

PHk 222(W,999)Pk −333k (ρk ) � 0, k ∈ K (42d)

σ 2
S‖Wh1‖2 + σ 2

R‖W‖
2
F + Tr(999) ≤ PR (42e)

σS ≤
√
PS, 999 � 0. (42f)

Observe that in the above formulation, the source power σS
and relay AF matrixW are nonlinearly coupled in the objec-
tive (42a) and constraints (42d) and (42e). To transform (42)
into amore convenient form, we introduce a new optimization
variable U, which is related to σS and W via the following
bilinear matrix equality:

U = σSW. (43)

With the aid of (43), (42) can then be expressed as a PSD DC
program with bilinear matrix equality constraint as defined
in (16), i.e.,

max
x

|hH2 Uh1|
2

t
(44a)

s.t. PHk 222(W,999)Pk −333k (ρk ) � 0, k ∈ K (44b)

U = σSW (44c)

x ∈ �, (44d)

where x collectively denotes all the optimization variables
(including both the original and auxiliary variables), i.e.,

x , [σS, vec(U)T , vec(W)T , vec(999)T ,ρρρT , t]T , (45)

and � is a compact convex subset defined as

� , {x : (42b), (42c), (42e), (42f)}, (46)

which can easily be represented as a finite number of LMIs
by exploiting the techniques introduced in [39].

To tackle the bilinear matrix equality constraint (44c),
we follow the procedure proposed in the previous section,
i.e., exploit the results in Lemma 1, and conveniently con-
vert (44c) into  Y1 U σSINR

UH Y2 WH

σSINR W INR

 � 0 (47)

Tr(Y1)− Tr(σ 2
SINR ) ≤ 0, (48)
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where Y1 and Y2 are auxiliary matrix variables with appro-
priate dimensions, (47) is an LMI, and (48) is a DC constraint
(special case of PSD DC constraint with dimension one).
Therefore, we can now embed the LMI (47) into � whilst
preserving its convex structure. Additionally, the collection
of optimization variables represented by x is augmented with
the new auxiliary variables Y1 and Y2.
Finally, note that the matrix inequality constraint (44b) can

expressed as a PSD DC constraint as follows:

PHk Uh1h
H
1 U

HPk −333k (ρk )− γPHk 999Pk︸ ︷︷ ︸
FFF k (·)

− γ σ 2
RP

H
k WWHPk︸ ︷︷ ︸
GGGk (·)

� 0, k ∈ K, (49)

where bothFFFk (·) andGGGk (·) are PSD-convexmappings, which
can be easily verified by Definition 1.

Based on the above derivations, we arrive at the following
PSD DC program as defined (20):

min
x
−
|hH2 Uh1|

2

t
(50a)

s.t. PHk Uh1h
H
1 U

HPk −333k (ρk )− γPHk 999Pk
−γ σ 2

RP
H
k WWHPk � 0, k ∈ K (50b)

Tr(Y1)− Tr(σ 2
SINR ) ≤ 0 (50c)

x ∈ �. (50d)

B. PENALIZED PSD DC ALGORITHM FOR SECURE
RELAYING DESIGN
For simplicity, let us denote

g0(U, t) = −
|hH2 Uh1|

2

t
(51)

g1(σS) = Tr(σ 2
SINR ) = NRσ 2

S . (52)

The algorithm designed for (50) is described as
Algorithm 2, where ĝ0(·; ·), ĝ1(·; ·) and ĜGGk (·; ·) denote
the first-order approximations of their corresponding func-
tions/mapping around a solution from the previous iteration:

ĝ0(U, t;U(n),t (n) )

=

∣∣hH2 U(n)h1
∣∣2

t (n)
−

∣∣hH2 U(n)h1
∣∣2

(t (n))2

(
t − t (n)

)
+

1
t (n)

2Re
{
hH2 U

(n)h1hH1
(
U− U(n)

)H
h2

}
(53)

ĝ1(σS; σ
(n)
S ) = NR(σ

(n)
S )2 − 2NRσ

(n)
S

(
σS + σ

(n)
S

)
(54)

ĜGGk (W;W(n)) = γ σ 2
RP

H
k W

(n)
(
W(n)

)H
Pk

+2γNR Re
(
PHk W

(n)
(
W−W(n)

)H
Pk

)
. (55)

We now briefly analyze the theoretical complexity of solv-
ing each sub-problem in (56). Since (56) is a standard SDP,
its complexity mainly depends on the number of optimization

Algorithm 2 Penalized PSD DC Algorithm for Secure
Relaying Design

Intialization: An initial point x(0) ∈ �, τ (0) > 0, δ1 > 0
and δ2 > 0. Set n = 0.
repeat

Compute x(n+1) by solving the convex sub-problem:

min
x

−ĝ0(U, t;U(n), t (n))+ τ (n)(s+
∑K

k=1 Tr(Sk ))

(56a)

s.t. FFFk −ĜGGk (W,W(n)) � Sk , k ∈ K (56b)

Tr(Y1)− ĝ1(σS, σ
(n)
S ) ≤ s (56c)

x ∈ �. (56d)

Update τ via (30);
Update iteration: n← n+ 1

until Termination criterion is satisfied or a maximum
number of iterations are reached

variables and the number of semidefinite cone constraints. It
is not difficult to verify (56) involves on the order ofO(N 2

R +

NR +K + 1) optimization variables and K semidefinite cone
constraints of dimension (NR + 1)2 Therefore, as analyzed
in [39], (56) can be solved at a worst case complexity, which
is on the order of O((N 2

R + NR + K + 1)2(NR + 1)2.
Before leaving this section, the following remarks are of

interests:
Remark 3 (On the initialization of Algorithm 2): Since

� defined in (46) is a compact convex subset, we are able
to efficiently exploit its bounded structure, and conveniently
select a feasible initialization, e.g.,

σ
(0)
S = min

{√
PS,min

k∈K

{
γ σ 2

E,k∣∣|ĝ1k | + √ε1k ∣∣2
}}
− ε

W(0)
=

(
PR

(σ (0)
S )2‖h1‖2 + σ 2

RNR

) 1
2

INR

U(0)
= σ

(0)
S W(0).

where ε is a small positive number. �
Remark 4 (Extension to the case of MRC): We show that

the proposed penalized DC algorithm is also applicable to
the case where eves adopt a more complicated receive MRC
scheme for decoding the messages from the legitimate UEs.
With MRC, the mutual information leakage to the eves can
now be given by

CE,k (σS,W,999)

=
1
2
log2

(
1+

σ 2
S |g1k |

2

σ 2
E,k

+
σ 2
S |g

H
2kWh1|2

σ 2
R‖g

H
2kW‖

2 + gH2k999g2k + σ 2
E,k

)
. (57)

We adopt a rate-splitting approach, i.e., we introduce a pair of
weights (γ1, γ2) with γ1+γ2 = γ as defined below (38), and
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the robust secrecy constraint can be subsequently formulated
as 

max
1g1k∈G1k

σ 2S |g1k |
2

σ 2E,k
≤ γ1, k ∈ K

max
1g2k∈G2k

σ 2S |g
H
2kWh1|2

σ 2R‖g
H
2kW‖

2+gH2k999g2k+σ 2E,k
≤ γ2, k ∈ K

. (58)

It can be observed that in the case of MRC, the robust secrecy
constraints have a similar form to that of the SC by prefixing
a pair of weights (β, 2Rd − β). Therefore, given different
values of β, we can obtain a set of solutions (σS,W,999) using
Algorithm 2.Within such set of solution, the best solution can
be achieved by the one that attains the maximum SINRD in
the objective function. �
Remark 5 (Extension to secrecy-capacity based

optimization): An alternative approach to improve secrecy
from information theoretical perspective is to maximize the
worst-case achievable secrecy rate of the relaying network
subject to power constraints, which can mathematically
expressed as

max
σS,W,999

RS s.t. (38d) and (38e), (59)

where RS denotes the worst-case achievable secrecy rate,
which is given by

RS =
{
log2

(
1+

σ 2
S |h

H
2 Wh1|2

σ 2
R‖h

H
2 W‖

2 + hH2 999h2 + σ 2
D

)

−max
k∈K

max
1g1k∈G1k
1g2k∈G2k

[
log2

(
1+

σ 2
S |g1k |

2

σ 2
E,k

)

+ log2

(
1+

σ 2
S |g

H
2kWh1|2

σ 2
R‖g

H
2kW‖

2 + gH2k999g2k + σ 2
E,k

)]}
.

(60)

By introducing a few auxiliary variables t = [t1, t2, t3]T ≥ 0,
we can re-express (59) as

min
σS,W,999,t

log2(1+ t1)−
(
log2(1+ t2)+ log2(1+ t3)

)
(61a)

s.t.
σ 2
S |h

H
2 Wh1|2

σ 2
R‖h

H
2 W‖

2 + hH2 999h2 + σ 2
D

≤ t1 (61b)

max
1g1k∈G1k

σ 2
S |g1k |

2

σ 2
E,k

≤ γ1, k ∈ K (61c)

max
1g2k∈G2k

σ 2
S |g

H
2kWh1|2

σ 2
R‖g

H
2kW‖

2 + gH2k999g2k + σ 2
E,k

≤ γ2 (61d)

(38d) and (38e). (61e)

Since − log2(·) is a convex function, the objective (61a) is
simply a DC function. Additionally, constraints (61b)–(61d)
are in the forms similar to those of (38a)–(38c), respec-
tively. Hence, the proposed penalized PSD DC algorithm in
Algorithm 1 can be accordingly adapted to the secrecy rate
maximization problem (61) following the transformation
similar to Section IV–B.

V. BENCHMARKER: SDR-BASED EXHAUSTIVE
SEARCH METHOD
To benchmark the proposed penalized DC algorithm, in this
section we derive an SDR-based approach that yields an
upper-bound for the robust secrecy problem (11d), however,
at the expense of higher computational complexity.

It is in general challenging to jointly optimize the tuple
of (σS,W,999) due to its non-convex nature and therefore,
we can consider a sub-problem of (11d) solving for the
optimal pair (W,999), while temporarily fixing the value of
σS. Substituting the expression of CE,k in (7) into (11b) and
neglecting the terms independent of (W,999), we arrive at the
sub-problem (62), shown at the top of the next page, where
τ (σS) denotes its objective value, which depends on the value
of σS. With the aid of (62), the original problem (11d) can
equivalently be expressed as

max
σS

τ (σS) s.t. 0 ≤ σS ≤ σ̄S, (63)

where σS is lower bounded by zero, while its upper bound σ̄S
is given by [c.f. (39)]

σ̄S = min

{√
PS,min

k∈K

{
γ σ 2

E,k∣∣|ĝ1k | + √ε1k ∣∣2
}}

, (64)

The reformulated problem in (63) leads to a simpler
single-variable optimization problem defined over the inter-
val [0, σ̄S]. Assuming that τ (σS) can be evaluated at any
feasible σS, a one-dimensional exhaustive search procedure
can be invoked for finding the global optimum of (11d). Let
us now focus our attention on computing τ (σS) for a given
feasible σS, which however requires solving the non-convex
sub-problem (62). The solution to (62) will be addressed in
the following.

Recall that the infiniteness of the constraint in (62b) can
be tackled by the S-procedure [c.f. (40), (41)], which leads to
the following equivalent reformulation:

333k (ρk )− PHk 222(W,999)Pk � 0. (65)

Replacing (62b) by (65), the sub-problem in (W,999) of (62)
can now be rewritten in a finite form:

max
W,999

σ 2
S |h

H
2 Wh1|2

σ 2
R‖h

H
2 W‖

2 + hH2 999h2 + σ 2
D

(66a)

s.t. σ 2
S‖Wh1‖2 + σ 2

R‖W‖
2
F + Tr(999) ≤ PR (66b)

333k (ρk )− PHk 222(W,999)Pk � 0, k ∈ K (66c)

999 � 0. (66d)

The above transformed formulation is still non-convex and to
proceed, we have to transform it into an appropriate formula-
tion, where the SDR is applicable. Let us define w = vec(W)
and X = wwH . Interestingly, after some tedious matrix
manipulations, which have been relegated to Appendix XII,
we are now able to rewrite (66) in a form, which only involves
the linear terms of X and 999. The results are summarized in
the following proposition:
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τ (σS) , max
W,999�0

σ 2
S |h

H
2 Wh1|2

σ 2
R‖h

H
2 W‖

2 + hH2 999h2 + σ 2
D

(62a)

s.t. (11c) and log2

(
1+

σ 2
S |g

H
2kWh1|2

σ 2
R‖g

H
2kW‖

2 + gH2k999g2k + σ 2
E,k

)
≤ κRd , ∀1g2k ∈ G2k , k ∈ K. (62b)

Proposition 2 Define

Q0 = σ
2
S (h
∗

1h
T
1 )⊗ (h2hH2 ) (67)

Q1 = σ
2
RINR ⊗ (h2hH2 ) (68)

Q2 = σ
2
S (h
∗

1h
T
1 )⊗ INR + σ

2
RIN 2

R
(69)

Q3(X,999) = σ 2
SH1XHH

1 − γ σ
2
R

NR∑
l=1

ElXEHl − γ999, (70)

where Q3(·) is a linear mapping of X and 999 with H1 =

hT1 ⊗ INR and El =
[
0NR×(l−1)NR , INR , 0NR×(NR−l)NR

]
. Then

problem (66) can equivalently be rewritten in the following
form:

max
X,999,ρρρ

Tr(Q0X)

Tr(Q1X)+ Tr(h2hH2 999)+ σ 2
D

(71a)

s.t. Tr(Q2X)+ Tr(999) ≤ PR (71b)

333k (ρk )− PHk Q3(X,999)Pk � 0, k ∈ K (71c)

X � 0, 999 � 0, Rank(X) = 1. (71d)
Upon neglecting the non-convex rank-one constraint in (71d),
(71) is relaxed to a so-called fractional SDP, which can further
be transformed into a standard SDP via the Charnes-Cooper
transformation [40]. Specifically, by introducing an auxiliary
variable s > 0, and defining X = sX,999 = s999 and ρρρ = sρρρ,
(71) is conveniently recast as

max
X,999,ρρρ,s>0

Tr(Q0X) (72a)

s.t. Tr(Q1X)+ Tr(h2hH2 999)+ sσ 2
D ≤ 1 (72b)

Tr(Q2X)+ Tr(999) ≤ sPR (72c)

333k (ρk )− PHk Q3(X,999)Pk � 0, k ∈ K (72d)

X � 0, 999 � 0. (72e)

Interestingly, (72) now becomes a convex SDP, which is
efficiently solvable by generic optimization tools such as
SeDuMi [41] andMOSEK [42] relying on interior-pointmeth-
ods [43]. We remark that (72) and the rank-relaxed version
of (71) are equivalent in the sense that the optimal solutionX∗

to (71) after rank-one relaxation can be retrieved by the
optimal solution (X

∗
, s∗) to (72), i.e., X∗ = X

∗

s∗ , and the
resultant objective values of the two problems are equivalent.

After obtaining the rank-relaxed solution X∗, a natural
question arises as to how good a solution is X∗, i.e., does it
satisfy the rank-one optimality condition of (71)? Answering
these questions directly from the formulation of (72) is still
an open problem in the literature. To overcome this difficulty,
we follow an approach similar to [21]. Specifically, denoting
the objective value of (72) by τ ∗relax(σS), we consider the

following power minimization problem:

min
X,999,ρρρ

Tr(Q2X) (73a)

s.t.
Tr(Q0X)

Tr(Q1X)+ Tr(h2hH2 999)+ σ 2
D

≥ τ ∗relax(σS) (73b)

Tr(Q2X)+ Tr(999) ≤ PR (73c)

333k (ρk )− PHk Q3(X,999)Pk � 0, k ∈ K (73d)

X � 0, 999 � 0. (73e)

Observe that (73) is also a standard SDP and therefore it is
readily solvable by existing optimization tools. Furthermore,
its specific structure allows us to obtain the following useful
results, based on which we are able to retrieve an optimal
rank-one solution of (71).
Proposition 3 Let us denote the optimal solution of (73)

by (Xo,999o,ρρρo). Assuming suitable constraint qualification
of (73), (Xo,999o,ρρρo) is also an optimal solution of (71), i.e.,
Xo must be of rank one.

Proof: Please see appendix F.
In summary, obtaining an optimal solution of (63) now

consists of two steps: 1) solve the rank-relaxed SDP (72) and
obtain the largest τrelax(σS) by exhaustive search over σS;
2) solve the power minimization problem (73) based on
τrelax(σS). Since the rank-one optimality condition of Xo

is guaranteed, the optimal AF matrix Wo can be retrieved
by the rank-one decomposition of Xo, i.e., Xo

= xo(xo)H

and subsequently converting xo to Wo via the vector-matrix
reshaping.

We should point out that solving (63) requires performing
an exhaustive search for σS over [0, σ̄S]. In each step, we
have to solve the SDP (72), which involves on the order of
O(N 4

R + N
2
R + 1) optimization variables and K semidefinite

cone constraints of dimension (NR + 1)2. Therefore, it can
be solved at a worst-case complexity, which is on the order
ofO

(
K (N 4

R + N
2
R + 1)2(NR + 1)2

)
[39]. As compared to the

complexity of the proposed penalizedDC algorithm (see, e.g.,
analysis below Algorithm 2), The associated computational
cost escalates significantly faster as the size of the relay
antenna array and the number of eves increase, which may
become computationally prohibitive in practical problems.

VI. NUMERICAL EXAMPLES
The efficacy of the proposed solutions to the robust secure
relaying problem is verified by a few numerical examples. In
all simulations, all the coefficients of the legitimate channels
h1 and h2, and the estimated eves’ channels {ĝ1,k} and
{ĝ2,k} are generated following identically and independently
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FIGURE 2. Convergence behavior of Algorithm 1. Left set of sub-figures:
The first case. Right set of sub-figures: The second case.

distributed (i.i.d.) complex circular Gaussian distribution
with zero-mean and unit-variance. Equal radii are assumed
for all1g1,k and for all1g2,k , i.e., ε1,k = ε1 and ε2,k = ε2 for
all k . The power budget of S is normalized to one and we set
higher power budget forRwithPR = 2. It is also assumed that
an antenna array of size NR = 3 is employed by R. The noise
variances are σ 2

R = 0.05, σ 2
D = 0.05 and σ 2

E,k = 0.01 ∀k . The
above parameters are fixed unless otherwise explicitly stated.
In all figures, we denote the proposed penalized DC algo-
rithm in Section IV by ‘‘Proposed P-DCA’’ and the derived
benchmarker in Section V by ‘‘SDR+Search’’.

1) CONVERGENCE
We first study the convergence behavior of Algorithm 1.
We simulate 200 channel realizations and among which, two
classes of behaviors are observed. A representative case for
each class is then plotted in the left and right parts of Fig. 2.
In each case, the top sub-figure shows the convergence of the
achieved SINR at D whilst the bottom sub-figure plots the
evolution of the FI. The first case shows a behavior similar
to conventional DC algorithm. The second example shows a
more interesting behavior where the algorithm begins with an
infeasible point and in the first few iterations, the algorithm
targets finding a region (still infeasible) with larger objective
function. As the penalty terms gradually play more important
roles, more emphasis will be on finding a feasible point near
the above located region. Therefore, the value of objective
function drops since the feasibility has to be enforced now.
Finally, the SINR remains approximately the same because
a stationary point is achieved. The convergence behavior is
consistent with the discussions and proof in Section IV.

2) SECRECY
To evaluate the secrecy of relaying transmission achieved
by the proposed solutions, i.e., how consistently the robust
secrecy constraints (11b) can be satisfied, we follow a
probabilistic approach similar to [44, Sec. VI–B]. In this
example, the coefficients of 1ĝ1k and 1ĝ2k are generated

FIGURE 3. Empirical CDFs of mutual information leakage at eves. The
legitimate S is transmitting at Rd = 2 bps/Hz.

by i.i.d. zero-mean complex circular Gaussian distribu-
tion with variance σ 2

h = 0.05. The radii of uncer-
tainty regions in (9) and (10) are then determined by
ε1 = σ 2

h × gammaincinv(Pr, 0.5) and ε2 = σ 2
h ×

gammaincinv(Pr, 0.5N 2
R) where gammaincinv(·) is the

inverse of incomplete gamma function defined in MATLAB
and Pr is a predefined bounding probability, say, Pr = 95%,
c.f. [44, (61)]. The empirical cumulative distribution func-
tions (CDFs) of mutual information leakage at both eves
are shown in Fig 3. Both the proposed solutions ensures
that the mutual information leakage never exceeds the data
rate of legitimate UEs whilst the non-robust design leads to
a frequent violation of the secrecy constraints, namely for
more than 20% of the realizations. Considering the practical
MCS with finite coding block length, a proper selection of κ
would lead to sufficiently high block error rate (BLER) at
eves. Although the proposed method can prevent the eves
from perfectly decoding the information signals, we need to
point out the use of the secrecy constraints does not guarantee
perfect secrecy from the information theoretical perspective.
However, we can view our design as a means to cause addi-
tional confusion to eves.

3) RELIABILITY
Having verified the secrecy of the proposed solutions, we now
compare the transmission reliability in terms of the achieved
SINR at D. In Fig. 4, SINRD for a set of 50 independent
experiments are plotted. The curve labeled ‘‘Nullspace Beam-
forming’’ refers to the method where R first nullifies eves’
reception by first projecting its received signal onto the null
space of [ĝ2,1, · · · , ĝ2,K ] and then performs AF relaying.
Therefore, the method is only applicable when NR > K .
Two cases K = 2 and K = 4 are considered. In both cases,
we observe that the performance of the proposed penalized
DC algorithm is very close to the SDR-based benchmarker.
In the case of K = 2, the proposed solution significantly
outperforms the nullspace beamforming method.
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FIGURE 4. Achieved SINR at D. Top sub-figure: K = 2 eves. Bottom
sub-figure: K = 4 eves.

FIGURE 5. Achieved SINR at D. Left sub-figure: SINRD versus NR. K = 3
eves are considered. Right sub-figure: SINRD versus K .

We then study how different system configurations impact
the achieved SINR by different approaches. In the left sub-
figure of Fig. 5, the achieved SINR of the proposed solutions
and the nullspace beamforming is plotted as a function of
the number of antenna elements employed at R. Two sizes
of uncertainty regions are considered with ε1 = ε2 = 0.1
and ε1 = ε2 = 0.2. In both scenarios, the achieved SINR
monotonically increases as NR increases due to the higher
diversity one can exploit from the antenna array. Again,
both the proposed solutions consistently exhibit better per-
formance than the nullspace beamforming. Notice also when
more channel uncertainties are now present (ε1 = ε2 = 0.2),
the legitimate UEs are confined to relatively low transmission
power to satisfy the robust secrecy constraints, leading to
lower received SINR at D. In the right sub-figure of Fig. 5,
the impact of different number of eves on the achieved SINR
is assessed. The SINR monotonically decreases when there
are more eves around and therefore, the legitimate UEs have
to lower their transmission power to prevent the information
leakage more carefully. For completeness, we also investigate
how robustly the proposed solutions can behave against the

FIGURE 6. Achieved SINR at D as a function of size of uncertainty region.
Two data rates of legitimate UEs are considered, namely, Rd = 2bps/Hz
and Rd = 2.5bps/Hz.

TABLE 1. Average solver time (in seconds) for different algorithms.

ECSI errors by varying the sizes of the channel uncertainty
regions. Again, the results are as expected and showing the
superiority of our proposed solutions.

4) COMPUTATIONAL COMPLEXITY
Last but not least, we need to justify the lower complexity
of the proposed penalized DC algorithm as compared to the
SDR-based benchmarker proposed in Section V. The aver-
aged solver time over 100 independent realizations is shown
in Table 1 for different values of NR and K . It is observed that
the solver time for the SDR approach scales very fast with
increases in NR and K , which is consistent with the worst-
case complexity analysis in Section V. In the meantime, the
solver time of the proposed penalized DC algorithm increases
more slowly compared to the former.

VII. CONCLUSIONS
Robust design of secure MIMO relaying in the presence
of multiple eves was studied. We jointly optimized the
power of S, the AF matrix and covariance of AN at R to
maximize the received SINR at D while imposing a set of
mutual information leakage-based secrecy constraints. With
only imperfect ECSI, the resultant problem has been shown to
be non-convex and challenging. A computationally efficient
sub-optimal solution relying on the new penalized DC algo-
rithmic framework was developed. This algorithm is capable
of finding a stationary solution to a general non-convex SDP
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representable by a PSD DC program. The latter can be effi-
ciently solved by the penalized DC algorithm without finding
a non-trivial feasible initialization. To benchmark the pro-
posed scheme, an SDR-based approach was also proposed,
which yields an upper bound of the secure MIMO relay-
ing problem, however, with significantly higher complexity.
We compared the performance of the proposed algorithm and
the benchmarking schemes using a few numerical examples.
It shows that the proposed solutions yield a significantly
better performance than the non-robust and null-space beam-
forming methods. In addition, the penalized DC algo-
rithm often reaches performance close to the SDR-based
approach.

VIII. APPENDIX A
PROOF OF LEMMA 2
From Step 2 of Algorithm 1, we obtain (x(n+1),S(n+1) is
an optimal solution of the convex sub-problem (20) and

888
(n+1)
i � 0,Z(n+1)

i � 0 for i ∈ I are the corresponding
Lagrange multipliers. Since (20) is convex and strictly feasi-
ble, i.e., the Slater’s constraint qualification holds, the optimal
primal-dual pair must satisfy the sufficient generalized KKT
conditions in (74), shown on bottom of this page, where A∗
denotes the adjoint operator of A =

∑n
i=1 xiAi with Ai ∈ Hp

for i = 1, · · · , n, i.e., A ∗ Z = [Tr(A1Z), · · · ,Tr(AnZ)]T

for any Z ∈ Hp. N (�, x) denotes the normal cone of � at
x defined as:

N (�, x) , {w ∈ Cn|wH (x− y) ≥ 0,∀y ∈ �}

To simply the notation, let us define ϕ̂(n)(x,S) = ϕ(x) +
+
∑I

i=1 τ
(n) Tr(Si) = f0(x)− g0(x)+

∑I
i=1 τ

(n) Tr(Si).
First multiplying the both sides of (74a) by (x(n)−x(n+1))T

and re-arranging the consequence, we obtain(
∇f T0 (x(n+1))−∇gT0 (x

(n))
)
(x(n) − x(n+1))

+

I∑
i=1

[(
DFDFDF i(x(n+1))−DGDGDGi(x(n))

)
∗888i

]T
×(x(n) − x(n+1)) ≥ 0 (75)

By the assumption of convexity of f0(·) and g0(·), we have

f0(x(n)) ≥ f0(x(n+1))+∇f T0 (x(n+1))(x(n) − x(n+1))

+
ρf

2
‖x(n+1) − x(n)‖2 (76)

g0(x(n+1)) ≥ g0(x(n))+∇gT0 (x
(n))(x(n+1) − x(n))

+
ρg

2
‖x(n+1) − x(n)‖2, (77)

where we recall that ρf ≥ 0 and ρg ≥ 0 are the convexity
parameters.

Combining (76) and (77) and rearranging the consequence,
we further obtain(

∇f T0 (x(n+1))−∇gT0 (x
(n))
) (

x(n) − x(n+1)
)

≤ ϕ(x(n))− ϕ(x(n+1))−
ρf + ρg

2
‖x(n+1) − x(n)‖2.

(78)

By the PSD-convexity ofFFF i(·), we obtain

FFF i(x(n)) � FFF i(x(n+1))+DFDFDF i(x(n+1))(x(n) − x(n+1)),

(79)

which further lead to[
DFDFDF i(x(n+1))−DGDGDGi(x(n))

]
(x(n) − x(n+1))

� FFF i(x(n))−GGGi(x(n))

−

[
FFF i(x(n+1))−GGGi(x(n))−DGDGDGi(x(n))(x(n+1) − x(n))

]
.

(80)

For simplicity, let us denote the second term on the right
hand side of (80) by A. Multiplying the both sides of (80)
by888(n+1)

i � 0 leads to

Tr
(
888

(n+1)
i

[
DFDFDF i(x(n+1))−DGDGDGi(x(n))

]
(x(n) − x(n+1))

)
� Tr

(
888

(n+1)
i

[
FFF i(x(n))−GGGi(x(n))

])
+ Tr

(
888

(n+1)
i A

)
(81)

Noting that

Tr
(
888

(n+1)
i

[
DFDFDF i(x(n+1))−DGDGDGi(x(n))

]
(x(n) − x(n+1))

)
=

[(
DFDFDF i(x(n+1))−DGDGDGi(x(n))

)
∗888i

]T
(x(n) − x(n+1))

(82)

0 ∈ ∇f0(x(n+1))−∇g0(x(n))+
I∑
i=1

((
DFDFDF i(x(n+1))−DGDGDGi(x(n))

)
∗888

(n+1)
i

)
+N (�, x(n+1)) (74a)

τ (n)I−888(n+1)
i − Z(n+1)

i = 0, i ∈ I (74b)

FFF i(x(n+1))−GGGi(x(n))−DGDGDG(x(n))(x(n+1) − x(n)) � S(n+1)i , i ∈ I (74c)

Tr
(
888

(n+1)
i

(
FFF i(x(n+1))−GGGi(x(n))−DGDGDG(x(n))(x(n+1) − x(n))− S(n+1)i

))
= 0, i ∈ I (74d)

x(n+1) ∈ �, S(n+1)i � 0, 888(n+1)
i � 0, Z(n+1)

i � 0, Tr(S(n+1)i Z(n+1)
i ) = 0, i ∈ I (74e)
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Substituting the results of (81), (82) and (74d) into (80), we
have [(

DFDFDF i(x(n+1))−DGDGDGi(x(n))
)
∗888i

]T
(x(n) − x(n+1))

≤ Tr
(
888

(n+1)
i

[
FFF i(x(n))−GGGi(x(n))

])
−Tr

(
888

(n+1)
i S(n+1)i

)
. (83)

Observing thatFFF i(x(n))−GGGi(x(n)) � S(n)i and τ (n)I �888(n+1)
i

[c.f., (74b)], (83) can further be derived as[(
DFDFDF i(x(n+1))−DGDGDGi(x(n))

)
∗888i

]T
(x(n) − x(n+1))

≤ Tr
(
888

(n+1)
i

(
S(n)i − S(n+1)i

))
≤ τ (n) Tr(S(n)i )− τ (n) Tr(S(n+1)i ). (84)

Combining (75), (78) and (84), we have reached:

ϕ̂(n)(x(n),S(n))− ϕ̂(n)(x(n+1),S(n+1))

≥
ρf + ρg

2
‖x(n+1) − x(n)‖2. (85)

The above inequality is indeed (37), which therefore proves
the item 1). If either f0 or g0 is strongly convex, i.e., ρf +
ρg > 0, then the statement in item 2) follows directly from
the above inequality, i.e., for 1x(n) = x(n+1) − x(n) 6= 0,
ϕ̂(n)(x(n+1),S(n+1)) < ϕ̂(n)(x(n),S(n)).

IX. APPENDIX B
PROOF OF THEOREM 1
We first prove scenario 1). If Algorithm 1 terminates after a
finite number of n̆ iterations, it follows from the termination
criterion that x(n̆+1) = x(n̆) and S(n̆+1)i = 0 for all i, i.e., x̆ is
a feasible solution to (20). Letting n = n̆ and substituting the
above relations into the generalized KKT conditions (74), we
obtain (86), shown on bottom of this page. A careful exam-
ination reveals the equivalence between (86) and the KKT
conditions of (20). Therefore, it is proved that (x(n̆), {888(n̆)

i }

is a KKT point of (16), where x(n̆) is called a stationary point
of (20) and {888(n̆)

i } are the corresponding Lagrange multipliers
We now proceed to prove scenario 2). The key ingredients

of the proof are to show that any limit point of {x(n)}, say, x̄,

is feasible to (20) and the sequence of dual variable {888(n)
i } is

bounded such that there exists limit points 8̄88i of {888
(n)
i }. Then

we show that any primal-dual pair of the limit point (x̄, {8̄88i})
satisfies the KKT conditions of (20).

To prove that any limit point x̄ is a feasible point of (16),
we will need to rely on the following claims, whose proof can
be found in Appendices X and XI, respectively:
Claim 2 There exists a finite iteration index ñ such that

τ (n) = τ (ñ), ∀n ≥ ñ. (87)
Claim 3 The sequence of intermediate solutions {x(n)}

satisfies
lim
n→∞
‖x(n+1) − x(n)‖ = 0. (88)

As indicated by the updating rule (30), we have

τ
(ñ)
i ≥ λmax[888

(ñ+1)
i ]+ δ1, i ∈ I (89)

or equivalently, τ (n)I � 888
(n+1)
i + δ1I for all n ≥ ñ. Then

in view of the complementary slackness (74b), it straightfor-
wardly follows thatZ(n+1)

i � 0. By (74e), we obtain S(n+1)i =

0 for all n ≥ n̆, which means that x(n) is a feasible point
of (20) for all n ≥ ñ. Without loss of generality, considering
a subsequence {x(nj)} of {x(n)}, its limit point limj→∞ x(nj) =
x̄ is feasible to (16). Furthermore, (89) implies that the
subsequence {888

(nj)
i } is bounded, and therefore we can assume

that
lim
j→∞

888
(nj)
i = 8̄88i, i ∈ I. (90)

Now what remains to show is that any primal-dual pair of
the limit point (x̄, {8̄88i}) a KKT stationary point of (20). Let us
replace n with nj in (74) and let j→ ∞. By noting that x(nj)

and x(nj+1) are asymptotically close as indicated by Claim 3,
we obtain

0 ∈ ∇f0(x̄)−∇g0(x̄)

+

I∑
i=1

(
8̄88i ∗ (DFDFDF i(x̄)−DGDGDGi(x̄))

)
+N (�, x̄) (91a)

FFF i(x̄)−GGGi(x̄) � 0, 8̄88i � 0, i ∈ I (91b)

Tr
(
(FFF i(x̄)−GGGi(x̄)) 8̄88i

)
= 0, i ∈ I (91c)

x̄ ∈ � (91d)

which is exactly the KKT conditions of the PSD DC prob-
lem (20). Noting the boundness of {x(n)} assumed in A.2),
it readily follows that there exists at least one limit point
of {x(n)} and by (91), any limit point of

{
x(n)

}
is a KKT

stationary point of (20).

X. APPENDIX C
PROOF OF CLAIM 2
We argue by contradiction. Assume the contrary, i.e.,
limn→∞ τ

(n)
= +∞. From the updating rule (30), it follows,

0 ∈ ∇f0(x(n̆))−∇g0(x(n̆))+
I∑
i=1

((
DFDFDF i(x(n̆))−DGDGDGi(x(n̆))

)
∗888

(n̆)
i

)
+N (�, x(n̆)) (86a)

FFF i(x(n̆))−GGGi(x(n̆)) � 0, i ∈ I (86b)

Tr
(
888

(n̆+1)
i

(
FFF i(x(n̆))−GGGi(x(n̆))

))
= 0, i ∈ I (86c)

x(n̆) ∈ �, 888(n̆+1)
i � 0. (86d)
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without loss of generality, that there exists infinitely many
indices j such that

τ (nj) < λmax

[ I∑
i=1

888
(nj+1)
i

]
+ δ1 (92)

and

τ (nj) < ‖x(nj+1) − x(nj)‖−1. (93)

By possibly restricting to a subsequence of
{
nj
}
, without loss

of generality, we can further assume that there exists at least
some i ∈ SI , where SI denotes a subset of I, i.e., SI ⊆ I
such that

lim
j→∞

λmax[888
(nj+1)
i ] = +∞

⇔ lim
j→∞
‖888

(nj+1)
i ‖F = +∞, i ∈ SI (94)

and

lim
j→∞
‖x(nj+1) − x(nj)‖ = 0. (95)

Let limj→∞ xnj = x̄, and then we will show that

FFF i(x̄)−GGGi(x̄) ⊀ 0, i ∈ SI . (96)

Again we show by contradiction. If we assume that FFF i(x̄) −
GGGi(x̄) ≺ 0, then we must have, for sufficiently large j,

FFF i(x(nj+1))−GGGi(x(nj))
−DGDGDG(x(nj))(x(nj+1) − x(nj))− S

(nj+1)
i ≺ 0. (97)

This is due to (74b) and subsequently

lim
j→∞

(
FFF i(x(nj+1))−GGGi(x(nj))−DGDGDG(x(nj))(x(nj+1) − x(nj))

−S
(nj+1)
i

)
= FFF i(x̄)−GGGi(x̄). (98)

By the complementary slackness condition (74d), it readily
follows that when j becomes sufficiently large, 888

(nj+1)
i = 0

for i ∈ SI , which contradicts the previous result of (92).
Therefore, we must haveFFF i(x̄)−GGGi(x̄) ⊀ 0 for i ∈ SI .
Now let us assume, without loss of generality, that

lim
j→∞

888
(nj+1)
i∑I

i=1‖888
(nj+1)
i ‖F

= 8̂88i � 0. (99)

and it is easy to observe that 8̂88i = 0 for i ∈ I\SI and 8̂88i 6= 0
for i ∈ SI . We now replace n with nj in (39). Dividing the
both sides of (74a) by

∑I
i=1‖888

(nj+1)
i ‖F , taking the limit as

j→∞ and using the result of (97), we obtain

0 ∈
∑
i∈SI

(DFDFDF i(x̄)−DGDGDGi(x̄)) ∗ 8̂88i +N (�, x̄). (100)

Multiplying the both sides of the above by (y − x), y ∈ �
yields ∑

i∈SI

Tr
(
8̂88i (DFDFDF i(x̄)−DGDGDGi(x̄)) (y− x̄)

)
≥ 0. (101)

However, the MFCQ in A.1) indicates that there exists
some feasible direction h ∈ cone(�− x̄) such that

(DFDFDF i(x̄)−DGDGDGi(x̄))h ≺ 0, ∀i ∈ U(x̄), (102)

where we recall that U(x̄) is the set of active constraints at x̄:

U(x̄) ,
{
i ∈ I

∣∣FFF i(x̄)−GGGi(x̄) ⊀ 0
}
. (103)

Considering 8̂88i � 0, it is obvious (101) contradicts the
MFCQ in A.1).

Now we can assume that there exists an finite index ñ such
that

τ (n) = τ (ñ), ∀n ≥ ñ. (104)

XI. APPENDIX D
PROOF OF CLAIM 3
Following directly from Lemma 2, we have

ϕ̂(n)(x(n),S(n))− ϕ̂(n)(x(n+1),S(n+1))

≥
ρf + ρg

2
‖x(n+1) − x(n)‖2. (105)

Then we evaluate the summation of (105) over n from 0 to
n̄ and we obtain

n̄∑
n=0

ρf + ρg

2
‖x(n+1) − x(n)‖2

≤

ñ∑
n=0

(
ϕ̂(n)(x(n),S(n))− ϕ̂(n)(x(n+1),S(n+1))

)
+ ϕ̂(ñ)(x(ñ),S(ñ))− ϕ̂(n̄)(x(n̄+1),S(n̄+1)) (106)

where ñ is a finite index as defined in (104), such that τ (n) =
τ (ñ), ∀n ≥ ñ, i.e., the value of τ remains constant for
all indices n ≥ ñ. By A.2), ϕ(x) is bounded from below
and hence ϕ̂(n)(·) is also lower-bounded. Taking the limit as
n̄→∞ on both sides of (106), we obtain

∞∑
n=0

ρf + ρg

2
‖x(n+1) − x(n)‖2

≤

ñ∑
n=0

(
ϕ̂(n)(x(n),S(n))− ϕ̂(n)(x(n+1),S(n+1))

)
+ ϕ̂(ñ)(x(ñ),S(ñ))− ϕ̂(∞)(x̄, S̄). (107)

The right hand side of the above inequality must be of finite
value. Therefore, it must hold that

lim
n→∞
‖x(n+1) − x(n)‖ = 0. (108)

XII. APPENDIX E
PROOF OF PROPOSITION 2
Firstly, expanding all the quadratic terms of W in (66a)
and (66b), and invoking the identities Tr

(
AHBCDH

)
=

vec (A)H
(
DT
⊗ B

)
vec (C) and Tr

(
AHBA

)
= vec (A)H

(I⊗ B) vec (A), (66a) and (66b) can be recast
as (71a) and (71b), respectively, with X = wwH .
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Next, we transform (66c). Recall that 222(W,999) =
σ 2
SWh1hH1 W

H
− γ σ 2

RWWH
− γ999, and its first term on the

right hand side is equivalent to

σ 2
SWh1hH1 W

H
= σ 2

S (h
T
1 ⊗ INR )ww

H (hT1 ⊗ INR )
H , (109)

by using vec(ABC) = (CT
⊗ A) vec(B). To transform the

second term, we express W =
[
www1, · · · ,wwwl, · · · ,wwwNR

]
,

where wwwl denotes the l th column of W. Then WWH can be
equivalently expressed as

WWH
=

NR∑
l=1

wwwlwwwHl (110)

By establishing the connection between wwwl and w by wwwl =
Elw, (110) can further be written as

WWH
=

NR∑
l=1

ElwwHEHl . (111)

Using (109) and (111),222(W,999) is equivalent to

222(W,999) = σ 2
SH1wwHHH

1 − γ σ
2
R

NR∑
l=1

ElwwHEHl − γ999.

(112)

Invoking X = wwH and Rank(X) = 1, (66) is readily re-
expressed as (71).

XIII. APPENDIX F
PROOF OF PROPOSITION 3
We prove the rank-one optimality of the solution to (73) by
examining its Karush-Kuhn-Tucker (KKT) conditions. Let
y1, y2 and Yk denote the Lagrange multipliers associated
with (73b)–(73d), respective, and let Z1 and Z2 denote the
Lagrange multipliers associated with X � 0 and 999 � 0,
respectively. The Lagrangian function of (73) can then be
written as

L = Tr (Q2X)+ y1(Tr(Q2X)+ Tr(999))

−y2
(
Tr(Q0X)− τ ∗ Tr(Q1X)− τ ∗ Tr(h2hH2 999)

)
+

K∑
k=1

Tr
(
PHk Q3(X,999)PkYk

)
−Tr(XZ1)− Tr(999Z2), (113)

where we have neglected the terms, which are independent
of X and 999. Now we exploit the first-order KKT conditions
with respect to X and999, which can be given by

∂L
∂X
= Q2 + y1Q2 − y2Q0 + y2τ ∗Q1

+

K∑
k=1

σ 2
SH

H
1 PkYkPHk H1

−γ σ 2
R

K∑
k=1

NR∑
l=1

EHl PkYkPHk El − Z1 = 0 (114)

∂L
∂999
= y1I+ y2τ ∗h2hH2 −

K∑
k=1

γPkYkPHk − Z2 = 0

(115)

Re-arranging (115) and using the associativity of the Kro-
necker product, we obtain

I⊗ Z2 = y1I+ y2τ ∗I⊗ (h2hH2 )

−I⊗
K∑
k=1

γPkYkPHk . (116)

A simple calculation reveals that the right hand side of (116)
is equivalent to

I⊗ Z2 = y1I+ y2τ ∗Q1/σ
2
R

−γ

K∑
k=1

NR∑
l=1

EHl PkYkPHk El . (117)

Substituting the above relation into (114), we further obtain

Q2 + y1Q2 + σ
2
RZ2 +

K∑
k=1

σ 2
SH

H
1 PkYkPHk H1︸ ︷︷ ︸

,222

−y2Q0 = Z1. (118)

Since Q2 � 0, 222 must be a positive definite matrix, which
has full rank, i.e., Rank(222) = N 2

R . It is further implied
by (118) that

Rank(Z1) ≥ Rank(222)− Rank(Q0), (119)

where Rank(Q0) = 1. Then it is clear that the rank of Z1 is
either N 2

R or N 2
R −1. If Rank(Z1) = N 2

R , we must have X = 0
due to the complementary slackness condition Tr(XZ1) = 0.
However, it is obvious that X = 0 is not the optimal solution.
Then the rank of Z1 must be N 2

R − 1 and in this case, X must
lie in the nullspace ofZ1, whose dimension is one. Therefore,
X must be of rank one.

REFERENCES
[1] ‘‘Mobile cyber threats: Kaspersky Lab & INTERPOL joint report, ’’

INTERPOL Kaspersky Lab., Tech. Rep., Oct. 2014.
[2] C. Timberg. (Dec. 2014). German Researchers Discover a Flaw That

Could Let Anyone Listen to Your Cell Calls, The Switch, Washington, DC,
USA. [Online]. Available: https://www.washingtonpost.com/news/the-
switch/wp/2014/12/18/german-researchers-discover-a-flaw-that-could-
let-anyone-listen-to-your-cell-calls-and-read-your-texts/

[3] A. D. Wyner, ‘‘The wire-tap channel,’’ Bell Syst. Tech. J., vol. 54, no. 8,
pp. 1355–1387, 1975.

[4] Y. Liang, H. V. Poor, and S. Shamai (Shitz), ‘‘Information theoretic secu-
rity,’’ Found. Trends Commun. Inf. Theory, vol. 5, nos. 4–5, pp. 355–580,
2008.

[5] Y.-W. P. Hong, P.-C. Lan, and C.-C. J. Kuo, ‘‘Enhancing physical-layer
secrecy in multiantenna wireless systems: An overview of signal process-
ing approaches,’’ IEEE Signal Process. Mag., vol. 30, no. 5, pp. 29–40,
Sep. 2013.

[6] A. Mukherjee, S. A. A. Fakoorian, J. Huang, and A. L. Swindlehurst,
‘‘Principles of physical layer security in multiuser wireless networks:
A survey,’’ IEEE Commun. Surveys Tut., vol. 16, no. 3, pp. 1550–1573,
3rd Quart., 2014.

VOLUME 4, 2016 10093



J. Yang et al.: Joint Secure AF Relaying and Artificial Noise Optimization

[7] C. Xing, S.Ma, andY.-C.Wu, ‘‘Robust joint design of linear relay precoder
and destination equalizer for dual-hop amplify-and-forward MIMO relay
systems,’’ IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2273–2283,
Apr. 2010.

[8] Y. Rong, X. Tang, and Y. Hua, ‘‘A unified framework for optimiz-
ing linear nonregenerative multicarrier MIMO relay communication sys-
tems,’’ IEEE Trans. Signal Process., vol. 57, no. 12, pp. 4837–4851,
Dec. 2009.

[9] Z. Ho and E. Jorswieck, ‘‘Signal leakage neutralisation in instantaneous
non-regenerative relaying networks under channel uncertainty,’’ IET Com-
mun., vol. 8, no. 8, pp. 1285–1295, May 2014.

[10] L. Lai and H. El Gamal, ‘‘The relay–eavesdropper channel: Cooperation
for secrecy,’’ IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 4005–4019,
Sep. 2008.

[11] H.-M. Wang and X.-G. Xia, ‘‘Enhancing wireless secrecy via cooperation:
Signal design and optimization,’’ IEEE Commun. Mag., vol. 53, no. 12,
pp. 47–53, Dec. 2015.

[12] L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, ‘‘Improving wireless
physical layer security via cooperating relays,’’ IEEE Trans. Signal Pro-
cess., vol. 58, no. 3, pp. 1875–1888, Mar. 2010.

[13] J. Li, A. P. Petropulu, and S. Weber, ‘‘On cooperative relaying schemes
for wireless physical layer security,’’ IEEE Trans. Signal Process., vol. 59,
no. 10, pp. 4985–4997, Oct. 2011.

[14] H. Deng, H. M. Wang, W. Guo, and W. Wang, ‘‘Secrecy transmission with
a helper: To relay or to jam,’’ IEEE Trans. Inf. Forensics Security, vol. 10,
no. 2, pp. 293–307, Feb. 2015.

[15] Y. Yang, Q. Li, W.-K. Ma, J. Ge, and P. C. Ching, ‘‘Cooperative secure
beamforming for AF relay networks with multiple eavesdroppers,’’ IEEE
Signal Process. Lett., vol. 20, no. 1, pp. 35–38, Jan. 2013.

[16] H.-M. Wang, F. Liu, and X.-G. Xia, ‘‘Joint source-relay precoding and
power allocation for secure amplify-and-forward MIMO relay networks,’’
IEEE Trans. Inf. Forensics Security, vol. 9, no. 8, pp. 1240–1250,
Aug. 2014.

[17] C. Jeong, I.-M. Kim, and D. Kim, ‘‘Joint secure beamforming design
at the source and the relay for an amplify-and-forward MIMO untrusted
relay system,’’ IEEE Trans. Signal Process., vol. 60, no. 1, pp. 310–325,
Jan. 2012.

[18] S. Vishwakarma and A. Chockalingam, ‘‘Amplify-and-forward relay
beamforming for secrecy with cooperative jamming and imperfect CSI,’’
in Proc. IEEE Int. Conf. Commun. (ICC), Budapest, Hungry, Jun. 2013,
pp. 3047–3052.

[19] C. Zhang, H. Gao, H. Liu, and T. Lv, ‘‘Robust beamforming and jamming
for secure AF relay networks with multiple eavesdroppers,’’ in Proc. IEEE
Military Commun. Conf. (MILCOM), Baltimore, MD, USA, Oct. 2014,
pp. 495–500.

[20] X. Wang, K. Wang, and X.-D. Zhang, ‘‘Secure relay beamforming with
imperfect channel side information,’’ IEEE Trans. Veh. Technol., vol. 62,
no. 5, pp. 2140–2155, Jun. 2013.

[21] Q. Li, Y. Yang, W. K. Ma, M. Lin, J. Ge, and J. Lin, ‘‘Robust cooperative
beamforming and artificial noise design for physical-layer secrecy in AF
multi-antennamulti-relay networks,’’ IEEE Trans. Signal Process., vol. 63,
no. 1, pp. 206–220, Jan. 2015.

[22] K. Jayasinghe, P. Jayasinghe, N. Rajatheva, and M. Latva-Aho, ‘‘Secure
beamforming design for physical layer network coding based MIMO
two-way relaying,’’ IEEE Commun. Lett., vol. 18, no. 7, pp. 1270–1273,
Jul. 2014.

[23] M. Zhang, J. Huang, H. Yu, H. Luo, and W. Chen, ‘‘QoS-based source and
relay secure optimization design with presence of channel uncertainty,’’
IEEE Commun. Lett., vol. 17, no. 8, pp. 1544–1547, Aug. 2013.

[24] Z. Chu, K. Cumanan, M. Xu, and Z. Ding, ‘‘Robust secrecy rate opti-
misations for multiuser multiple-input-single-output channel with device-
to-device communications,’’ IET Commun., vol. 9, no. 3, pp. 396–403,
Feb. 2015.

[25] C. Wang and H.-M. Wang, ‘‘Robust joint beamforming and jamming for
secure AF networks: Low-complexity design,’’ IEEE Trans. Veh. Technol.,
vol. 64, no. 5, pp. 2192–2198, May 2015.

[26] H.-M. Wang, F. Liu, and M. Yang, ‘‘Joint cooperative beamforming,
jamming, and power allocation to secure AF relay systems,’’ IEEE Trans.
Veh. Technol., vol. 64, no. 10, pp. 4893–4898, Oct. 2015.

[27] J. Yang, B. Champagne, Q. Li, and L. Hanzo, ‘‘Secure MIMO AF relaying
design: An intercept probability constrained approach,’’ in Proc. IEEE
Global Commun. Conf. (Globecom), San Diego, CA, USA, Dec. 2015,
pp. 1–6.

[28] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, ‘‘Semidefinite
relaxation of quadratic optimization problems,’’ IEEE Signal Process.
Mag., vol. 27, no. 3, pp. 20–34, May 2010.

[29] B. K. Sriperumbudur and G. R. Lanckriet, ‘‘On the convergence of the
concave-convex procedure,’’ in Proc. 22nd Adv. Neural Inf. Process. Syst.,
2009, pp. 1759–1767.

[30] A. Pascual-Iserte, D. P. Palomar, A. I. Perez-Neira, and M. A. Lagunas,
‘‘A robust maximin approach for MIMO communications with imperfect
channel state information based on convex optimization,’’ IEEE Trans.
Signal Process., vol. 54, no. 1, pp. 346–360, Jan. 2006.

[31] 3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Study on LTEDevice to Device Proximity Services; Radio
Aspects (Release 12), document 3GPP TR 36.843 V12.0.1, Mar. 2014.

[32] A. Goldsmith, Wireless Communications, 1st ed. Cambridge, U.K.:
Cambridge Univ. Press, Aug. 2005.

[33] R. Horst andN. V. Thoai, ‘‘DC programming: Overview,’’ J. Optim. Theory
Appl., vol. 103, no. 1, pp. 1–43, Oct. 1999.

[34] U. Rashid, H. D. Tuan, H. H. Kha, and H. H. Nguyen, ‘‘Joint optimization
of source precoding and relay beamforming in wireless MIMO relay
networks,’’ IEEE Trans. Commun., vol. 62, no. 2, pp. 488–499, Feb. 2014.

[35] S.-P. Han and O. L. Mangasarian, ‘‘Exact penalty functions in nonlinear
programming,’’ Math. Program., vol. 17, no. 1, pp. 251–269, Dec. 1979.

[36] G. Di Pillo and L. Grippo, ‘‘Exact penalty functions in constrained
optimization,’’ SIAM J. Control Optim., vol. 26, no. 6, pp. 1333–1360,
Nov. 1989.

[37] O. L. Mangasarian and S. Fromovitz, ‘‘The Fritz John necessary optimality
conditions in the presence of equality and inequality constraints,’’ J. Math.
Anal. Appl., vol. 17, pp. 37–47, 1967.

[38] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[39] L. Vandenberghe and S. Boyd, ‘‘Semidefinite programming,’’ SIAM Rev.,
vol. 38, no. 1, pp. 49–95, Mar. 1996.

[40] A. Charnes and W. W. Cooper, ‘‘Programming with linear fractional
functionals,’’ Naval Res. Logistics Quart., vol. 9, nos. 3–4, pp. 181–186,
Sep./Dec. 1962.

[41] J. F. Sturm, ‘‘Using SeDuMi 1.02, a MATLAB toolbox for optimiza-
tion over symmetric cones,’’ Optim. Methods Softw., vol. 11, nos. 1–4,
pp. 625–653, Jan. 1999.

[42] MOSEK ApS. (2016). The MOSEK Optimization Toolbox for MATLAB
Manual. V7.1 (R49). [Online]. Available: http://docs.mosek.com/7.1/
toolbox/index.html

[43] Y. Nesterov andA. Nemirovski, Interior Point Polynomial TimeMethods in
Convex Programming: Theory and Applications. Philadelphia, PA, USA:
SIAM, 1994.

[44] J. Yang, B. Champagne, Y. Zou, and L. Hanzo, ‘‘Joint optimization
of transceiver matrices for MIMO-aided multiuser AF relay networks:
Improving the QoS in the presence of CSI errors,’’ IEEE Trans. Veh.
Technol., vol. 65, no. 3, pp. 1434–1451, Mar. 2016.

JIAXIN YANG (S’11) received the B.Eng. degree
in information engineering from Shanghai Jiao
TongUniversity, Shanghai, China, in 2009, and the
M.E.Sc. degree in electrical and computer engi-
neering from the University of Western Ontario,
London, ON, Canada, in 2011. Since 2012, he
has been with the Department of Electrical and
Computer Engineering, McGill University, Mon-
treal, QC, Canada, where he is currently pursuing
the Ph.D. degree. He has been a Wireless System

Research Intern with InterDigital since 2015. His research interests include
optimization theory, statistical signal processing, detection and estimation,
and the applications thereof in wireless communications such as MIMO
systems, co-operative communications, and physical-layer security. He was
a recipient of several awards and scholarships, including the Best Paper
Award of the 27th IEEE International Symposium on Personal, the Indoor
and Mobile Radio Communications, the McGill Engineering Doctoral
Award, the Graduate Excellence Fellowship, the International Differential
Tuition FeeWaivers, the FRQNT International Internship Scholarship, the
PERSWADE Ph.D. Scholarship, the Graduate Research Enhancement and
Travel Awards, and the Graduate Research Mobility Awards.

10094 VOLUME 4, 2016



J. Yang et al.: Joint Secure AF Relaying and Artificial Noise Optimization

QIANG LI (M’13) received the B.Eng. andM.Phil.
degrees in communication and information engi-
neering from the University of Electronic Science
and Technology of China (UESTC), Chengdu,
China, in 2005 and 2008, respectively, and the
Ph.D. degree in electronic engineering from the
Chinese University of Hong Kong (CUHK), Hong
Kong, in 2012. From 2011 to 2012, he was a
Visiting Scholar with the University of Minnesota,
Twin Cities, Minneapolis, MN, USA. From 2012

to 2013, he was a Research Associate with the Department of Electronic
Engineering and the Department of Systems Engineering and Engineering
Management, CUHK. Since 2013, he has been with the School of Com-
munication and Information Engineering, UESTC, where he is currently
an Associate Professor. His research interests include convex optimization
and its applications in signal processing with an emphasis on the physical-
layer security and full-duplex communications. He was a recipient of the
First Prize Paper Award in the IEEE Signal Processing Society Postgraduate
Forum Hong Kong Chapter in 2010, and a co-recipient of the Best Paper
Award of the IEEE PIMRC 2016.

YUNLONG CAI (S’07–M’10–SM’16) received
the B.S. degree in computer science from Beijing
Jiaotong University, Beijing, China, in 2004, the
M.Sc. degree in electronic engineering from the
University of Surrey, Guildford, U.K., in 2006, and
the Ph.D. degree in electronic engineering from
the University of York, York, U.K., in 2010. From
2010 to 2011, he was a Post-Doctoral Fellow with
the Electronics and Communications Laboratory,
Conservatoire National des Arts et Metiers, Paris,

France. Since 2011, he has been with the College of Information Science and
Electronic Engineering, Zhejiang University, Hangzhou, China, where he is
currently an Associate Professor. His research interests include transceiver
design for multiple-antenna systems, sensor array processing, adaptive fil-
tering, full-duplex communications, co-operative and relay communications,
and wireless information and energy transfer.

YULONG ZOU (SM’13) received the B.Eng.
degree in information engineering from the
Nanjing University of Posts and Telecommunica-
tions (NUPT), Nanjing, China, in 2006, the first
Ph.D. degree in electrical engineering from the
Stevens Institute of Technology, NJ, USA, in 2012,
and the second Ph.D. degree in signal and infor-
mation processing from NUPT in 2012. He is
currently a Professor with NUPT. His research
interests span a wide range of topics in wire-

less communications and signal processing, including the co-operative
communications, cognitive radio, wireless security, and energy-efficient
communications.

Dr. Zou was a recipient of the 2014 IEEE Communications Society Asia-
Pacific Best Young Researcher. He serves on the Editorial Board of the IEEE
Communications Surveys and Tutorials, the IEEE COMMUNICATIONS LETTERS,
the IET Communications, and the EURASIP Journal on Advances in Signal
Processing. In addition, he has served as symposium chairs, session chairs,
and TPC members for a number of IEEE sponsored conferences, including
the IEEE Wireless Communications and Networking Conference, the IEEE
Global Communications Conference, the IEEE International Conference on
Communications, the IEEE Vehicular Technology Conference, the Interna-
tional Conference on Communications in China.

LAJOS HANZO (M’91–SM’92–F’04) received
the D.Sc. degree in electronics in 1976 and the
Ph.D. degree in 1983. During his 40-year career in
telecommunications he has held various research
and academic posts in Hungary, Germany, and
U.K. Since 1986, he has been with the School
of Electronics and Computer Science, University
of Southampton, U.K. He has successfully super-
vised 110 Ph.D. students. He is currently directing
a 100-strong academic research team, working on

a range of research projects in the field of wireless multimedia commu-
nications sponsored by industry, the Engineering and Physical Sciences
Research Council, U.K., the European IST Programme and the Mobile
Virtual Centre of Excellence, U.K. His research is funded by the European
Research Council’s Senior Research Fellow Grant. He is an enthusiastic
supporter of industrial and academic liaison and he offers a range of industrial
courses. He has co-authored 20 John Wiley/IEEE Press books on mobile
radio communications totalling in excess of 10 000 pages, published over
1600 research entries at the IEEE Xplore. He was FREng, FIET, and a fellow
of the EURASIP. In 2009, he received the honorary doctorate Doctor Honoris
Causa by the Technical University of Budapest and in 2015 by the University
of Edinburgh. He served as the TPC Chair and the General Chair of the IEEE
conferences, presented keynote lectures and has been received a number of
distinctions. He is also a Governor of the IEEE VTS. From 2008 to 2012,
he was the Editor-in-Chief of the IEEE Press and a Chaired Professor at
Tsinghua University, Beijing. He is the Chair in telecommunications with
the University of Southampton.

BENOIT CHAMPAGNE (S’87–M’89–SM’03)
received the B.Ing. degree in engineering physics
from the École Polytechnique de Montréal in
1983, the M.Sc. degree in physics from the
Université de Montréal in 1985, and the Ph.D.
degree in electrical engineering from the Univer-
sity of Toronto in 1990. From 1990 to 1999, he
was an Assistant Professor and then an Associate
Professor with INRS-Telecommunications, Uni-
versité du Quebec, Montréal. In 1999, he joined

McGill University, Montreal, where he is currently a Full Professor with
the Department of Electrical and Computer Engineering. He served as an
Associate Chairman of Graduate Studies with the Department from 2004
to 2007. His research focuses on the study of advanced algorithms for
the processing of information bearing signals by digital means. His inter-
ests span many areas of statistical signal processing, including detection
and estimation, sensor array processing, adaptive filtering, and applications
thereof to broadband communications and audio processing, where he has
co-authored over 200 referred publications. His research has been funded
by the Natural Sciences and Engineering Research Council of Canada, the
Fonds de Recherche sur la Nature et les Technologies from the Government
of Quebec, and some major industrial sponsors, including Nortel Networks,
Bell Canada, InterDigital, and Microsemi. He has been an Associate Editor
of the IEEE SIGNAL PROCESSING LETTERS, the IEEE TRANSACTIONS ON SIGNAL

PROCESSING, and the EURASIP Journal on Applied Signal Processing. He has
also served on the Technical Committees of several international conferences
in the fields of communications and signal processing. In particular, he
was the Co-Chair, Wide Area Cellular Communications Track, of the IEEE
International Symposium on PIMRC, Toronto, ON, in 2011, the Co-Chair,
Antenna and Propagation Track, of the IEEE VTC-Fall, Los Angeles, USA,
in 2004, and the Registration Chair of the IEEE International Conference on
ASSP, Montreal, QC, Canada, in 2004.

VOLUME 4, 2016 10095


