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ABSTRACT In this paper, a new speech enhancement method is proposed based on dictionary learning and
low-rank matrix decomposition with the objective to improve speech quality and intelligibility. In both the
learning stage and the enhancement stage of the proposed method, a new noise model is employed to capture
the noise characteristics with a combination of a low-rank matrix and an overcomplete noise dictionary.
In the learning stage, an unsupervised dictionary learning algorithm is first proposed based on this new
noise model to train a noise dictionary with low mutual coherence to the clean speech. Then, a supervised
low-rank matrix decomposition algorithm is proposed to extract the low-rank component of noise using the
clean speech, noise, and noisy speech training data sets. The estimated low-rank matrix is clustered through
the K-means method to generate a codebook which provides useful information for the enhancement stage.
Finally, in the enhancement stage, by using the well-trained dictionaries and the reference codebook from
the learning stage, a decomposition algorithm for the low-rank matrix and sparse component is developed to
effectively estimate the clean speech from the noisy speech. The experimental results show that our proposed
method achieves better enhancement performance than some state-of-the-art reference methods in terms of
four objective performance evaluationmeasures especially in low signal-to-noise ratio adverse environments.

INDEX TERMS Clustering, noise model, speech enhancement, supervised low-rank matrix decomposition,
unsupervised dictionary learning.

I. INTRODUCTION
With the pervasive use of wireless networks and smart home
devices, speech enhancement has become an indispensable
part of voice communication systems and human-machine
interfaces, as a means to improve both quality and intelligibil-
ity of speech signals contaminated by background noises [1].
In the last decade, sparse-model based speech enhancement
methods have been proposed to achieve effective denoising,
especially under non-stationary noisy environment, by using
dictionary learning approaches [2]–[4] or the low-rankmatrix
decomposition method [5]. These methods can be divided
into two categories: the first group is based on the sparsity
of both speech and noise while the second group is based on
the sparsity of speech and the low-rank property of noise.

The work in the first category was initiated in [6] where a
generative dictionary learning (GDL) method was proposed
for estimating the speech magnitude spectra. In the learning

stage, the GDLmethod employs the K-singular value decom-
position (K-SVD) algorithm [7] to carry out an unsupervised
learning of redundant dictionaries for both speech and noise
in the time-frequency domain. Then, in the enhancement
stage, the noisy speech magnitude spectra are sparsely rep-
resented with a composite dictionary, i.e. a concatenation of
the learned speech and noise dictionaries, through a sparse
coding algorithm [8]. The speech magnitude spectra are
recovered through the product of the speech dictionary and
the estimated sparse coefficient vectors of speech. Finally,
the time-domain speech signals are synthesized via inverse
Fourier transform (IFT) of the estimated speech spectra.

Different from the GDL method, the complementary joint
sparse representation (CJSR) method [9] utilizes the noisy
speech magnitude spectra in the learning stage together with
the clean speech magnitude spectra and the noise magnitude
spectra, respectively, to form two different training datasets
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to train two distinct mixture dictionaries. The trained mixture
dictionaries offer latent mappings from the noisy speech to
the clean speech and noise, respectively, which enable the
sparse coding algorithm in the enhancement stage to improve
the accuracy of both speech and noise estimations in the
frequency domain.

Thus, the methods in the first category rely only on
the intra-frame characteristic of the speech and noise (i.e.
the sparsity) to learn redundant dictionaries and seek for a
robust sparse coefficient representation in order to achieve
the intended separation of speech and noise in adverse envi-
ronments. However, the robustness of sparse representation is
highly related to the intrinsic distinctiveness of the speech and
noise spectrograms [6]. Consequently, the enhancement per-
formance is subject to mutual coherence between the speech
and the noise dictionary.

The methods in the second category decouple the mix-
ture signal in the time-frequency domain into a sparse com-
ponent for speech and a low-rank component for noise.
The constrained low-rank and sparse matrix decomposition
(CLSMD) method [10] can achieve effective separation of
speech and noise by constraining the number of the non-
zero entries in the speech magnitude spectral matrix and the
rank of the noise magnitude spectral matrix. Different from
the CLSMDmethod, the robust principal component analysis
(RPCA) based speech enhancement method [11] employs a
speech dictionary to sparsely represent the speech magnitude
spectra and utilizes the nuclear norm to control the rank of the
noise magnitude spectral matrix. The optimization problem
developed in this method is then solved by the alternating
directionmethod ofmultiplier (ADMM) algorithm [12]. Sim-
ilar to the RPCAmethod in [11], the learnable sparse and low-
rank decomposition (LSLD) algorithm [13] guarantees the
low-rank property of the noise magnitude spectral matrix by
minimizing its nuclear norm. Hence, the methods in this cat-
egory exploit the low-rank model to describe non-stationary
noise, focusing on the inter-frame coherence of the noise
spectrogram.

In this paper, we propose a new method for monaural
speech enhancement that is based on unsupervised dictio-
nary learning and supervised low-rankmatrix decomposition.
Our method differs from the aforementioned approaches in
four aspects. Firstly, we combine the sparse model and the
low-rank model to develop a new mathematical model for
background noise, which underlies both the learning stage
and enhancement stage of the new method. Secondly, based
on this new noise model, we propose a new optimization
technique in the learning stage to train a noise dictionary in an
unsupervised fashion. Thirdly, we propose a supervised low-
rank matrix decomposition algorithm in the learning stage to
extract a low-rank noise component, which is used to design
a representative noise codebook for the enhancement stage.
Finally, in the enhancement stage, the well-trained dictio-
naries and the codebook are utilized along with a new low-
rank matrix and sparse component decomposition algorithm
to decouple the noisy speech magnitude spectral matrix into

two separate parts, namely, the sparse component and the
low-rank component. The speech magnitude spectral matrix
is then estimated from the sparse component. The joint use of
the inter-frame coherence (i.e. the low-rank property) and the
intra-frame characteristic (i.e. the sparsity) of noisy speech
magnitude spectra can account for the performance improve-
ment of our proposed approach.

The rest of the paper is organized as follows: Section II pro-
vides a brief review of the GDL and the CLSMDwhich serve
as basis for our proposed method. In Section III, we develop
the new speech enhancement method in detail. Section IV
presents experimental results of the proposed method with
comparison to five reference methods, and for four objective
performance measures. Finally, we conclude the paper in
Section V. In addition, in this paper, the notation ‖·‖0 denotes
the `0 norm, counting the number of nonzero elements in
a vector or a matrix. ‖·‖1 denotes the `1 norm, referring to
the sum of the absolute elements in a vector or a matrix.
‖·‖∞ denotes the maximum norm, referring to the maximum
absolute element in a vector. And ‖·‖F denotes the Frobenius
norm of a matrix [14].

II. RELATED WORK
In single-channel speech enhancement, the noisy speech sig-
nal x(t) at time sample t can be expressed as

x(t) = s(t)+ n(t) (1)

where s(t) and n(t) denote, respectively, the clean speech and
noise. In the context of sparse-model based speech enhance-
ment, with the goal to recover s(t) from x(t), a suitable feature
space should first be selected for the representation of the
time-domain signals. An appropriate and common candi-
date to realize this representation is the short time Fourier
transform (STFT) [8]. After being segmented into frames,
the mixture signal x(t) is transformed into the time-frequency
domain by means of the STFT. Consequently, (1) can be
converted as

X (f ,m) = S(f ,m)+ N (f ,m) (2)

where X (f ,m), S(f ,m) andN (f ,m) represent the STFT spec-
tra respectively of the noisy speech, clean speech and noise,
f ∈ {1, 2, · · · ,M} and m ∈ {1, 2, · · · ,N } denote the
frequency bin and frame index respectively. Regardless of the
phases of complex STFT coefficients, existing sparse-model
based speech enhancement approaches exploit the sparsity of
the speech magnitude spectrum |S(f ,m)| to effectively sepa-
rate it from the noisy speech magnitude spectrum |X (f ,m)|.

The GDL method [6] provides a basic framework for
dictionary learning based speech enhancement methods. The
GDL method is divided into two stages: the learning stage
and the enhancement stage. In the learning stage, the GDL
method exploits the K-SVD algorithm to solve the following
two optimization problems for training the speech dictionary
and noise dictionary, respectively, i.e.,

min
Ds,2s

∥∥S− Ds2s
∥∥2
F s.t.

∥∥θ s,i∥∥0 ≤ K , ∀i, (3)
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and

min
Dn,2n

∥∥N − Dn2n
∥∥2
F s.t.

∥∥θn,i∥∥0 ≤ K , ∀i. (4)

In this formulation: S ∈ RM×N1 and N ∈ RM×N2 represent
respectively the speech and noisemagnitude spectral matrices
for training;Ds ∈ RM×P andDn ∈ RM×P denote respectively
the speech dictionary and the noise dictionary to be trained;
2s ∈ RP×N1 and 2n ∈ RP×N2 are the sparse coefficient
matrices in the representation of the speech magnitude spec-
tral matrix S and the noise magnitude spectral matrix N
in terms of their dictionaries Ds and Dn; and θ s,i and θn,i
represent the ith column vector in2s and2n.
In the enhancement stage, the noisy speech magnitude

spectral matrix X can be sparsely represented by a composite
dictionary D which is a concatenation of the speech dictio-
nary Ds and the noise dictionary Dn from the learning stage,
i.e.,

X = D2 =
[
Ds Dn

] [2s
2n

]
(5)

where D =
[
Ds Dn

]
and 2 =

[
2s
2n

]
. It is noted that 2s

and 2n in (5) are the submatrices of the matrix 2 to be
estimated. For convenience and simplicity, we do not use any
superscript or subscript to distinguish the sparse coefficient
matrices estimated from the data during the training and
enhancement stages. Here,2 is the sparse coefficient matrix
of X with respect to the composite dictionary D. It can be
estimated by using the least angle regression with coherence
criterion (LARC) algorithm [6] to solve the following opti-
mization problem,

2̂ = argmin
2

1
2

∥∥X − D2∥∥2F + λ∥∥2∥∥1. (6)

Then, the speech magnitude spectral matrix can be esti-
mated as

Ŝ = Ds2̂s (7)

where 2̂s is the corresponding submatrix of 2̂ as in (5).
The speech spectra are then obtained using the estimated
speech magnitude spectra in (7) and the phases of the noisy
speech spectra. Finally, the time-domain speech signals are
synthesized by applying the IFT to the estimated speech
spectra.

The GDL method utilizes the unsupervised K-SVD algo-
rithm to train both speech and noise dictionaries in the learn-
ing stage and employs the LARC algorithm to estimate the
sparse coefficient matrix of speech in the enhancement stage.
As such, it is able to achieve complete separation of speech
and noise when the learned speech and noise dictionaries are
coherent to their respective signal classes and incoherent to
the other signal classes in the noisy speech. However, this
condition cannot be satisfied in a real-world environment
due to the non-stationarity of noise, which accounts for the
primary drawback of the GDL, namely the so-called source
confusion [6].

Different from the GDL, the CLSMD method uses the
low-rank matrix decomposition to extract the noise from the
noisy speech without using a learning scheme [10]. Based
on the sparsity of the speech magnitude spectral matrix and
the low-rank property of the noise magnitude spectral matrix,
the CLSMD method considers the following two subprob-
lems to alternately and iteratively estimate the speech and
noise components from the noisy speech magnitude spectral
matrix.

N t
= argmin

rank(N)≤r

∥∥X − N − St−1∥∥2F . (8)

St = argmin∥∥S∥∥
0
≤K

∥∥X − N t
− S

∥∥2
F . (9)

Here, the parameter r is the upper bound on the rank of N
while K is the sparsity level of S. The optimization problems
in (8) and (9) are solved respectively through the singular
value hard thresholding algorithm and the hard thresholding
algorithm in [10].

None of the existing sparse-model based speech enhance-
ment methods has incorporated the low-rank property of
the noise magnitude spectral matrix into the learning stage.
In this work, we exploit the low-rank component of noise
both in the learning stage and the enhancement stage, which,
as shown in Section III, can largely improve the enhancement
performance.

III. PROPOSED SPEECH ENHANCEMENT SYSTEM
In this section, we first describe the operation of the com-
plete speech enhancement system based on our proposed
method. We subsequently present the details of the proposed
algorithms for the learning stage in Subsection III-B and the
enhancement stage in Subsection III-C.

A. SYSTEM OVERVIEW
The block diagram of our proposed system, depicted in Fig. 1,
is divided into two stages: the learning stage and the enhance-
ment stage. In order to reduce source confusion and pro-
vide more useful information from the learning stage to the
enhancement stage, we establish a new model for the noise
in the time-frequency domain which considers both intra-
frame (sparsity) and inter-frame (low-rank) characteristics.
Specifically, wemodel the noise magnitude spectral matrix as

N = L+ Dn2n (10)

which jointly employs the low-rankmatrixL and an overcom-
plete noise dictionary Dn. This model will be employed in
both the learning and the enhancement stages of our proposed
approach.

The learning stage aims at training appropriate dictionaries
for both speech and noise and learning the low-rank com-
ponent of noise. At first, all the three available time-domain
training datasets, consisting of clean speech, noise and noisy
speech (obtained as the sum of the clean speech and noise
with a predetermined signal-to-noise ratio (SNR)), are trans-
formed into the time-frequency domain through STFT. Then,
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FIGURE 1. Block diagram of proposed speech enhancement method.

the unsupervised K-SVD algorithm is directly applied to the
clean speech magnitude spectral matrix to build a speech
dictionary Ds. Furthermore, based on the new noise model
in (10), we propose a new unsupervised dictionary learning
algorithm to train the noise dictionary Dn. It is worth noting
that the trained speech dictionary Ds is input into this new
noise dictionary learning algorithm as a reference to reduce
themutual coherence between the noise dictionaryDn and the
speech dictionary Ds. Finally, a supervised low-rank matrix
decomposition algorithm is proposed to extract the low-rank
component of the noise magnitude spectral matrix based on
the trained dictionaries and all three training datasets. This
estimated low-rank matrix L is then input into a clustering
module to produce a reference codebook C for the enhance-
ment stage. The codebook will provide the enhancement
stage with useful information to further improve the speech
quality and intelligibility.

In the enhancement stage, the noisy speech magnitude
spectral matrix is decoupled via the proposed low-rankmatrix
and sparse component decomposition algorithm into the sum
of a structured component, which is sparse in regards of the
composite dictionary D and a low-rank component which is
refined using the codebookC. The speech magnitude spectral
matrix is extracted from the estimated sparse component.
A Wiener filter [1] is then employed to further improve the
estimation of the speech magnitude spectra. Finally, the time-
domain speech signal is synthesized via IFT of the estimated
speech spectra using the estimated speech magnitude spectra
and the unprocessed phases of the noisy speech spectra.

B. LEARNING STAGE
1) UNSUPERVISED DICTIONARY LEARNING
In the learning stage, we first utilize the unsupervised K-SVD
algorithm to train the speech dictionaryDs. Next, we propose
to train the noise dictionary Dn based on the new noise
model in (10), which can effectively reduce source confu-
sion [6]. Before training the noise dictionary, we need to
extract the low-rank component from the noise magnitude
spectral matrix N , which is considered to be highly coherent
to the speech.

We apply the singular value decomposition (SVD) to the
noise magnitude spectral matrix N and obtain

N = UN3NVN
T (11)

where both UN and VN are unitary matrices and 3N is a
rectangular diagonal matrix with the singular values λN ,i (i =
1, 2, · · · ,M ) of N on its principal diagonal. The average
mutual coherence between speech, and noise components in
the frequency domain is measured in our work as

ρ(i) =
1
P

∥∥UT
N ,iDs

∥∥
1, i = 1, 2, · · · ,M (12)

where UN ,i is the ith column vector of UN . We then define
the mutual coherence vector as

ρ =
[
ρ(1) ρ(2) · · · ρ(M )

]T
. (13)

It is evident to see a larger value of the average mutual coher-
ence in (12) indicates a higher level of coherence between
the corresponding noise component vector and the speech
dictionary. We select the components of N corresponding to
the indices of the first I largest entries in ρ as basis vectors
in the construction of the low-rank matrix L. In the sequel,
the corresponding index set with cardinality I is denoted as
A. Then the low-rank matrix can be approximated as

L̂ =
∑
i∈A

λN ,i
∥∥UT

N ,iDs
∥∥
∞
UN ,iVT

N ,i. (14)

We utilize the maximum mutual coherence values between
the selected noise components and the speech dictionary as
weights to approximate the low-rank component of the noise
magnitude spectral matrix, and then use the residual noise
magnitude spectral matrix to train the noise dictionary. This
way will effectively reduce the coherence between the speech
and the noise dictionary. Specifically, training of the noise
dictionary Dn can be formulated as the following optimiza-
tion problem,

min
Dn,2n

∥∥N − L̂− Dn2n
∥∥2
F s.t.

∥∥θn,i∥∥0 ≤ K , ∀i. (15)

We can employ the K-SVD algorithm to solve this problem.
The complete procedure for implementing the above

unsupervised noise dictionary learning is summarized in
Algorithm 1.

2) SUPERVISED LOW-RANK MATRIX DECOMPOSITION
FOR CODEBOOK CONSTRUCTION
In this part, we will take advantage of all three training
datasets, i.e. the clean speech, noise and noisy speech, to learn
the desired low-rank matrix to construct a codebook. This
low-rank matrix decomposition will be carried out in a super-
vised fashion. We should mention that the low-rank matrix
estimation in this part is somewhat different from that in
III-B1. The low-rank matrix in (14) represents the compo-
nents of noise which are highly coherent to speech. However,
the low-rank matrix extraction here aims at capturing highly
correlated components among the magnitude spectra of var-
ious noise frames and provides useful information through

VOLUME 7, 2019 4939



Y. Ji et al.: Speech Enhancement Based on Dictionary Learning and Low-Rank Matrix Decomposition

Algorithm 1 Proposed Unsupervised Noise Dictionary
Learning Algorithm
Input: N , Ds, I ;

• SVD: N = UN3NVN
T
;

• Average mutual coherence values:

1) ρ(i) = 1
P

∥∥UT
N ,iDs

∥∥
1, i = 1, 2, · · · ,M;

2) ρ =
[
ρ(1) ρ(2) · · · ρ(M )

]T
;

• Noise component selection:

A = {indices corresponding to the first I largest

magnitude elements in ρ};

• Low-rank matrix approximation:
L̂ =

∑
i∈A λN ,i

∥∥UT
N ,iDs

∥∥
∞
UN ,iVT

N ,i;

• Noise dictionary training: Dn =K-SVD(N − L̂).
Output: Dn.

construction of a codebook about the mapping of the noisy
speech to noise during the enhancement stage.

With the new noise model in (10), the noisy speech magni-
tude spectral matrix X in the learning stage can be expressed
as

X = S+ N = Ds2s + Dn2n + L = D2+ L, (16)

where Ds and Dn are obtained respectively from the unsuper-
visedK-SVD algorithm and the above proposed unsupervised
noise dictionary learning algorithm, D =

[
Ds Dn

]
and 2 =[

2T
s 2

T
n
]T
. Based on (16), the estimation of the low-rank

matrix L can be formulated as the following problem,

min
2,L

∥∥X − D2− L∥∥2F + τ1∥∥N − L− Dn2n
∥∥2
F

+ τ2
∥∥S− Ds2s

∥∥2
F + τ3

∥∥2∥∥1
s.t. rank(L) ≤ r (17)

where τ1, τ2 and τ3 are regularization factors, providing a
tradeoff between the sparsity and the approximation errors in
the noisy speech, noise and clean speech. The parameter r is
used to guarantee the low-rank property of the matrix L. The
minimization problem in (17) can be addressed by alternate
iteration between the following two subproblems.

2t
= argmin

2

∥∥X − D2− Lt−1∥∥2F
+ τ1

∥∥N − Lt−1 − Dn2n
∥∥2
F

+ τ2
∥∥S− Ds2s

∥∥2
F + τ3

∥∥2∥∥1 (18)

Lt = argmin
rank(L)≤r

∥∥X − D2t
− L

∥∥2
F + τ1

∥∥N − L− Dn2t
n

∥∥2
F

(19)

where the superscript t is the iteration index. With a fixed
value of L, (18) seeks to estimate the sparse coefficient matrix

2 based on the `1-norm minimization. With a fixed estimate
of the matrix 2 from (18), the subproblem (19) seeks to
estimate the low-rank matrix L with an explicit rank con-
straint. In the following, we expose the details of our solution
approach for these two optimization problems.
By combining the first three terms in the objective function

of problem (18) into a single term, the latter problem is seen
to be equivalent to

2t
= argmin

2

∥∥Y t −W2∥∥2F + τ3∥∥2∥∥1 (20)

where Y t =

[
X−Lt−1

√
τ1(N−Lt−1)
√
τ2S

]
and W =

[ Ds Dn
0
√
τ1Dn

√
τ2Ds 0

]
. The

above convex optimization problem (20) is a typical `1-norm
based sparse decomposition problem and accordingly, we can
exploit the LARC algorithm to find the globally optimal
solution.

The subproblem (19) can be converted into the following
optimization problem by combining the two terms in its
objective:

Lt = argmin
rank(L)≤r

∥∥ [X−D2t √τ1(N−Dn2t
n)
]
−
[
L
√
τ1L

] ∥∥2
F

(21)

LetH t
=
[
X − D2t √τ1(N − Dn2t

n)
]
andQ =

[
L
√
τ1L

]
.

Then problem (21) can be converted into

Qt = argmin
rank(Q)≤r

∥∥H t
− Q

∥∥2
F . (22)

We now utilize the singular value hard thresholding algorithm
[10] to solve this problem. Firstly, SVD is applied to the
matrix H t , i.e.,

H t
= U t

H3
t
HV

t
H
T (23)

where U t
H and V t

H are both unitary matrices and 3t
H is a

rectangular diagonal matrix with singular values λtH ,i (i =
1, 2, · · · ,M ) of H t on its principal diagonal. And then Qt

can then be approximated as

Qt =
r∑
i=1

λtH ,iU
t
H ,iV

t
H ,i

T (24)

where λtH ,i (i = 1, 2, · · · , r) are the first r dominant singular
values of 3t

H , and U t
H ,i (i = 1, 2, · · · , r) and V t

H ,i (i =
1, 2, · · · , r) respectively represent the first r left-singular and
right-singular vectors in U t

H and V t
H . In accordance with the

relationship between Q and L, we can obtain the estimate Lt

from Qt . Let matrix Qt be partitioned into blocks of identical
size, i.e.,

Qt =
[
Qt1 Q

t
2

]
. (25)

Recalling that Q =
[
L
√
τ1L

]
, we have

Lt = µQt1 +
(1− µ)
√
τ1

Qt2 (26)

where µ ∈ [0, 1] is a weight controlling the relative contribu-
tion ofQt1 andQ

t
2 to the estimation. Since matrixQt1 is related
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Algorithm 2 Proposed Supervised Low-Rank Matrix
Decomposition Algorithm
Input: Magnitude spectral matrices of the noisy speech X ,
clean speech S, noise N , speech dictionary Ds and noise
dictionary Dn, rank r , weight parameter µ.
Initialization: Set initial estimate of the low-rank matrix

L0 = 0. SetW =

 Ds Dn
0
√
τ1Dn

√
τ2Ds 0

.
Iteration: For t = 1, 2, · · · tstop:

• Sparse Coding Stage: Employ the LARC algorithm to
estimate the sparse coefficient matrix.

1) Y t =

 X − Lt−1
√
τ1(N − Lt−1)
√
τ2S

 ;
2) 2t

= LARC(Y t ,W ).
• Low-Rank Matrix Estimation Stage: Update the low-
rank component of the noise magnitude spectral matrix.

1) Partition 2t
=

[
2t
s
T
2t
n
T
]T

, where two blocks
of equal size represent the sparse coefficient matrix
estimates of the speech and noise, respectively.

2) H t
=
[
X − D2t √τ1(N − Dn2t

n)
]
;

3) Apply SVD to the matrix H t : H t
= U t

H3
t
HV

t
H ;

4) Approximate the matrix Qt by
Qt =

∑r
i=1 λ

t
H ,iU

t
H ,iV

t
H ,i

T ;
5) Partition Qt to obtain two column blocks of the

same size, Qt1 and Q
t
2;

6) Update the low-rank matrix as
Lt = µQt1 +

(1−µ)
√
τ1
Qt2.

Output: 2̂ = 2t , L̂ = Lt .

to the noisy speech and matrix Qt2 is related to the noise,
the parameter µ offers a tradeoff between the approximation
of noisy speech and noise. In effect, (26) underlies an implied
mapping from the noisy speech to the low-rank component of
noise in the frequency domain, which can provide auxiliary
information to the enhancement stage.

The pseudo-code of the proposed supervised low-rank
matrix decomposition algorithm is presented in Algorithm 2.

The codebook, denoted as a matrix C ∈ RM×N3 , is estab-
lished with the column vectors of the estimated low-rank
matrix via the traditional K-means clustering method [15].
Specifically, we apply the K-means method to the column
vectors in the estimated low-rank matrix from Algorithm 2 to
obtain multiple centroids and then store these centroids as the
column vectors in C.

C. ENHANCEMENT STAGE
Based on both the noise and speech models established in the
learning stage, here we propose to use the composite dictio-
nary D, which is a concatenation of the speech dictionary

Ds and the noise dictionary Dn, to sparsely represent the
structured component of the mixture signal, and exploit the
rank deficient matrix L to capture the low-rank component
among the noisy speech segments. Thus, the noisy speech
magnitude spectral matrix X can be modeled as

X = D2+ L, (27)

where D2 refers to the structured component and L repre-
sents the low-rank component.

The estimate of the sparse coefficient matrix 2 and the
low-rankmatrixL can be formulated in terms of the following
optimization problem,

min
2,L

∥∥X − D2− L∥∥2F + τ4∥∥2∥∥1
s.t. rank(L) ≤ r (28)

where τ4 is a regulation factor, allowing a trade-off between
the sparsity level of 2 and the approximation error of
the noisy speech magnitude spectra. This problem can be
addressed through alternating iterations between the esti-
mation of the low-rank matrix L and the sparse coefficient
matrix2, as per the following subproblems,

Lt = argmin
rank(L)≤r

∥∥X − D2t−1
− L

∥∥2
F , (29)

2t
= argmin

2

∥∥X − D2− Lt∥∥2F + τ4∥∥2∥∥1. (30)

Within this iterative process in the enhancement stage,
the codebookC constructed in the learning stage is utilized as
a reference to refine the low-rank matrix estimation. Specifi-
cally, the optimization problem in (29) can be solved through
SVD of the residual matrix Rt = X − D2t−1, i.e.,

Rt = X − D2t−1
= U t

R3
t
RV

t
R
T
. (31)

where U t
R and V t

R are two unitary matrices and 3t
R is a

rectangular diagonal matrix, containing the singular values
of Rt on its principal diagonal. The solution to (29) can then
be expressed as

Lt =
r∑
i=1

λtR,iU
t
R,iV

t
R,i

T (32)

where λtR,i (i = 1, 2, · · · , r) are the r largest singular values
of Rt and U t

R,i and V t
R,i are, respectively, the i

th column
vectors in the matrix U t

R and V
t
R. We then refine the columns

of the matrix Lt according to the codebook C to obtain an
improved matrix estimate L̃t , which can be described as

L̃t = codebooktuning(Lt ,C, k). (33)

In detail, for each column vector of L, we find the k nearest
column vectors in the codebook C, average these k vectors,
and use this average to replace the corresponding column
in Lt . Subsequently, we replace the matrix Lt in (30) with
the matrix L̃t and the optimization problem in (30) can then
be solved with the LARC algorithm, i.e.,

2t
= LARC(X − L̃t ,D). (34)

VOLUME 7, 2019 4941



Y. Ji et al.: Speech Enhancement Based on Dictionary Learning and Low-Rank Matrix Decomposition

Algorithm 3 Proposed Low-Rank Matrix and Sparse Com-
ponent Decomposition Algorithm
Input: Composite dictionary D, noisy speech magnitude
spectral matrix X , codebook C, parameter k , rank r ;
Initialization: Set20

= 0.
Iteration: For t = 1, 2 · · · , tstop :
• Low-Rank Matrix Approximation Stage:

1) Rt = X − D2t−1;
2) Apply SVD to Rt : Rt = U t

R3
t
RV

t
R
T
;

3) Lt =
∑r

i=1 λ
t
R,iU

t
R,iV

t
R,i

T

4) Codebook tuning:
L̃t = codebooktuning(Lt ,C, k);

• Sparse Coding Stage:2t
= LARC(X − L̃t ,D).

Output: 2̂ = 2t , L̂ = L̃t .

The pseudo-code of the proposed algorithm for jointly esti-
mating the sparse coefficient matrix 2 and the low-rank
matrix L in the enhancement stage is presented in Algo-
rithm 3. As explained, the mapping from Lt to L̃t in step 4 of
this algorithm aims to reduce the mismatch in noise informa-
tion between the learning stage and the enhancement stage.

With the estimated sparse coefficient matrix 2̂ and low-
rank matrix L̂ from Algorithm 3, the submatrices 2̂s and 2̂n
are extracted via block row partitioning of matrix 2̂ and the
speech magnitude spectral matrix is estimated as

Ŝ = Ds2̂s. (35)

Moreover, we can obtain the noise magnitude spectral matrix
as

N̂ = Dn2̂n + L̂. (36)

Wiener filtering is then applied to improve the estimation of
speech magnitude spectra as

S̄i,j =
Ŝ2i,j

Ŝ2i,j + N̂
2
i,j

Xi,j (37)

where S̄i,j represents the entry in the ith row and jth column of
the enhanced speech magnitude spectral matrix S̄ while Ŝi,j,
N̂i,j and Xi,j are corresponding entries of matrices Ŝ, N̂ andX .
Finally, we apply IFT to the estimated speech spectra, namely
the estimated speech magnitude spectra and mixture phases,
to produce the target speech signal in the time domain.

IV. EXPERIMENTAL RESULTS
In this section, we evaluate our proposed speech enhancement
method based on the Grid corpus [16] and NOISEX-92
corpus [17]. From the training stage, we randomly
select 5 female and 5 male speakers from the Gird corpus
and for each speaker, we randomly select 70 utterances. For
the enhancement stage, we select another 4 female and 4
male speakers from the same corpus, and for each speaker,
we select 5 utterances to form the test dataset. We emphasize

that in all experiments described below, the speakers in the
enhancement stage are different from those in the learning
stage, i.e. speaker independent application [6]. Six types of
noise are selected from the NOISEX-92 corpus, including
babble noise (bab), factory noise (fct), f16 cockpit noise
(f16), buccaneer cockpit noise (buc), hfchannel noise (hf) and
white noise (wht). All signals are downsampled to 8KHz and
segmented with a Hanning window, with a length of 512 and
an overlap of 50%. The dictionary size is three times the
frame length. The various parameters involved in the opti-
mization techniques of our method (i.e. Algorithm 1, 2 and 3)
are set as listed in Table 1. All the experiments were per-
formed with MATLABR2018a (64bit) in a desktop with an
Intel i7-8700 CPU (3.2GHz) and 16GB RAM.

TABLE 1. Parameters configuration in the proposed speech enhancement
method.

The segmental SNR (SSNR) [18] and perceptual evalu-
ation of speech quality (PESQ) [19] are employed in this
section to evaluate the resynthesized speech quality, while the
short-time objective intelligibility (STOI) [20] score is used
for speech intelligibility evaluation. In addition, we employ a
composite measure denoted as OVL in [19] to rate the overall
speech quality. OVL is a linear combination of three objective
measures including PESQ, log likelihood ratio (LLR) [21]
and weighted-slope spectral (WSS) distance [22]. Moreover,
we compare all the experimental results of our proposed
method with five state-of-the-art speech enhancement meth-
ods involving GDL [6], CJSR [9], RPCA [11], LSLD [13]
and CLSMD [10].

As the low-frequency dominance in magnitude spectra
of male speakers is more conspicuous than that of female
speakers, frequency components of male speakers are sparser
than that of the opposite gender. Thus, we conduct simulation
experiments and present corresponding performance evalua-
tion results respectively for male and female speakers.

A. SPEECH ENHANCEMENT PERFORMANCE
EVALUATION FOR MALE SPEAKERS
In this part, we compare the performance of our proposed
method in improving the speech quality and intelligibility for
male speakers with 5 different reference methods. Table 2
presents average PESQ scores of our proposed method and
all the reference methods for the 6 types of noise at 3 different
levels of SNR, i.e., 0dB, 5dB and 10dB. Our proposedmethod
outperforms all the reference methods with regard to the
PESQ scores of the processed male speech in the different
noise scenarios. Moreover, it can achieve a higher gain in
PESQ scores under low-SNR noise conditions. For example,
the average improvement in PESQ score of the processed
male speech with our proposed method across the six types
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TABLE 2. PESQ scores for male speakers of six different speech
enhancement methods for six different types of noise at three different
levels of SNRs.

of noise at 0dB SNR is 0.3, 0.36, 0.64, 0.67 and 0.57, respec-
tively, over GDL, CJSR, CLSMD, RPCA and LSLD.

Fig. 2 depicts the average SSNR results of the processed
male speech from our proposedmethod and the five reference
methods for the six types of noise at SNR=0dB (a), 5dB (b)
and 10dB (c). Our proposed method can achieve higher gain
in SSNR than the reference methods irrespective of the noise
type and the SNR level, except when the clean speech was
corrupted by the f16 noise at the 0dB SNR. For example,
in the case of hfchannel noise at 0dB SNR, the average SSNR
gain of the processed male speech with our proposed method
is 3.4 dB, 2.96dB, 7.41dB, 9.75dB and 6.14dB, respectively,
over GDL, CJSR, CLSMD, RPCA and LSLD.

Fig. 3 presents the average OVL results of the processed
speech from all the methods used in this paper. The results
in all the subplots reveal that the enhanced speech from our
proposed method exhibits better overall quality than those
from the benchmark approaches. For instance, in the case
of the factory noise at 5dB SNR, the OVL of the enhanced
speech obtained from our proposedmethod is 3.16, compared
to 2.78, 2.99, 2.17, 2.77 and 2.35, respectively, for GDL,
CJSR, CLSMD, RPCA and LSLD.

In Table 3, the average STOI scores of the processed male
speech from our proposed method are higher than those of the
reference methods. For example, when the SNR is 10dB, our
proposed method can achieve an average gain in the STOI
score across the six different types of noise as 0.02, 0.06,
0.14, 0.02 and 0.05, respectively, over GDL, CJSR, CLSMD,
RPCA and LSLD. It is worth mentioning that compared with

FIGURE 2. Average SSNR results of male speech with six different
methods for six different types of noise. (a) SNR=0dB, (b) SNR=5dB,
(c) SNR=10dB.

GDL, the CJSR method can further improve the speech qual-
ity but the intelligibility of the processed speech is reduced.
However, our proposed method can improve both the speech
quality and intelligibility.

B. SPEECH ENHANCEMENT PERFORMANCE
EVALUATION FOR FEMALE SPEAKERS
Here, we present the corresponding performance evaluation
results of the processed female speech utterances based on
the above four measures. As illustrated in Table 4, our pro-
posed method still achieves the highest average PESQ scores
across the six different types of noise irrespective of the SNR
levels. The average PESQ score for the proposed method at
0dB is 2.16, an increase of 0.34, 0.22, 0.71, 0.76 and 0.51,
respectively, over GDL, CJSR, CLSMD, RPCA and LSLD.
Fig. 4 shows the average SSNR results of the processed
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FIGURE 3. Average OVL results of the processed male speech from six
different speech enhancement methods for six different types of noise.
(a) SNR=0dB, (b) SNR=5dB, (c) SNR=10dB.

female speech from the proposed and reference methods for
the six different types of noise and three SNR levels. The
proposed method can achieve higher SSNRs than all the ref-
erence methods in the babble, factory, buccaneer, hfchannel
and white noise environments. However, when female speech
is corrupted by the f16 noise, the SSNR for our proposed
method is lower than that for the CJSR method. Fig. 5
shows that our proposed method can achieve better overall
speech quality for female speakers than the referencemethods
under different noise environments. Moreover, as illustrated
in Table 5, the average STOI scores of the enhanced female
speech from our proposed method are higher than those from

TABLE 3. STOI results of the processed male speech from six different
speech enhancement methods for six different types of noise at three
different levels of SNRs.

TABLE 4. PESQ scores for female speakers of six different speech
enhancement methods for six different types of noise at three different
levels of SNRs.

the reference methods. At 0dB SNR, the average gain of our
proposed method across the six noise types in STOI scores
is 0.01, 0.03, 0.08, 0.04 and 0.03, respectively, over GDL,
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FIGURE 4. Average SSNR results of the processed female speech from six
different methods for six different types of noise. (a) SNR=0dB,
(b) SNR=5dB, (c) SNR=10dB.

CJSR, CLSMD, RPCA and LSLD. In general, our proposed
method can achieve better speech quality and intelligibility
for female speakers than the reference methods, especially
under low-SNR noise conditions.

C. COMPUTATIONAL EFFICIENCY
In this part, we investigate the computational complexity
of the speech enhancement stage of the proposed method.
The dominant operations of Algorithm 3 are the sparse
coding algorithm LARC and the SVD. According to [6],
the computational cost of the LARC algorithm is O(P2 M ).

FIGURE 5. Average OVL results of the processed female speech from six
different methods for six different types of noise. (a) SNR=0dB,
(b) SNR=5dB, (c) SNR=10dB.

Provided that the number of the frames which are pro-
cessed simultaneously in the enhancement stage is denoted
as F , the full SVD is performed at O(MF2) flops. How-
ever, in consideration of the r-rank approximation of the
matrix Lt , we can just conduct the partial SVD with the
overall cost O(rMF). Thus, the total computational cost of
Algorithm 3 is O(P2 M + rMF). As r � F � P,
it is about O(P2 M ). And the theoretical computational
cost is O(P2M ) for GDL, O(P2M ) for CJSR, O(rMF) for
CLSMD, O(P2F) for RPCA and O(P3) for LSLD, respec-
tively. The average running time is 3.66s for the proposed
method, 3.05s for the GDL, 3.80s for the CJSR, 0.14s for
the CLSMD, 5.9s for the RPCA and 12.88s for the LSLD,
respectively, which agrees with the theoretical computational
complexity.
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TABLE 5. STOI results of the processed female speech from six different
speech enhancement methods for six different types of noise at three
different levels of SNRs.

V. CONCLUSION
In contrast to the existing sparse-model based speech
enhancement methods, a new monaural speech enhancement
framework has been proposed in this paper by introducing
a new noise model to reduce the mutual coherence between
speech and the noise dictionary and constructing a codebook
to provide auxiliary information for noise estimation. The
new noise model is utilized during both the learning and
enhancement stages to decompose the noise into a sum of
a low-rank component and a sparsely structured component.
In the learning stage, the unsupervised Algorithm 1 is pro-
posed to train a new noise dictionary with the extracted
sparse component of the noise magnitude spectral matrix,
which presents low mutual coherence to the speech. Then,
the supervised Algorithm 2 is developed to carry out the
low-rank matrix decomposition using all the training datasets
consisting of clean speech, noise and noisy speech. The
K-means clustering algorithm has subsequently been applied
to this low-rank matrix to construct a reference codebook.
In the enhancement stage, Algorithm 3 is proposed to esti-
mate the magnitude spectra of the clean speech through
decomposing the noisy speechmagnitude spectral matrix into
a structured component, which is sparsely represented with
a composite dictionary, and a low-rank component which is
refined by the reference codebook. Experimental results show
that our proposed method outperforms the five reference
methods in terms of PESQ, SSNR, OVL and STOI scores.
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