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Abstract—We propose a new family of Bayesian estimators for
speech enhancement where the cost function includes both a power
law and a weighting factor. The parameters of the cost function,
and therefore of the corresponding estimator gain, are chosen
based on characteristics of the human auditory system, namely,
the compressive nonlinearities of the cochlea, the perceived loud-
ness and the ear’s masking properties. It is found that choosing
the parameters in this way results in a decrease of the estimator
gain at high frequencies. This frequency dependence of the gain
improves the noise reduction while limiting the speech distortion.
Experimental results show that the new estimators achieve better
enhancement performance than existing Bayesian estimators such
as those based on the minimum mean-square error (MMSE) of the
short-time spectral amplitude (STSA), the MMSE of the logarithm
of the STSA (LSA) or the weighted euclidien (WE) error, both in
terms of objective and subjective measures.

Index Terms—Bayesian estimators, human auditory system,
short-time spectral amplitude, speech enhancement.

I. INTRODUCTION

I N SPEECH enhancement, the general objective is to re-
move a certain amount of noise from a noisy speech signal

while keeping the speech component as undistorted as possible.
In Bayesian short-time spectral amplitude (STSA) estimation
for speech enhancement, an estimate of the clean speech is de-
rived by minimizing the expectation of a cost function that pe-
nalizes errors in the clean speech STSA estimate. Such estima-
tors have been found in the past to perform better than most
other methods including the spectral subtraction and subspace
approaches [3].

A well-known Bayesian STSA estimator, the minimum mean
square error (MMSE) of the STSA (i.e., MMSE STSA), is ob-
tained when the chosen cost function is the squared error be-
tween the estimated and actual clean speech STSA [4]. Based
on the assumption that the human auditory system performs a
logarithmic compression of the STSA, and therefore that the
logarithm of the STSA is more perceptually relevant than the
STSA [5], the MMSE of the logarithm of the STSA (MMSE
log-STSA or LSA) was proposed in [6]. In fact, one possible
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avenue for choosing an appropriate cost function is to consider
the human hearing mechanism. In [7] and [8], masking thresh-
olds were introduced in the Bayesian estimator’s cost function
to make it more perceptually significant while in [9], several
perceptually relevant distortion metrics were considered as cost
functions.

One of the cost functions which was found to yield the best
results in [9] was based on the perceptually weighted error crite-
rion used in speech coding. In that approach, the error spectrum
is weighted by a filter which is the inverse of the original speech
spectrum. This was adapted in [9] by proposing a generaliza-
tion of the MMSE STSA cost function where the error between
the estimated and actual clean speech STSA is weighted by the
STSA of the clean speech raised to an exponent ; the resulting
estimator is termed Weighted Euclidien (WE).

Another generalization of the MMSE STSA cost function
was proposed by You et al. [10] in the -Order STSA MMSE
estimator; which we will denote as -SA for convenience. The

-SA estimator applies a power law (i.e., an exponent ) to the
estimated and actual clean speech STSA in the squared error of
the cost function. While it was not interpreted as such in [10],
this transformation can be seen as performing a nonlinear com-
pression on the STSA. The dynamic range compression per-
formed by the ear is a known characteristic of human hearing
and, in fact, power laws have been used in the past to model this
compression [11].

In this paper, to take advantage of both weighting and
compression in the cost function, we propose a new family
of Bayesian STSA estimators including both a weighting
factor and a power law, which we will call the Weighted -SA
estimators (W -SA). Moreover, we propose appropriate fre-
quency-dependent values for the parameters entering in the
W -SA cost function, i.e., and (the latter is related to
the WE estimator parameter ), based on characteristics of
the human auditory system among which are the compressive
nonlinearities of the cochlea, the perceived loudness, and the
ear’s masking properties.

It is found that choosing and according to the proposed
approaches results in a decrease of the estimator’s gain at high
frequencies. This frequency dependence of the gain improves
the noise reduction while limiting the speech distortion. More-
over, the new W -SA estimator, with the proposed parameter
values, shows improvements over the other Bayesian STSA es-
timators compared (i.e., MMSE STSA [4], LSA [6], and WE
[9]) both in terms of objective and subjective measures.

The paper is organized as follows. Section II reviews ex-
isting Bayesian estimators while Section III derives the W -SA
family of estimators. In Sections IV-A and IV-B, the chosen
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TABLE I
BAYESIAN STSA COST FUNCTIONS AND RESULTING ESTIMATOR GAINS � WITH EQUIVALENT W �-SA PARAMETER VALUES (� AND �).

values for and are discussed. Section V presents objective
and subjective experimental results, while a conclusion follows
in Section VI.

II. BAYESIAN STSA ESTIMATORS

Let the observed noisy speech of a particular frame be

(1)

where is the clean speech, is the additive noise, and
is the length of the observation interval. Let , , and

denote the complex spectral components of the noisy
speech, clean speech, and noise, respectively, of the th frame.
To simplify the notation, we will usually omit the subscript .

In Bayesian STSA estimation for speech enhancement, the
goal is to obtain the estimator of , i.e., the STSA
of , which minimizes the expectation of a given cost function

(2)

where denotes statistical expectation. This estimator is then
combined with the phase of the noisy speech to yield the
estimator of the complex spectrum of the clean speech

(3)

The time-domain estimate is obtained by performing an
inverse Fourier transform of for each frame which are then
combined using the overlap–add method.

In the MMSE STSA estimator [4]

(4)

while in the MMSE log-STSA (LSA) estimator [6],

(5)

In the derivation of these two estimators, the complex spectrums
(i.e., the Fourier expansion coefficients) of the clean speech and
noise were considered to be independent, identically distributed
(i.i.d.) Gaussian random variables with zero mean and variances

and , respectively.
Recently, the MMSE STSA estimator was generalized [10]

by modifying the cost function (4) as

(6)

where the exponent is a real parameter whose purpose is
to control the associated estimator gain function and, conse-
quently, the tradeoff between speech distortion and noise reduc-
tion. Only the case was considered in [10] while the
case was considered in [12]. We will refer to this
estimator as the -SA estimator. Interestingly, it was observed
through gain curves in [10] that when , the -SA esti-
mator tends to the LSA estimator (we provide a formal proof in
the Appendix).

In [9], the following weighted form of the MMSE STSA cost
function was proposed:

(7)

where is a real parameter with . This estimator is
termed the WE estimator and takes advantage of the masking
properties of the ear. In fact, for , it forces a better clean
speech estimation in regions where the STSA is smaller, and
therefore less likely to mask noise remaining in the clean speech
estimate. Similar to in the -SA estimator, was also found
to control the tradeoff between speech distortion and noise re-
duction when the corresponding estimator’s gain is smaller than
1. In particular, a value of closer to was found to produce
more noise reduction but also introduced greater speech distor-
tions.

Using the statistical model in [4], gains can be obtained
from the previous cost functions such that

(8)

where is the corresponding optimal STSA estimator (2).
Table I presents several Bayesian cost functions along with their
associated estimator’s gain (the values of and in Table I will
be discussed in the next section). The gain parameters are

(9)

where is the gamma function and is the con-
fluent hypergeometric function [13]. Moreover, can be in-
terpreted as the instantaneous signal-to-noise ratio (SNR) while

acts as a long-term estimator of the SNR.

III. WEIGHTED -SA ESTIMATOR

In this paper, we seek to combine the -SA and WE cost
functions into a single cost function to take advantage of the
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Fig. 1. W �-SA estimator gain ��� ����� �� versus instantaneous SNR �� �
�� for several � and � values �� 	 � dB�.

interpretations that can be given to the parameters and as
will be discussed in the next section. The proposed cost function
is therefore

(10)

where we used for convenience and and are real
parameters whose ranges are discussed below.

By using (10) in (2), we obtain the corresponding Bayesian
estimator

(11)

Using the Gaussian statistical model in [4] and [6] (i.e., clean
speech and noise spectrums are i.i.d. Gaussian random variables
with zero mean), we know (see [6] and in [9, App. A]) that

(12)

where and

Using (12) in (11) with the appropriate values of the param-
eter (i.e., for the numerator and for
the denominator), we can show that

where

(13)
and , . We will denote this new estimator as
the Weighted -SA estimator (W -SA).

The W -SA estimator gain depends on the parameters
of the cost function (i.e., and ) as well as on and .

Fig. 1 presents gain curves as a function of the instantaneous
SNR for a fixed dB and several and values.
As can be observed, the estimator’s gain decreases when in-
creases and increases when increases. It is worth noting that,
below the ideal value of , a decrease in the gain will re-
sult in more noise reduction but will invariably introduce more
speech distortion. Also, since the proposed estimator general-
izes both the -SA and WE estimators, the gains of the later can
be obtained by setting for -SA and ,
for WE (see Table I).

It was shown in [9] that the WE estimator tends to a Wiener
estimator as the instantaneous SNR tends to infinity. In fact, the
more general W -SA estimator also tends to a Wiener filter:
we know from [14, (13.1.5)] that as , the confluent
hypergeometric function , where is func-
tionally related to through (9), can be written as

(14)

Using (14) in (13) with the appropriate values of the parameter
, we have

(15)

which is a Wiener filter gain. Interestingly, since a Wiener filter
results from the MMSE estimator of the complex spectral com-
ponents [15], the use of the W -SA cost function is therefore
equivalent to for high instantaneous
SNR.

IV. CHOOSING APPROPRIATE AND VALUES

The parameter values of speech enhancement algorithms
have been chosen in the past based on frame SNR such that
a higher gain is obtained for higher SNR and vice versa [10],
[16]. This had the effect of removing less noise at higher SNR
to prevent speech distortion and more noise at low SNR.

Rather than considering the frame’s SNR, we choose to con-
sider the human auditory system to select appropriate values for

and ; in which case and will be fixed for all frames.
In the first part of this section, we will present two different
choices for according to, first, the perceived loudness of sound
and, second, the compressive nonlinearities of the cochlea. In
the second part of this section, we will choose values of con-
sidering the masking properties of the human auditory system.
These different values will be compared through experimental
results in Section V to assess their relevance in speech enhance-
ment.

A. Choosing Appropriate Values

In the LSA estimator [6], the logarithm of the spectral ampli-
tude was considered. This was based on the fact that the MMSE
of the logarithm of the spectral amplitude was thought to be
more perceptually relevant than the spectral amplitude itself. It
is known that loudness is more perceptually relevant than the
sound’s intensity. Therefore, a cost function which would con-
sider the difference in terms of the perceived loudness would
seem preferable to cost functions which consider the difference
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in terms of the sound intensity. Power laws have been used in
the past to model the nonlinear relation between the intensity of
sound and its perceived loudness [17], [18]. An exponent of 1/3
(i.e., cubic root) has been used in [18] to approximate the non-
linear transformation between intensity and perceived loudness.
An appropriate value for would therefore be . This
value will be further assessed experimentally in Section V.

An important factor that plays a role in the perception of loud-
ness is the dynamic range compression performed by the ear
[19]. This dynamic range compression is thought to be due to
many factors among which are the cochlea’s compressive non-
linearities. Compression rates of 0.2 dB/dB were measured at
the base of the mammalian cochlea (i.e., for high frequencies)
for intensities between 40 and 90 dB sound pressure level (SPL)
[20] (conversational speech is at 60 dB SPL). These compres-
sion rates can be easily incorporated in the proposed Bayesian
cost function (10). In fact, can be directly interpreted as the
compression rate, in dB/dB, of the input spectral amplitudes and
thus set to corresponding physiologically meaningful values.
Therefore, instead of motivating the value of strictly in terms
of loudness perception, we can also look at the physiology of the
cochlea, which can explain to some extent the loudness percep-
tion of the human auditory system, and propose other relevant
values for .

The cochlea’s compressive nonlinearities are well docu-
mented and accepted at high frequencies; however, there is no
consensus on the degree of nonlinearity at lower frequencies
(i.e., at the apex of the cochlea) [19], [20]. There would seem
to be less compression at lower frequencies than at higher
frequencies. In fact, some research even fails to show any com-
pression (i.e., compression rate of 1 dB/dB) at low frequencies
or even show an expansion (i.e., compression rate dB/dB)
[20]. Here, we will assume no compressive nonlinearity at
the low-frequency limit. Since the compression rates will be
different at low and high frequencies, the values of will
therefore be frequency dependent, i.e., .

To propose adequate values for the ’s, we need to define the
cochlea’s rate of compression for every frequency . Since for
low frequency we consider the absence of compressive nonlin-
earity, we will choose at the low-frequency limit as .
As indicated previously, the compressive nonlinearity at high
frequencies is thought to have a compression rate of approxi-
mately 0.2 dB/dB. For high frequencies, it therefore seems plau-
sible to set the high-frequency limit of the value as

.
Physiological experiments on the cochlear rate of compres-

sion at intermediate frequencies (i.e., between the apex and the
base of the cochlea) are extremely scarce [19]. Therefore, we
propose to interpolate for intermediate frequencies based
on the following approach. We consider the fact that each fre-
quency corresponds to a position on the basilar membrane fol-
lowing the so-called tonotopic mapping [20]. One such tono-
topic mapping, proposed in [21], is given by

(16)

where is the position on the basilar membrane in millimeters,
mm , Hz, are parameters set as

per [21], and is the frequency in Hz corresponding to spec-

Fig. 2. � and � versus frequency [Hz].

tral component , i.e., , where is the sampling
frequency set to 16 kHz in this study.

We will therefore consider the compression rate to vary
linearly with respect to the position on the basilar mem-
brane, corresponding to frequency as given by the tonotopic
mapping. In fact, the compressive nonlinearity is thought to be
caused by the active process of the outer hair cells, and it is
known that the hair cells follow a tonotopic organization where
they are optimally sensitive to a particular frequency according
to their position on the basilar membrane [22]. The complete set
of values are thus derived by linearly interpolating between

and according to

(17)

Fig. 2 represents the different values of as a function of the
frequency.

In the first part of this section, we proposed the use of an ex-
ponent value as a simple model for approximating
the nonlinear transformation between intensity and perceived
loudness. It is interesting to note that more elaborate loudness
models lead to a similar pattern in compression as the one de-
scribed in the second part of this section. In fact, in [23], an
exponent of 0.2 is used at high frequencies to preform compres-
sion while it is increased for lower frequencies.

B. Choosing Appropriate Values

The WE estimator [9] takes advantage of the masking prop-
erties of the ear. In fact, one of the motivations for deriving the
WE estimator was to favor a more accurate estimation of smaller
STSA since they are less likely to mask noise remaining in the
clean speech estimate. This was done by choosing a fixed value
of that increased the weight of smaller STSA in the cost func-
tion (e.g., ).

Since most of the speech energy is located at lower fre-
quencies [24], higher frequencies should contain mainly small
STSA. Therefore, it would be relevant to further increase the
weights of the smaller STSA in the cost function for higher
frequencies. This can be done by increasing for higher fre-
quencies (or equivalently decreasing since ). We
therefore propose, instead of using a fix value of as in [9],
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to modify as a function of frequency, i.e., , increasing its
value for higher frequencies.

To do so, we need to choose appropriately the values of
for each frequency. In [9], the value of (corresponding
to ) has been suggested as a good compromise be-
tween the desired noise reduction performed by the estimator
and the speech distortion introduced. This value can also be
regarded as being a good compromise between increasing the
weight of smaller STSA while keeping an appropriate estima-
tion error for larger STSA. Since the main part of the speech
energy, which will contain most of the larger STSA, is approxi-
mately located below 2000 Hz [24] (which also includes most of
the first two formants [25]), we will choose the value of
up to 2000 Hz. For higher frequencies, we want to further in-
crease the weights of smaller STSA. Since, on average, the total
speech energy decreases as frequency increases, we therefore
propose to linearly increase the value of as a function of the
frequency. The W -SA estimator restricts to , based
on experimentations, we choose as the high frequency
limit. Choosing higher values (e.g., ) did not intro-
duce significant noise reduction while unnecessarily distorting
the speech. Therefore will be given by

kHz
else (18)

where and (see Fig. 2).
As can be seen when observing the gain curves in Fig. 1 for

the chosen values of and in Fig. 2, both approaches sug-
gest a decrease in the gain for high frequencies. Further justifi-
cations for such processing will be given in Section V-B.

V. EXPERIMENTAL RESULTS

In this section, we will study the W -SA estimator with the
proposed and values and compare it to the MMSE STSA,
LSA, and WE Bayesian estimators using both objective and sub-
jective measures. The value of in the WE estimator will be set
to as proposed in [9]. There is no constant value of

proposed in [10] against which to compare the proposed al-
gorithms. However, it is important to note that the case
corresponds to the -SA estimator.

Three types of noises from the Noisex database [26] are used
in the experiments: a so-called white noise and two colored
noises, that is a pink noise and an aircraft cockpit noise (buc-
caneer-1). Other noise types were considered during the exper-
imentation and lead to the same conclusions as the ones drawn
next. The normalized average spectrum magnitudes of the dif-
ferent noises used here are shown in Fig. 3. Noisy speech sig-
nals were created according to ITU-T standard P.56 [27]. The
number of noisy sentences used, respectively, in the objective
and subjective evaluations will be specified in the corresponding
subsections below. All speech signals were sampled at 16 kHz
and a raised-cosine window [28] was used (512 samples, 32 ms)
in the STSA computation. All frames were zero-padded from
512 samples to 1024 samples to limit temporal aliasing [29], and
the corresponding signals were phase shifted by 256 samples
to avoid discontinuities between blocks as similarly proposed
in [30]. A 75% overlap was used in the overlap-add synthesis

Fig. 3. Normalized average noise spectrum magnitudes [dB] versus frequency
[Hz].

method as in [4]. All algorithms used the decision-directed ap-
proach for the estimation of [4], and a voice activity detector
proposed in [31] was used to evaluate the noise spectral ampli-
tude variance. None of the estimators considered the uncertainty
of speech signal presence in the noisy observations.

A. Objective Results

Many objective measures are available to assess speech
enhancement algorithms. Some of them are more correlated
with the speech distortion introduced by the enhancement
while others are more correlated with the noise reduction. A
study of the correlation between the mean opinion score (MOS)
and some objective measures was presented in [32]. On the
one hand, it was shown that the segmental SNR SNR
measure is best correlated with background noise reduction and
poorly correlated with the speech distortion. On the other hand,
the log-likelihood-ratio measure (LLR) was found to be best
correlated with the speech distortion and poorly correlated with
the noise reduction. We will use both SNR and LLR to get a
more complete evaluation of the performance of the algorithms.
Moreover, we will also use the Perceptual Evaluation of Speech
Quality (PESQ) measure which, while it was not originally
intended to assess speech enhancement algorithms [33], has
been found to have a good correlation overall with MOS [32]
and was recently used in several speech enhancement studies
[10], [34], [35]. The PESQ attempts to predict MOS scores and
yields a result from 1 to 4.5, the higher score being the best
result.

The SNR measure can be expressed as [36]

SNR (19)

where and are the -dimensional vector comprising
of the clean and enhanced speech at frame , respectively, and

is the number of frames in the speech signal. As proposed in
[36], each frame SNR was thresholded by a -20-dB lower bound
and a 35-dB higher bound.

Authorized licensed use limited to: McGill University. Downloaded on June 3, 2009 at 11:45 from IEEE Xplore.  Restrictions apply.



PLOURDE AND CHAMPAGNE: AUDITORY-BASED SPECTRAL AMPLITUDE ESTIMATORS 1619

TABLE II
SNR FOR SEVERAL � AND � VALUES (WHITE NOISE, � dB)

TABLE III
SNR FOR SEVERAL � AND � VALUES (PINK NOISE, � dB)

TABLE IV
SNR FOR SEVERAL � AND � VALUES (COCKPIT NOISE, � dB)

The LLR measure can be expressed as [37]

(20)

where is the linear predictive coding (LPC) coefficient row
vector of the original clean speech signal, is the LPC coef-
ficient row vector of the enhanced speech signal, is the au-
tocorrelation matrix of the original clean speech signal, and
indicates the transpose operator. To remove unrealistically high
distortion levels, the mean of all frames is evaluated by ignoring
the frames with LLR greater than 5 [38] (this corresponded
typically to less than of the frames). A lower LLR score in-
dicates a better performance.

Tables II–IV present the SNR results for white, pink, and
cockpit noises, respectively, at an SNR of 0 dB. All SNR ,
LLR, and PESQ results are averages obtained from 60 Harvard
sentences (six males, six females, five sentences each) [39]. The
columns and lines of the tables are structured in somewhat de-
creasing and increasing order where and

.
As reported in [9] for the WE estimator and in [10] for the

-SA estimator, we can observe that the SNR generally in-
creases for a decreasing and an increasing . This result is
easily explained since for a decreasing and an increasing ,
the gain function of the estimator decreases (see Fig. 1)

TABLE V
LLR FOR SEVERAL � AND � VALUES (WHITE NOISE, � dB)

TABLE VI
LLR FOR SEVERAL � AND � VALUES (PINK NOISE, � dB)

TABLE VII
LLR FOR SEVERAL � AND � VALUES (COCKPIT NOISE, � dB)

which produces more noise reduction and, as we mentioned pre-
viously, the SNR is better correlated with noise reduction.
The best result is therefore obtained for the smallest (i.e.,

) and biggest (i.e., ).
We present LLR results in Tables V–VII for white, pink, and

cockpit noises, respectively, at an SNR of 0 dB. For the white
noise case, the best results were obtained for . For
the colored noises, the best results were obtained for ,

. Setting reduces greatly the noise at high
frequency since it decreases the gain, but it simultaneously in-
troduces some speech distortions, especially when combined
with smaller values. Those high-frequency speech distortions
were less perceptible in white noise which has a high-frequency
content. However, for the colored noises used here, which have
a small high-frequency content, the speech distortions became
more perceptible.

We next compare the PESQ (Perceptual Evaluation of
Speech Quality—ITU-T Recommendation P.862) [33] results
of the proposed estimator, with the MMSE STSA, LSA, and
WE estimators at noisy speech SNRs between

5 and 5 dB. Fig. 4 shows the PESQ improvements over the
noisy speech signal PESQ values for the given estimators and
SNR values. White noise [Fig. 4(a)], pink noise [Fig. 4(b)],
and aircraft cockpit noise [Fig. 4(c)] are presented. The noisy
speech PESQ values were 0.94 at 5 dB and 1.52 at 5 dB
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Fig. 4. PESQ improvement over noisy signal versus SNR. (a) White noise. (b) Pink noise. (c) Aircraft cockpit noise.

(evaluated as averages of all three noise types). For clarity
purposes, only the , case is plotted.

The case , was found to be better than the
MMSE STSA, LSA, and WE estimators. While the
results are not presented here, the cases , and

, where found to be better overall than WE
and LSA but worse than , whereas

the cases , , and , performed
better than LSA and WE at an SNR of 5 dB but
worse at higher SNRs. In fact, while the case ,
had the highest SNR score, it introduces significant speech
distortion (as identified by the LLR results) and shows a poor
PESQ value, in particular at higher SNRs. The best compromise
therefore seems to be with , .

While the results for male and female spoken utterances are
grouped together in the previous tables and figures, an analysis
was performed where the results were separated according to
the speaker’s gender. Results in terms of LLR where similar for
both male and female while SNR results from the sentences
spoken by males were approximately 1-dB inferior to the ones
spoken by females; however, the conclusions did not change

when comparing the different estimators in each gender group.
PESQ values were found to be slightly inferior for females when
compared to males for all estimators. Again, the same ordering
of the different estimators was obtained in each group. The only
exception was for the cockpit noise and male utterances where
the LSA estimator was found to be better than WE for all SNRs
and also better than W -SA ( , ) for an SNR of
5 dB.

B. Subjective Results

As a subjective measure, we used a test setup similar to
the MUlti Stimulus test with Hidden Reference and Anchor
(MUSHRA) (ITU-R Recommendation BS.1534-1) [40] method
as implemented in [41]. In MUSHRA, the subjects are provided
with the test utterances plus one reference and one hidden
anchor and are asked to rate the different signals on a scale
of 0 to 100, 100 being the best score. As the hidden anchor,
we used a signal having an SNR of 5 dB less than the noisy
signal to be enhanced. The listeners were allowed to listen to
each sentence several times and always had access to the clean
signal reference.
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Fig. 5. Comparative subjective results for white, pink, and cockpit noises
(0 dB).

A total of eight listeners (seven males, one female ages in
the mid 20s to low 30s with a background in either speech
processing or telecommunications) participated in the test of
which half where judged to be experienced listeners. A subset
of two sentences (one male speaker, one female speaker) were
chosen randomly from the sentences used previously for the
objective evaluation. The two sentences were corrupted by the
same three noise types as before and enhanced using several es-
timators, the same sentences were used for all subjects. Tests
were performed in an isolated acoustic room using Beyerdy-
namic DT880 headphones. The average duration of a test was
approximately 30 min per subject.

Fig. 5 presents the comparative subjective results for the
MMSE STSA, LSA, and WE estimators along with those of
the W -SA estimator with proposed values , ;

, , and , . As can be observed,
the sentences enhanced using the W -SA estimator were rated
higher than those enhanced by the other estimators for all noise
types. Two-tailed paired -tests [42] revealed the advantage
of the W -SA estimator with the proposed values ( ,

; , ; , ) over the WE
to be statistically significant for all three noise types

within a 95% confidence interval.
We observe that listeners in the previous experiment preferred

an enhanced speech having more high-frequency noise reduc-
tion than one having less high-frequency speech distortion. It
was observed in [43] that listeners seem to be more sensitive to
speech distortion than noise reduction when participating in a
subjective evaluation of enhanced speech. This conclusion was
based on experiments with sampled speech at 8 kHz, whereas
we used a 16-kHz sampling rate. Therefore, the conclusions of
[43] only applies to the lower frequency portion of the spectrum
considered in our work. Based on our experimental work with
16 kHz and the result in [43], it would seem that the high-fre-
quency speech distortion is less important in subjective evalua-
tions than the low-frequency speech distortion.

Additional subjective tests (not shown here), using a smaller
subset of the previous subjects, were also performed for an SNR
of 5 dB. The W -SA algorithms still received higher scores

than all the other algorithms. However, while a substantial ad-
vantage of the W -SA estimators was still found over LSA, the
difference between the W -SA estimators and the WE

estimator was found to be narrower than for the 0-dB case.
Moreover, an analysis where the results were grouped according
to the speaker’s gender was also performed for the subjective re-
sults. No differences were observed in the comparative results
except that the three W -SA estimators (i.e., , ;

, , and , ) were interchanged for
the cockpit noise and male spoken utterances.

C. Discussion

The human ear is more sensitive between 3 and 4 kHz, as can
be observed from an equal loudness curve [19], and will there-
fore perceive weaker sounds in that frequency band. Therefore,
it would seem advantageous to improve the estimation of those
weaker sounds in the frequency band between 3 and 4 kHz.
Additional experiments where conducted where we locally in-
creased the value of for those frequencies, therefore giving
more importance to weaker sounds. We compared this approach
with the approach using the proposed values. A slight im-
provement was observed in terms of PESQ for the white noise as
well as in terms of LLR for the colored noise cases; all SNR
values as well as the other PESQ and LLR values showed no sig-
nificant differences. Moreover, informal listening experiments
revealed marginal differences between the two approaches.

We chose the W -SA estimator parameters based on char-
acteristics of the human auditory system. It turn out that, both
the approaches using and produce a decrease in the gain

at high frequencies compared to lower frequencies (as can
be observed from the gains in Fig. 1 with the values of and

as in Fig. 2). This decrease in generates more noise re-
duction at high frequencies but has the simultaneous effect of
producing more speech distortions. The speech distortions are
however minimized at low frequencies, where the main speech
energy is located, by keeping high and low, therefore pro-
ducing a higher gain. The proposed and values will there-
fore be more advantageous when the noise has high-frequency
content, such as white noise, in which case more noise will be
removed while speech distortions will be less perceptible. This
explains why the proposed algorithms obtained the best perfor-
mance in white noise.

Moreover, the distortions of the high-frequency contents of
speech, such as fricatives, will be less perceptible in heavy noise
(i.e., low SNRs) but they could become more perceptible in re-
gions or sentences where the noise is weak. This could explain
why the estimators are more advantageous at smaller SNRs,
as observed. It is important to note, however, that the gain is
mostly decreased for low instantaneous SNRs. In fact, for high
instantaneous SNRs, all estimators tend toward the Wiener gain
therefore reducing the speech distortions. For low instantaneous
SNRs, the heavy noise will mask the speech signal; since these
cannot be restored, the estimator will apply a small gain which
will remove much of the noise.

VI. SUMMARY AND CONCLUSION

We proposed a new family of estimators for speech enhance-
ment, the W -SA, where the cost function included both a
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power law and a weighting factor. The corresponding esti-
mator’s gain parameters (i.e., and ) were chosen according
to characteristics of the human auditory system. It is found that
doing so suggests a decrease in the gain at high frequencies
which limits the speech distortions at low frequencies while
increasing the noise reduction at high frequencies. Improve-
ments over existing Bayesian estimators such as the MMSE
STSA, LSA, and WE estimators were reported, particularly for
noise having high-frequency content and at low SNRs, both in
terms of objective (SNR , LLR and PESQ) and subjective
measures. In particular, choosing and was
found to yield good overall results.

APPENDIX

In this appendix, we show that the W -SA estimator with
and (or -SA estimator with ) is equivalent

to the LSA estimator.
Proof: Setting in (13) we get the -SA estimator

gain, which is expressible as

Using 8.342.1 from [13], which states

where is Euler’s constant and is given in [13], we have

Therefore

where L’Hopital’s rule has been used.
Deriving term by term as in [6] and since

we have

where 8.214.1 from [13] was used in the second line and the last
line is the LSA gain from [6]
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