
third quarter 2016 	 1531-636X/16©2016IEEE	IEEE  circuits and systems magazine	 45

Feature

Recent Developments  
in Speech Enhancement 
in the Short-Time Fourier 
Transform Domain
Mahdi Parchami, Wei-Ping Zhu, Benoit Champagne, and Eric Plourde

Abstract
In this paper, we present an overview on the topic of noise reduc-
tion in the short-time Fourier transform (STFT) domain. First, we 
briefly review the conventional literature in the single- and multi-
channel cases separately. In the single-channel scenario, we focus 
on the spectral subtractive methods, Wiener filter based methods, 
speech amplitude estimators and estimators of the complex STFT 
coefficients. In the multi-channel scenario, we investigate in short a 
selection of key beamforming approaches as well as conventional 
post-filtering methods. Next, a detailed survey of the most recent 
advances in the STFT-based noise reduction methods is provided. 
This includes STSA estimators with super-Gaussian priors, noise 
power spectral density (PSD) estimation, estimation methods in the 
modulation domain, estimation of spectral phase and noise PSD 
matrix estimation for multi-channel applications. Finally, we sum-
marize the presented material and draw important conclusions on 

each of the investigated topics. 

I. Introduction

T he objective of speech enhancement is to im-
prove the intelligibility and/or overall perceptual 
quality of degraded speech signals using signal 

processing techniques. Basically, the recorded speech 
signal in a real-world application may be corrupted by 
various noise types, interferences, echoes and rever-
beration resulting from the acoustic environment and 
enclosure. These degradations can significantly reduce 
the intelligibility of the speech signal by human listen-
ers and also deteriorate the performance of speech cod-
ing and recognition systems [1], [2]. Hence, high perfor-
mance speech enhancement techniques are necessary 
for all speech communication systems.

Fig. 1 illustrates a general scenario of capturing an au-
dio signal where speech enhancement is required. As is 
observed, the captured signal can be generally corrupted 
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by environmental noise, speech-like interferences, speech 
echoes and acoustical reverberation. These corruptions 
can distort the clean speech quality as well as its intelligi-
bility, thus necessitating the implementation of a suitable 
speech enhancement algorithm on the corrupted speech. 
Enhancement of speech degraded by noise, or noise re-
duction, is the most important topic in speech enhance-
ment. In general, noise reduction for speech signals is a 
difficult task to accomplish for many reasons. First, the 
nature and characteristics of the corrupting disturbances 
in speech can change dramatically in different environ-
ments or from one application to the other. Second, the 
performance criteria under which the fidelity of speech 
enhancement algorithms is evaluated can be different 
depending on the application. As a common example, 
in the single-channel (i.e. one-microphone) case where 
the speech degradation is due to uncorrelated additive 
noise, noise reduction can be generally achieved at the 
expense of introducing speech distortion. In this case, 
even though noise reduction measures demonstrate 
quality improvement in the processed speech, distortion 
measures for the latter can be worse than those of the 
noisy speech. In fact, there exists a compromise between 
the amounts of noise reduction achieved by conventional 

speech enhancement algorithms and the speech distor-
tion introduced in the clean speech [3], [4].

The most important applications of noise reduction in-
clude mobile phones, voice over internet protocol (VoIP), 
teleconferencing systems, speech recognition, and hear-
ing aids. Most voice processing and communication sys-
tems used in noisy environments highly require speech 
restoration modules in order to function properly. For 
instance, in digital telephony applications, ambient noise 
prevents the speech codecs from estimating the required 
spectral parameters accurately. Therefore, the resulting 
coded speech after transmission sounds distorted and 
still contains corrupting noise. Hence, to improve the 
performance of speech codecs, a speech enhancement 
subsystem has to be employed as a front-end to reduce 
the noise energy. Moreover, in automatic speech recogni-
tion (ASR), regardless of the performance of the underly-
ing ASR system, the input speech quality hugely effects 
the speech recognition accuracy. Therefore, speech en-
hancement solutions play an important role in the overall 
performance of the ASR systems. Speech enhancement is 
also vital to hearing aid devices as these devices inher-
ently amplify the present noise in the received audio, and 
therefore, may pose further difficulty in understanding 
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Figure 1. Microphone array speech enhancement in a general application.
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voice to the hearing impaired [5], [6]. Thus, with the fast 
development of the aforementioned speech and audio 
systems, there will be a growing need for more efficient 
noise suppression algorithms in the future.

From a general point of view, the main noise reduction 
algorithms can be categorized into several fundamental 
classes including adaptive filtering methods, spectral 
subtractive algorithms, Wiener filtering and its varia-
tions, statistical model-based methods and subspace 
algorithms [7]. Whereas a performance comparison in 
terms of speech quality and intelligibility can be done 
amongst different categories of speech enhancement al-
gorithms, factors such as computational load, need for 
training data and restrictive assumptions about noise 
and speech environments have to be taken into account 
in order to select the proper noise reduction method for 
a given application. While the noisy speech signal is usu-
ally available in the form of a sequence of time domain 
samples, speech enhancement often benefits from an im-
plementation in a transform domain. The most important 
signal transformations in the field of speech processing 
include the discrete Fourier transform (DFT), discrete 
wavelet transform, discrete cosine transform (DCT) and 
Karhunen-Loeve transform (KLT) [7], [8]. Among the ex-
isting transform domain techniques for speech enhance-
ment in the literature, those based on DFT processing 
are usually favored in practical applications. This is due 
to several factors, such as lower computational complex-
ity through the use of the fast Fourier transform (FFT), 
ease of implementation, ability to provide a trade-off be-
tween noise reduction and speech distortion at different 
frequencies, natural resemblance to the auditory pro-
cesses taking place within human ear, and existence of 
efficient windowing techniques for the time-domain syn-
thesis of the modified speech [9]. For all these reasons, 
the DFT-based methods, also known as frequency domain 
methods, have received much interest in the research 
community for more than three decades [10]–[12].

In these methods, the noisy speech spectrum is modi-
fied and then transformed back to the time domain to 
obtain the enhanced speech signal. However, in many 
applications such as mobile communication systems, 
the maximum algorithmic delay and the computational 
complexity are strictly limited. Moreover, use of the DFT 
is appropriate only for stationary signals, i.e., those with 
constant statistics over time. Yet, speech is known to be 
a quasi-stationary signal, i.e, one with approximately con-
stant statistics over only short periods of time. For these 
reasons, in the frequency domain processing of speech 
signals, it is required to consider time segments of about 
10-40 ms during which the statistics of the speech signal 
do not change significantly. This is realized by segmen-
tation of the speech signal into short-time segments and 

subsequent processing of the Fourier coefficients of each 
segment individually. The processed coefficients across 
different time frames are inverse Fourier transformed 
and reassembled via overlap-add or overlap-save meth-
ods to produce the entire enhanced speech. This tech-
nique, referred to as short-time Fourier transform (STFT) 
processing, now serves as the basis to implement mainly 
all frequency domain methods of speech enhancement 
[9]. Besides being computationally efficient, this process-
ing structure can handle different frequencies indepen-
dently, which gives an appealing flexibility in exploiting 
the noise statistics and using our knowledge of speech 
perception to optimize the enhancement performance. 
As a result, most efforts in speech enhancement in the 
past have been devoted to this framework [7].

Assuming that the noise process is additive and 
that the noise and speech processes are (statistically) 
independent, many conventional methods in the STFT 
domain seek to estimate the speech DFT coefficients in 
an optimal sense. Due to the complex nature of speech 
DFT coefficients, however, they can be represented in 
either the real-imaginary or the amplitude-phase (polar) 
forms. In this regard, two broad types of methods can 
be recognized in the STFT domain: those attempting to 
separately estimate the real and imaginary components, 
and those aiming at the estimation of amplitude and/or 
phase of the clean speech DFT coefficients. Whereas the 
former are based on the assumption that the real and 
imaginary components of the DFT coefficients are inde-
pendent, the latter assumes the amplitude and phase 
are independent components. Still, under a complex 
Gaussian model for speech DFT coefficients, it can be 
proved that these two assumptions are equivalent [13].

Considering the polar representation of complex DFT 
coefficients of speech signals, both the phase and the 
amplitude components are generally unknown. Howev-
er, since the joint estimation of speech amplitude and 
phase can be mathematically challenging within a sta-
tistical optimization framework, a possible solution is 
to estimate each component separately and then com-
bine them to produce the complex speech coefficients. 
In this regard, the spectral amplitude has been found to 
be perceptually more relevant than the spectral phase 
in the speech enhancement literature. According to the 
various experiments in [14], [15], the use of accurate es-
timates of speech phase, as compared to the noisy phase 
(i.e., that of the noisy speech), does not considerably im-
prove the noise reduction performance. Furthermore, it 
was proved in [16] that the optimal estimate of speech 
DFT phase in the minimum mean square error (MMSE) 
sense is in fact the degraded noisy phase. For this rea-
son, the majority of the efforts on the development of 
STFT-based noise reduction algorithms have focused on 
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the estimation of the speech spectral amplitude, also 
known in this context as short-time spectral amplitude 
(STSA). The most well-known methods for the estima-
tion of speech spectral amplitude can be categorized 
into spectral subtraction [17], Wiener filtering [18] and 
statistical model-based methods [19]. The latter group of 
methods, also known as Bayesian STSA estimators, has 
actually been developed to overcome the disadvantage 
of the first two groups, which do not provide an optimal 
estimation of the STSA of the clean speech. In essence, 
Bayesian estimation of the speech STSA was first intro-
duced by Ephraim and Malah in their seminal paper [16]. 
Therein, an MMSE-optimal estimator of the STSA is for-
mulated and subsequently shown to achieve superior 
performance in enhancement when compared to other 
existing methods at this time. Following this ground-
breaking work, several improved STSA estimators were 
suggested later in this direction, e.g. [20]–[22].

Under general conditions, a finite duration (one-dimen-
sional) signal can be reconstructed (up to a scale factor) 
using only the phase of its DFT coefficients [23]. There-
fore, in the context of speech enhancement, it may seem 
possible to first estimate the spectral phase more accu-
rately and then attempt to reconstruct the signal from 
the phase information. But unfortunately, the accuracy of 
the reconstructed speech signal is extremely sensitive to 
the accuracy of the phase estimate, and such a technique 
for speech enhancement would require the ability to esti-
mate the spectral phase very accurately, which is not an 
easy task [24]. Despite this fact, in recent years, there has 
been growing interest in the investigation of the effect of 
phase estimation in speech quality enhancement [25] and 
a few methods for the restoration of the spectral phase 
and its combination with the STSA have been suggested, 
e.g. [26]–[28].

The remainder of this paper is organized as follows. A 
brief background on various STFT-based noise reduction 
methods, considering both single- and multi-channel ap-
proaches, is presented first in Section II. In the case of 
single-channel, the major methods include spectral sub-
traction, Wiener filtering, MMSE and maximum a poste-
riori (MAP) estimators of the speech STSA, as well as the 
estimators of complex DFT (i.e., STFT coefficients). In the 
case of multi-channel, a selection of key beamforming 
approaches as well as post-filtering methods, (i.e. single-
channel methods suitable to be applied on the output of 
a beamformer) are briefly discussed. Next, we briefly re-
view the conventional noise estimation methods, which 
are crucial to the performance of noise reduction. At the 
end of this section, a theoretical review on performance 
assessment methods and common evaluation measures 
in speech enhancement is given. More recent advances 
on noise reduction methods in the STFT domain are pre-

sented in Section III. This includes the development of 
new speech priors used in the STSA estimators, recent 
advances in the estimation of noise power spectral den-
sity (PSD), speech enhancement in the short-time modu-
lation domain, and the estimation of speech spectral 
phase. Furthermore, as one of the most important and 
challenging problems in the multi-channel case, recent 
methods for the estimation of the noise PSD matrix are 
also reviewed. Section IV includes a concise summary of 
this paper followed by important conclusions.

II. Background
In this section, we review in brief the conventional litera-
ture on single- and multi-channel methods developed for 
noise reduction in the STFT domain. This helps to state out 
the general problem, and to understand the motivations 
behind further developments in this area, as discussed 
in further details in Section III. Due to their difference in 
applications and processing strategies, we categorize and 
present the STFT domain methods based on the number 
of microphones (channels) used for the acquisition of 
noisy speech, i.e., single- and multi-channel.

A. Single-Channel Approaches
Despite their inherent performance limits and imposing 
distortion on the original speech signal, single-channel 
approaches are still an ongoing area of research in 
speech enhancement. For this reason, we present an 
overview of the conventional single-channel noise re-
duction methods in this section, which also provides a 
baseline for Section III. Assuming that the noise-corrupt-
ed speech, ( )tx , consists of the clean speech, ( )ts , and 
the additive noise, ( )to , we can write

	 ( ) ( ) ( )x t s t to= + 	 (1)

After sampling ( )tx , the STFT of the resulting discrete-
time signal, ( )x , , can be implemented by segmentation 
of ( )x ,  into overlapping frames, multiplying the frames 
by a proper analysis window function and then taking 
DFT of each frame, as the following [7]

	 ( , ) ( ) ( )X k l x lZ w e /
K

j k K

0

1
2, ,= +

,

,r

=

-
-/ 	 (2)

where ( )w ,  is the window function, K is the frame length 
in samples, Z is the frame shift in samples, and k and l 
respectively denote the frequency bin and time frame 
indices. Typically, a Hamming window function can be 
used for ( )w ,  and a frame length of 20-40 ms along with 
a frame overlap (i.e., the ratio Z/K) of 50% or 75% are 
employed to implement the STFT analysis [7]. Invoking 
the additive noise model in (1), we obtain the following 
equivalent expression in the STFT domain
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	 ( , ) ( , ) ( , )X k l S k l V k l= + 	 (3)

where ( , )kS ,  and ( , )kV ,  respectively denote the STFT 
coefficients of ( )ts  and ( )to . Assuming independence 
between the clean speech and noise, as well as indepen-
dence across different frequency bins and time frames, 
the goal of noise reduction is to provide an estimate of 
the STFT of clean speech, denoted as ( , )S k lt , which is as 
close as possible to the clean speech.

1) Spectral Subtractive Methods
Spectral subtraction is one of the first category of algo-
rithms proposed for noise reduction in the frequency do-
main [7]. It is based on the simple principle that, having 
an estimate of the noise spectrum, ( , )V k lt , an estimate 
of the clean speech spectrum, ( , )S k lt , can be attained 
by subtracting the noise estimate from the noisy speech 
spectrum, ( , )X k l . More specifically, assuming the simi-
larity between the phase of the noisy speech and that of 
the clean speech, it follows that [17]

	 ( , ) | ( , ) | | ( , ) |S k l X k l V k l e ( , )j k lX= - Ht t6 @ 	 (4)

where $  denotes the amplitude and ( , )k lXH  is the 
phase of ( , )X k l . Note that the effect of noise on the 
clean speech phase is assumed negligible in (4), where-
as in practice, availability of the clean speech phase or 
a better estimate of it to replace ( , )k lXH  can provide 
further quality improvements [29]. Due to the inaccu-
racy in the noise estimate, ( , )V k lt , the subtractive term, 

( , ) ( , )X k l V k l- t , can take on negative values and a 
half-wave rectification is conventionally used to miti-
gate this effect. This rectification causes a phenomenon 
known as musical noise, which can significantly degrade 
the speech quality up to a high degree [7]. This issue has 

been one of the main motives to develop more advanced 
spectral subtractive methods in the past, e.g., [30]–[32].

In practice, since the majority of noise estimation 
methods seek to estimate the noise spectral variance, 

( , )k lv
2v , defined as ( , )E V k l 2" , , spectral subtractive 

methods are often formulated in the power domain 
rather than in the amplitude domain. In this regard, an 
estimate of the clean speech amplitude, ( , )S k lt , can be 
obtained as

	 ( , ) ( , ) ( , )S k l X k l k lv
2v= -

2 2t t 	 (5)

where ( , )k lv
2vt  is an estimate of the noise spectral vari-

ance or the so-called PSD [7]. It is evident that the per-
formance of spectral subtractive methods is highly 
controlled by the precision in the estimation of the noise 
PSD, ( , )k lv

2v . Since the estimated speech amplitude can 
be written as a linear function of the noisy speech am-
plitude, it is often preferred to express spectrum esti-
mation techniques in terms of a gain function. In this 
sense, the gain function for the estimator in (5) can be 
written as

	 ( , )
( , )
( , )

( , )
( , )

G k l
X k l
S k l

X k l
k l

1 v
2

_
v

= - 2

t t
	 (6)

For a better understanding of the concept of spectral 
subtraction, a block diagram of this method in its basic 
form is shown in Fig. 2. It is observed that, within this 
framework, only the spectrum amplitude is enhanced 
and the spectral phase is left unchanged.

One of the most important advances in the area of 
spectral subtractive methods is the use of masking 
properties of the human auditory system firstly intro-
duced in [33]. The masking properties are essentially 
modelled by a noise masking threshold below which a 
human listener tolerates additive noise in the presence 

Figure 2. Block diagram of the basic spectral subtraction algorithm.
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of speech [34]. In the generalized spectral subtractive 
methods, e.g. [35]–[36], there exist parameters which 
control the trade-off between the amount of noise re-
duction, the speech distortion and the residual musical 
noise. In [33], a few schemes are proposed based on the 
noise masking threshold in order to adjust the subtrac-
tive parameters in a perceptual sense. Therein, through 
the study of speech spectrograms as well as subjective 
listening tests, it is proved that the resulting enhanced 
speech is more pleasant to a human listener than with-
out adaptive adjustment of the subtractive parameters.

The spectral subtraction algorithms are computation-
ally simple to implement and fast enough for real-time ap-
plications. Nevertheless, the subtractive rules are based 
on the incorrect assumption that the cross terms between 
the clean speech and the noise are zero. In other words, 
considering (5) and the fact that ( , )k lv

2vt  is used for 
( , )V k l 2 , the speech squared amplitude ( , )S k l 2  is not 

accurately equal to ( , ) ( , )X k l V k l-2 2, and the cross 
terms between the speech and noise have to be consid-
ered in the subtraction rule. In [37], a geometric approach 
(as opposed to the statistical approaches) to spectral sub-
traction is proposed that addresses this shortcoming of 
the spectral subtraction method. In that work, the phase 
difference between the clean speech and noise is exploit-
ed in order to obtain the spectral subtraction rule as a 
gain function. The resulting gain function depends on two 
key parameters, that is the a priori SNR and the noise PSD, 
and it possesses similar properties to those of the MMSE 
STSA estimator presented in [16] which will be further 
discussed in subsection II-A3 below. It is further shown 
through objective evaluations that the geometric algo-
rithm performs significantly better than the traditional 
spectral subtraction algorithm under various conditions.

Other main contributions to the spectral subtraction 
method in the literature include spectral subtraction us-
ing oversubtraction [38], nonlinear spectral subtraction 
[39], multi-band spectral subtraction [40], MMSE-based 
spectral subtraction [35], extended spectral subtraction 
[41], use of adaptive gain averaging [31] and selective spec-
tral subtraction [42]. Even though spectral subtraction is 
one of the oldest methods of noise reduction in the STFT 
domain, there still exists ongoing research on this topic.

2) Wiener Filtering Based Methods
The spectral subtractive methods discussed in the previous 
section are based on the heuristic assumption that one can 
obtain an estimate of clean speech spectrum by subtract-
ing the estimated noise spectrum from the observations 
spectrum. Despite being intuitively pleasing and computa-
tionally simple, this method cannot make any claim of opti-
mality. In this part, we briefly review the concept of Wiener 
filtering in the STFT domain. In this approach, the estimat-

ed speech spectrum is obtained as ( , ) ( , ) ( , )S k l W k l X k l=t  
where ( , )W k l  denotes the corresponding gain function. 
The latter is derived by minimizing the mean square error 
(MSE) between the clean and estimated speech spectra, 
which is mathematically expressed as

	 ( , ) ( , ) ( , )argminW k l E S k l WX k l 
W

= - 2t " ,� (7)

with {.}E  denoting the statistical expectation. Solving 
the above, we obtain the general form of the complex-
valued Wiener filter gain as

	 ( , )
( , )
( , )

W k l
k l
k l

x

sx
2v

v
=t � (8)

where ( , )k lsxv  denotes the cross-PSD between the 
clean and noisy speech defined as ( , ) ( , )E S k l X k l*" , and 

( , )k lx
2v  denotes the noisy speech PSD [43]. In practice, 

both sxv  and x
2v  in (8) are unknown and have to be esti-

mated. Henceforth, we may drop the time frame and fre-
quency indices for improved readability. Even though the 
estimation of x

2v  can be done in a straightforward way, 
such as recursive smoothing of the observations, ( , )X k l , 
estimation of the cross-term sxv  is generally challenging 
and depends on the application [44]. Assuming uncorre-
lated clean speech and noise signals, sxv  and x

2v  respec-
tively simplify to the clean speech PSD, s

2v , and the sum 
s v
2 2v v+ . Now, by defining the a priori SNR as /s v

2 2g v v= ,  
the Wiener filtering gain can be expressed as /( )1g g+ .  
The a priori SNR, which is a critical parameter in the 
context of noise reduction, can be estimated through 
the conventional decision-directed approach [16] and its 
more advanced variations found in [45]–[47]. The afore-
mentioned method is the most conventional way for com-
puting the Wiener filter gain function from the available 
noisy speech. Several alternative methods have been 
proposed in the relevant literature in order to implement 
the Wiener filter, which are summarized in Table 1.

The latest category in Table 1, i.e. the codebook-
based method, is known to perform better in the pres-
ence of highly non-stationary noise, while eliminating 
the need to employ noise estimation algorithms. Yet, 
its main shortcoming is the complexity arising from the 
required search for an optimal vector of linear predic-
tion coefficients in a possibly large dimensional code-
book, as well as the need to generate the codebook a 
priori with the help of training data. Another interest-
ing research avenue in the field of Wiener filtering is the 
application of psychoacoustics in order to introduce 
additional constraints in the design of the Wiener fil-
tering gain. As such, the masking properties of human 
auditory system have been employed to determine the 
thresholds on the speech or noise distortion introduced 
by Wiener filtering [49], [50].

Authorized licensed use limited to: McGill University. Downloaded on November 28,2022 at 07:10:27 UTC from IEEE Xplore.  Restrictions apply. 



third quarter 2016 		IEEE   circuits and systems magazine	 51

3) MMSE-Based (Bayesian) Estimators of STSA
In this subsection, we discuss an important category 
of STSA estimators, which are optimal in the amplitude 
MMSE sense. Basically, the Bayesian STSA estimation 
problem can be formulated as the minimization of the 
expectation of a cost function representing a measure 
of distance between the true and the estimated clean 
speech STSAs, denoted respectively by ( , )A k l  and 
( , )A k lt . This problem can be expressed as

	 ( , ) |argminA E C A A X ( )o

A

=t t
t

" ,	 (9)

where (.)C  is a particular Bayesian cost function and 
A( )ot  is the optimal STSA estimate. Similar to the spec-
tral subtractive methods discussed earlier, the STSA 
estimate is combined with the noisy phase of speech 
to provide an estimate of speech STFT coefficients. 
This approach was firstly established by Ephraim and 
Malah in [16] wherein the cost function (.)C  was taken 
as the squared error between ( , )A k l  and ( , )A k lt , imply-
ing A( )ot  to be the MMSE estimate of the speech STSA. 
Further proceeding with (9) requires the knowledge of 
the distribution of speech STSA conditioned on observa-
tion, i.e. ( )p A X , since

	
( , ) ( , )  ,

( , )

E C A A C A A p A X d d

C A A p A X d p X d

A X

A X

=

=

t t

t

^

^ ^

h

h h8 B

" , ##
## �

(10)

where actually the term inside the brackets has to be 
minimized with respect to At . This has been convention-
ally done in a Bayesian framework for p A Y^ h under 

the assumption that the noise coefficients, V, follow a 
zero-mean complex circularly symmetric Gaussian dis-
tribution, and as a result, the speech spectral phase, Ω, 
follows a uniform distribution and the speech STSA has 
a Rayleigh distribution. Moreover, speech phase and 
amplitude are supposed to be independent. Under these 
assumptions, it follows that [16]

	
( | , )

( , ) ( )  ( )

exp

exp

p X A
X Ae

p A p A p A A

1
v v

j

s s

2 2

2

2 2

2
rv v

rv v

X

X X

= -
-

= = -

X

e

c

o

m
�

(11)

Based on these assumptions and considering the cost 
function ( , )C A At  to be ( ) ,A A 2- t  the MMSE estimator of the 
speech STSA has been derived as a closed-form solution 
in [16]. Although this STSA estimator provided consider-
able improvements with respect to the previous spectral 
subtractive or Wiener-based methods, it did not take into 
account the most subjectively meaningful Bayesian cost 
function. Based on this fact, the same authors suggested a 
logarithmic version of their MMSE estimator in [20] where 
the cost function exploits the log-spectra of the clean and 
estimated STSA. Therein, it was shown that the log-spec-
tra is more suitable as the distortion measure and further 
improvements with respect to the original MMSE estima-
tor were achieved in most experiments. Later, Loizou in 
[21] introduced the idea of perceptually (to human ear) 
motivated cost functions and derived STSA estimators 
that emphasize on the spectral peak (formants) informa-
tion and STSA estimators which take into account the 
auditory masking effects of the human audition system. 

Table 1.  
Main Wiener filtering methods in the STFT domain.

Method Filtering Gain Properties

Square-root Wiener 
filter [7] ( , )

( , )
k l
k l

x

sx
2v

v
 

PSD of the enhanced speech is theoretically identical to 
that of the clean speech. 

Parametric Wiener 
filter [43] ( , ) ( , )

( , )
k l k l

k l
s v

s
2 2

2

v av

v

+

b

e o  
The use of parameter b allows to compromise between 
noise reduction and speech distortion 

Iterative Wiener 
filtering [43] 

At iteration i, the estimated speech is used 
to estimate the speech PSD and therefore 
the Wiener filtering gain, as following: 
S W Xi i1 =+
t  S Wi i1 1"+ +

t  

More precise estimate of the Wiener filtering gain 
compared to the non-iterative version, if convergence 
occurs 

Constrained Wiener 
filtering [7]

1

1

s

v
2

2

v
v+

 
Allows a compromise between the amount of speech 
distortion and noise distortion 

Codebook-driven 
Wiener filtering [48] 

( , ) ( , )

( , )

D k l D k l

D k l

s

s

v

v

s

s

2

2

2

2

2

2

v v

v

+
t
t

t
t

t
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Use of auto-regressive spectrum models estimated from 
speech/noise codebooks 
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Therein, he proposed three classes of Bayesian estima-
tors. The first class of the estimators emphasizes spectral 
peak information of the speech signal, the second class 
uses a weighted Euclidean cost function that takes into 
account the aforementioned auditory masking effects 
and the third class of estimators is developed to account 
for spectral attenuation. It was concluded that, out of 
the three classes of the suggested Bayesian estimators, 
those based on the auditory masking effect perform best 
in terms of having less residual noise in the enhanced 
speech and better speech quality.

Within the same direction, another major class of Bayes-
ian STSA estimators was proposed in [22], which is known 
as the b-order MMSE estimator. The corresponding cost 
function involves a parameter named b and employs b  
powers of the amplitude spectra. Thanks to the degree of 
freedom provided by this parameter, trade-offs between 
the amount of noise reduction and speech distortion were 
achieved therein and a few schemes for the experimental 
or adaptive selection of this parameter were contributed. 
The experimental results proved the advantage of the 
namely b-SA estimator, as compared to the previous ver-
sions of STSA estimation. Along the same direction, later 
in [51], it was proposed to exploit a spectrally weighted 

development of the b-order MMSE cost function including 
a new weighting parameter called a. Therein, new psycho-
acoustical schemes were suggested for the selection of the 
two parameters, i.e. aand b, based on the properties of 
human auditory system. Performance evaluations revealed 
improvements in the so-called Wb-SA estimator with re-
spect to using the previously suggested MMSE cost func-
tions in this field. Later in [52], a more generalized Bayesian 
cost function was introduced by involving a new spectral 
weighting term and it was indicated that the resulting STSA 
estimator, named as generalized weighted SA (GWSA), pro-
vides further flexibility in the adjustment of the STSA gain 
function. All the aforementioned STSA estimators can actu-
ally be derived as a particular case of the latter.

To facilitate the discussion of the conventional Bayes-
ian STSA estimators with the underlying cost functions, 
a summary of the major STSA estimators is indicated in 
Table 2. In this table, c  is the a posteriori SNR defined 
as /X v

2 2v , the gain function parameter y  is /( )1gc g+  
and (., .; .)M  denotes the confluent hypergeometric func-
tion. Note that p, b  and a  are parameters that shape 
the STSA gain function, and as explained, a few efficient 
schemes for their determination have been proposed in 
the references in Table 2.

Table 2.  
Major Bayesian estimators of speech STSA.

Method 
Bayesian Cost 
Function Gain Function Properties

MMSE [16] A A 2
- t^ h  ( . ) ( . , ; )M1 5 0 5 1

c
o

oC - -  
Basic version of Bayesian STSA 
estimators, optimal in the amplitude 
MMSE sense 

Log-MMSE [20] log logA Ak k
2

- t^ h  exp t
e d2

1 t
tc

o 3

y

-

c m#  
Outperforms the basic version 
through the use of the logarithmic 
distortion measure (cost function) 
for speech 

WCOSH [21] 
A

A
A

A
A 1p + -t

t
e o
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+
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Weighted cosine hyperbolic cost 
function, a symmetric distortion 
measure exploiting auditory 
masking effects 

WE [21] A A Ap 2
- t^ h  

, ;

, ;
,p

p

M p

M p

p

2 1

2
1 1

2 1

2
1 1

2 2
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Distortion measure motivated by 
the perceptual weighting technique 
used in low-rate analysis-by-
synthesis speech coders 

b-SA [22] A A 2
-b bt^ h  , ; ,M2 1 2 1 2

/1

2
c
o b b

o bC + - - -
b

c cm m; E  
Motivated first by the generalized 
spectral subtraction method, 
provides gain function adjustments 
by the selection of parameter b

W b-SA [51] 

A
A A 2
-
a

b bt
c m  

( ) ( , ; )
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( )  ,
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1 1
2

2
1 2

2
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2 1 1
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2 1
c
o

a a o

b a b a
o

b a a

C

C

- + -

-
+ -

-
-

-

b

f c cm pm
Further flexibility in the gain 
function, selection of parameters a 
and b based on psycho-acoustical 
properties of human audition 
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4) MAP Estimators
In [10], the first statistical-based estimator of the 
speech STSA was proposed in the form of an ML es-
timator and a few closed-form solutions were derived, 
based on the following

	 ( , )argmaxA E p X A ( )ML

A
; X= X

t " ,� (12)

where .EX  denotes the expectation over speech 
phase, Ω. Yet, apart from the limited performance, an 
ML estimator does not take into account the distribu-
tion of speech STSA prior, whereas a proper model for 
the speech prior can be considered in the MAP esti-
mation. In [53], under a complex Gaussian assumption 
for the speech prior and a Bayesian framework, MAP 
estimators of the speech STSA were derived as simpler 
alternatives to the Ephraim and Malah’s MMSE-based 
approach. Therein, three different estimators were 
proposed, namely, the joint MAP estimator of speech 
spectral amplitude and phase, the MAP estimator of 
the speech spectral amplitude and the MMSE estima-
tor of speech PSD. The joint MAP spectral amplitude 
and phase estimator can be expressed as [53]

	 , ( , )argmaxA p A X ( ) ( )

,A

MAP MAP ;X X=
X

tt^ h � (13)

and closed-form solutions for the speech spectral am-
plitude and phase are derived from (13). The interest-
ing result, however, is that the estimator of the speech 
spectral phase obtained by (13) is just the noisy phase 
of speech observations. The same result was deduced in 
[16] with the MMSE estimate of speech spectral phase. 
Next, the spectral amplitude-only estimator can be giv-
en by solving the following [53]

	  ( , )argmaxA E p A X( )

A

MAP ;X= X
t " ,� (14)

where, using an exponential approximation to the Ri-
cian distribution obtained from ( , )E p A X;XX " ,, leads 
to a closed-form solution. It is shown that this solution 
is a generalized form of the approximate solution to the 
ML estimator proposed in [10]. Next, by deriving an 
expression for the second moment of the Rician pos-
terior, i.e. { | }E A X2 , which is actually the MMSE esti-
mate of the speech spectral variance, ,s2v  and taking its 
square root, an estimate of speech spectral amplitude 
is obtained and combined with the noisy phase. Analy-
sis of the behavior of the corresponding gain functions 
for all three estimators shows that they have a simi-
lar performance to the Ephraim and Malah’s solution, 
whilst they permit a more straightforward implementa-
tion and simpler expressions by avoiding Bessel and 
Hypergeometric functions.

More recently in [54], it was indicated through exten-
sive experimentations that the class of super-Gaussian 
distributions fits speech STSA priors more properly than 
the conventional Rayleigh deduced from the complex 
Gaussian assumption for speech STFT coefficients. There-
in, within the framework of MAP spectral amplitude esti-
mators, the distribution of the speech spectral amplitude 
is modeled by a simple parametric function, which allows 
a high approximation accuracy for Laplace- or Gamma-
distributed real and imaginary parts of the speech STFT 
coefficients. Also, the statistical model can be adapted us-
ing the noisy observations to optimally fit the distribution 
of the speech spectral amplitudes. Based on the super-
Gaussian statistical model, two computationally efficient 
MAP spectral amplitude estimators are derived, which 
outperform the previously proposed ones in [53] while 
owning the same simplicity as the estimators in [53]. The 
two estimators in [54] include a joint amplitude-phase es-
timator and an amplitude-only estimator and can be both 
expressed as extensions of the MAP estimators proposed 
in [53]. In Table 3, a summary of the different MAP estima-
tors for the spectral amplitude is presented.

5) Estimators of Complex STFT
Considering the complex-valued STFT coefficients of 
speech, one can tend to estimate in the rectangular form 
the real and imaginary parts. In [13], [55], such estimators 
of complex-valued speech STFT coefficients have been 
proposed using different distributions for speech prior and 
noise. Therein, in order to derive closed-form solutions, it 
is assumed that the real and imaginary parts of the com-
plex speech STFT coefficients are independent, which can 
be thought of as a counterpart to the independence of the 
spectral amplitude and phase assumed in the speech am-
plitude estimators. In fact, under a complex Gaussian dis-
tribution for the speech STFT prior, both assumptions are 
equivalent, though in general, they are not the same [13].

According to the evaluations presented in [13], the 
STFT coefficients of short-time stationary clean speech 
signals can be better modelled by a super-Gaussian den-
sity such as the two-sided exponential (Laplace) and the 
two-sided Gamma density. Therefore, the MMSE estima-
tion of the complex-valued speech STFT coefficients has 
been handled in [13], [55] under certain super-Gaussian 
distributions. Assuming independent real and imagi-
nary parts for speech coefficients, this problem leads to 
the following

	 { } { } { }S E S X E S X jE S XR R I I; ; ;= = +t 	 (15)

where the subscripts R and I denote the real and imagi-
nary parts, respectively. It can be observed from (15) that 
the estimation of complex-valued speech coefficients is 
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in fact decomposed into the independent estimation of 
their real and imaginary parts. In this sense, considering 
the same distribution for SR and SI, we arrive at the same 
estimators for the real and imaginary components of 
speech STFT coefficients [13], [55]. Further proceeding 
with (15) requires assuming distributions for noise and 
speech STFT coefficients. The complex Gaussian distri-
bution has been conventionally used to model the noise 
coefficients in the literature. However, different super-
Gaussian distributions have been exploited to model the 
real and imaginary parts of the speech STFT coefficients 
in [13], as the following:
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(16)

where s
2v  is the speech spectral variance defined by 

{ }E S 2 . The same distributions are used for the imagi-
nary part, SI. In [55], two special cases of the two-sided 
generalized Gamma distribution were also considered 
for the real and imaginary parts of the speech prior. 
The mathematical expressions for the corresponding 
estimators, however, are more tedious than those for 
the Bayesian estimators in Table 2 and requires more 
computational burden. Similar estimators were also de-
rived in [13] under the complex Laplacian distribution 
for noise coefficients, yet, in addition to the further com-
plexity involved, no performance improvements were 

reported with respect to the estimators with the com-
plex Gaussian noise distribution.

Considering the noise reduction performance of the 
complex STFT estimators, it is concluded in [13], [55] that 
they perform slightly better than the MAP estimators of 
the speech spectral amplitude. Also, employing super-
Gaussian distributions for the speech prior led to improve-
ments compared to the conventional Gaussian. However, 
comparing the complex STFT estimators to the Bayes-
ian estimators of the speech spectral amplitude (namely 
STSA estimators), it was revealed that the latter performs 
as well or better than the former. According to the experi-
mentations in [13] and references therein, the reason is 
that speech amplitude and phase are indeed statistically 
less dependent than the real and the imaginary parts of 
speech complex coefficients. Note that the independence 
between amplitude and phase or between real and imagi-
nary components of speech STFT has to be assumed in 
order to have a mathematically tractable solution for all 
speech estimators. Also, from a computational standpoint, 
since the speech STSA estimation requires the computa-
tion of only one estimate, it is overly computationally less 
complex than the estimators of the complex STFT.

B. Multi-Channel Approaches
In this section, we present a brief overview of the most 
famous multi-channel noise reduction approaches, con-
ventionally known as beamforming techniques. In this 
regard, a few beamforming methods and their variations 
have been proposed and widely used in the speech en-
hancement literature. It should be noted that, compared 
to other applications such as radar and sonar signals, 
implementation of the beamforming algorithms for 
speech signals has shown to be more challenging. This 

Table 3.  
MAP estimators of speech spectral amplitude.

Method Gain function

Joint MAP estimator of speech spectral amplitude and phase [53] 

( )
( ) ( / )

2 1
2 12

g
g g g g c

+

+ + +
 

MAP estimator of speech spectral amplitude [53] 

( )
( ) ( / )

2 1
12

g
g g g g c

+

+ + +
 

MMSE estimation of speech spectral variance (PSD) [53] 

1
1

g
g

c
o

+
+  

Joint MAP estimator of speech spectral amplitude and phase  
(super-Gaussian speech spectral amplitude) [54], with a and b as  
the super-Gaussian parameters 

,U U a U b
2 2

1
4

2

c cg
+ + = -

MAP estimator of speech spectral amplitude (super-Gaussian  
speech spectral amplitude) [54] 

/ ,U U a U b
2
1 2

2
1
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2
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is because speech is typically a wideband signal and it 
owns the features of highly non stationary signals. Also 
in practical environments, background noise or interfer-
ence may own the same spectral features as those of the 
clean speech signal [3].

Suppose that we have an array consisting of N mi-
crophones capturing a desired source of speech. The 
microphone observations are contaminated by additive 
noise which, in general, can be correlated across differ-
ent microphones. Therefore, the received signals can be 
expressed in the vector form as the following

	 X A V( , ) ( , ) ( ) ( , )k l S k l k k l= + 	 (17)

where X( , ) [ ( , ), ( , ), ..., ( , )]k l X k l X k l X k lN
T

1 2=  and 
V( , )k l  [ ( , ), ( , ), ..., ( , )]V k l V k l V k lN

T
1 2=  respectively de-

note the set of observations and noises received by the 
microphone array; and A( )k  is the so-called steering 
vector which depends on the direction of arrival (DOA) 
of the speech source with respect to the microphone ar-
ray. Considering the estimation of the parameter DOA 
and so the steering vector, A( )k , a few major techniques 
such as ML methods, subspace-based methods, using 
beamforming and compressive sensing approaches ex-
ist in the literature [56]–[57]. Here, we focus on a few 
major beamforming and post-filtering techniques that 
tend to estimate the clean speech spectrum under the 
independence of noise and speech, given that the DOA is 
known or estimated beforehand. In general, beamform-
ers are actually linear filters in the STFT domain and can 
be represented by a weight vector, W( , )k l , applied over 
the microphone array observations, X( , )k l . Next, as 
shown in Fig. 3, the resulting single-channel output is fed 
into a linear post-filter that can be expressed through a 
gain function, ( , )G k lpost ; and the ultimate estimate of the 
speech STFT is given at the output of the post-filter.

1) Conventional Beamforming Techniques
Although single-channel noise reduction algorithms are 
generally able to improve the speech quality, with the 
advance in today’s technology, use of microphone arrays 
has become more popular. In this regard, beamforming 
techniques, due to taking advantage of the spatial in-
formation across different microphones, enable further 
noise reduction without imposing considerable distortion 
on speech. In this section, the most well-known beam-
forming techniques in the frequency domain are briefly 
discussed. These techniques include delay-and-sum 
(DAS) beamformer, Wiener filter (multi-channel), distor-
tionless Wiener filter, maximum SNR filter and minimum 
variance distortionless response (MVDR) beamformer 
[58]. For ease of notation, we may drop the indices k and 
l henceforth.

The simplest beamforming technique is the DAS 
beamforming which compensates the relative delay 
across the speech components received by different 
microphones and then sums up the delay-compensated 
observations to form the enhanced speech as A XH . The 
simplicity in implementation and the small amount of 
imposed distortion on speech are the main advantages 
of this technique. Yet, due to the limited performance 
improvement achieved by this technique, often in prac-
tice, other beamformers are favored [58].

Similar to its single-channel version, the multi-chan-
nel Wiener filter is derived based on minimizing the MSE 
between the clean and estimated speech spectra, result-
ing in the following
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where VVR  is the N N#  noise spatial PSD matrix defined 
as { }E VVH , the speech signal PSD matrix SSR  is given 
as AA , {.}trs

H2v  denotes the matrix trace operation and 
u is the N 1#  unitary vector defined as [ , , , , ] .1 0 0 0 Tf  
Even though this technique is optimal in the MSE sense 
and is capable of providing a high level of noise reduc-
tion, it imposes considerable amount of distortion on 
the speech component. Also, the estimation of the noise 
PSD matrix, VVR , as well as the speech PSD, s

2v , is a chal-
lenging task in general [59]. By adding the constraint 
W A 1H = , to the multi-channel Wiener filter in (18), a 
distortionless modification of this method can be ob-
tained as the following [59]

	 W
A A

A
  

 
VV

VV( )
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2
1

1

R
R

= -

-

	 (19)

Note that the constraint W A 1H =  ensures theoretically 
that the speech signal arriving at the DOA is passed 
through the beamformer without being distorted.

Instead of minimizing the MSE between the clean 
and estimated speech, another criterion to achieve 
the maximum possible noise reduction is to maximize 
the SNR of the output speech. This is achieved via the 

Figure 3. Typical microphone array speech enhancement  
system consisting of a beamformer and a post-filter.
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maximum SNR spatial filter which can be expressed as 
the following [58]

	 W
W W

W( )

( ) ( )

( )
3

1 1

1

H
= 	 (20)

It is observed that the maximum SNR filter in the above 
is in fact a normalized version of the multi-channel Wie-
ner filter. Even though this beamformer is designed to 
achieve the most improvement in the SNR, there can be 
uncontrollable distortion in the enhanced speech signal.

The most famous beamformer in the literature is 
the MVDR technique which aims at minimizing the 
noise PSD in the output speech signal subject to a dis-
tortionless constraint on the speech. This leads to the 
following [58]

	 W W W W A ,   argmin 1
W

VV
( ) H H4 1R= =- 	 (21)

which leads to the same expression as that for the dis-
tortionless Wiener filter in (19). In fact, minimizing the 
MSE and the noise PSD in the enhanced speech result 
in the same solution for the beamformer and thus, the 
MVDR beamformer is the distortionless version of the 
multi-channel Wiener filter. Even though in theory no 
distortion should be imposed on the speech compo-
nent, in practice, due to the inaccuracy in the estimation 
of the steering vector, A, and the noise PSD matrix, VVR , 
a minimum level of distortion is always inevitable. More 
elaboration and further insights into the MVDR beam-
former can be found in [60].

2) Conventional Post-Filtering Techniques
In many cases, the performance gain yielded by a beam-
forming technique is not sufficient, however, it can be 
increased by properly adopting a post-filtering tech-
nique on the output of the beamformer. A post-filtering 
method is often employed to remove the non-coherent 
parts of the signal at beamformer’s output, and as seen 
in Fig. 3, the transfer function of this post-filter is gener-
ally derived from the spatial cross-PSDs (or coherence 
functions) of the sensor signals [61]. These cross-PSDs 
should be either estimated empirically or derived from 
a specific model for the coherence function such as that 
for a diffuse noise field.

The first major post-filtering method in the STFT 
domain was proposed by Zelinski in [62] where a ro-
bust adaptive approach is introduced to obtained 
the post-filter gain based on the estimation of the 
cross-PSDs across microphone observations. The 
main benefits of his approach are that the noise PSD 
in microphone observations can be variable and that 
the speech output signal is theoretically free of musi-

cal tones or other residual noise remained after the 
beamforming. In [63], Zelinski’s heuristic approach 
was formulated as a Wiener filter, i.e. in an MMSE 
sense, and then extended from N 4=  microphones to 
an arbitrary number of sensors.

In [61], the basic principles of conventional post-
filtering along with their theoretical analysis are pre-
sented and conclusions has been drawn about behavior 
of Wiener-based post-filters in real environments. Also, 
post-filter transfer functions have been extended to an 
acoustic environment, i.e. that with room reverbera-
tion. Therein, one general form of the post-filter derived 
based on the Wiener-Hopf equation, is expressed as the 
following filter gain
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where {.}0  denotes the real value, y
2v  is the PSD of 

beamformer output, i.e. W Xy H= , and x xi jv { {  is the cross-
PSD between the beamformer outputs W X*

i i  and W X*
j j . 

In [64], an approach for the estimation of the PSD terms 
in (22) is proposed based on the concept of noise field 
coherence. The latter is measured in terms of a com-
plex coherence function that may take different forms, 
depending on the type of the noise field. As a common 
application, for a diffuse noise type, the coherence 
function is

	 csin C
fd2

,
,

i j

x x

x x i j
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i j

i j
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v r
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ˇ ˇ
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with ( / )( / )f k K f 2s=  as the frequency, d ,i j  the spacing be-
tween sensors i and j, and C the sound velocity. Clearly, 
having estimates of the PSD terms x

2
iv {  and ,x2 jv {  the spa-

tial cross-PSD can be estimated by (23) using the proper 
coherence function.

Finally in [65], an efficient post-filtering algorithm 
for a special type of beamformer, namely, the general-
ized sidelobe canceller (GSC), is proposed. This type of 
beamformer is very useful in suppressing directional 
noise arriving from specific directions toward the mi-
crophone array, yet, its performance degrades to a large 
extent in the presence of diffuse non-stationary noise. 
The suggested post-filter takes advantage of the noise-
only components constructed within the GSC structure 
and is able to deal with diffuse noise fields effectively. In 
[65] also, two single-channel approaches, the optimally-
modified log-spectral amplitude (OM-LSA) in [66] and 
the mixture-maximum (MIXMAX) method in [67], have 
been adopted as post-filters by being concatenated to 
the beamformer output.
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C. Estimation of Noise PSD
From the previous parts, it is evident that speech estima-
tors in the STFT domain are generally a function of the 
noise PSD, ( , )k lv

2v , either directly or indirectly through 
the a priori and a posteriori SNRs. Therefore, apart from 
the estimator type and speech prior model, the perfor-
mance of the speech spectral estimators is heavily de-
pendent on the accuracy of the given noise PSD estimate. 
Indeed, the noise PSD can be either underestimated of 
overestimated. On the one hand, the underestimation 
of the noise PSD leads to an under-suppression of noisy 
speech, and therefore, an unfavorably large amount of 
residual noise. On the other hand, the overestimation of 
the noise PSD generally results in an over-suppression 
of noisy speech, and consequently a potential loss in 
speech quality or intelligibility [68]. Noise PSD estima-
tion is thus a crucial part of any noise reduction algo-
rithm in the STFT domain, and is, in particular, challeng-
ing when speech is corrupted by non-stationary noise. In 
this part, we briefly overview three main approaches to 
noise PSD estimation, i.e., voice activity detection, mini-
mum tracking and minimum controlled recursive averag-
ing. Further, we discuss some of the more recent devel-
opments on each of these approaches in the literature.

1) Voice Activity Detection
The earliest noise PSD estimation methods exploit the 
fact that between durations of talker activity and even 
between word syllables, speech is absent for a short mo-
ment. During these moments, the noisy speech degener-
ates to the noise realization and thus the estimation of 
the noise PSD is feasible. To detect the non-speech seg-
ments, there exist numerous methods in the literature, 
which are often referred to as voice activity detection 
(VAD). Most VAD approaches rely on the fact that cer-
tain statistics, such as the energy or the log-energy of 
the noise-only process and the noisy speech process, 
are different. By comparing these statistics to the actu-
al energy or log-energy of the signal, it can be decided 
whether speech is absent or present [69]. Let the two 
hypotheses ( , )k lH0  and ( , )k lH1  respectively indicate 
that speech is present and absent in a particular time 
frame and frequency bin. Then, a VAD-based approach 
estimates the noise PSD by recursively smoothing the 
noisy observations under ( , )k lH0 , as the following
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where 0 1# #l  is a smoothing constant. Although 
VADs are conceptually simple, their capability to accu-
rately estimate the noise PSD and track fast changes in 

non-stationary noise is limited. For this reason, there 
has been various developments and their modifications 
of this approach proposed in the literature.

Apart from the conventional statistical model-based 
VADs such as [69], characteristics of speech and non-
speech segments have also been modelled by hidden 
Markov models (HMMs). For example, in [70], a deci-
sion-tree algorithm that tends to combine the scores 
of HMM-based speech/non-speech models and speech 
pulse information is employed in order to reject far-field 
speech for speech recognition systems. In this work, the 
state duration is controlled by the state-transition prob-
abilities of the HMMs and speech pulse information. 
Also, in [71] and [72], proper statistical models are used 
to characterize speech and non-speech signals, using 
decision logics governing the switching between speech 
and non-speech states in the HMMs. Yet, in the Gaussian 
mixture model (GMM) based VAD of [71], state duration 
is governed by the number of speech frames detected 
by the GMMs in a fixed-length buffer, while in the GMM-
VAD of [72] state duration is governed by a hangover 
and hand-before scheme which detects the consonants 
occurred at the beginning, middle and the end of speech 
segments. Note that both HMM and GMM-based VADs 
require ground-truth speech/non-speech segments for 
training their statistical models. However, in the GMM-
based VAD of [73], the need for a training stage has been 
eliminated by applying speech enhancement as a pre-
processing step to improve the SNR of noisy speech 
segments. This enables the VAD algorithm to use either 
log-likelihood ratio tests or the comparison with energy-
based thresholds in order to discriminate speech/non-
speech segments.

The concept of using noise reduction to improve the 
detection performance of VADs in low SNR conditions 
has also been explored in [74]. Therein, the basic idea 
is to use features extracted from a noise-reduced rep-
resentation of the original noisy speech via using non-
negative sparse coding. In this regard, the speech STSA 
is decomposed on a speech dictionary learned from 
clean speech data and a noise dictionary learned from 
noise samples. Next, the coefficients corresponding to 
the speech dictionary are used as the noise-reduced 
representation of noisy speech for feature extraction. A 
conditional random field (CRF) is then used to model 
the correlation between feature sequences and voice ac-
tivity labels along the noisy speech, and voice activity 
labels are assigned for a given speech observation by 
decoding the CRF. The presented experimental results 
in [74] demonstrate that this approach further improves 
the performance of VAD in low SNR conditions.

Another GMM-based VAD dealing with highly noisy 
conditions was proposed recently in [75]. In this work, 
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a VAD has been developed to handle transient noise by 
using the idea of spectral clustering. Transient noise 
is a type of sounds that is wrongly detected as speech 
with high probability, e.g., coughing, sneezing, keyboard 
typing, and door knocking sounds. Even though there 
are numerous methods of VAD, this task is challenging 
in the presence of transient noise. The VAD technique 
proposed in [75] is a supervised learning algorithm that 
divides the input speech into two separate clusters, i.e., 
speech presence and speech absence frames. Labelled 
data is used in order to adjust the parameters of the 
kernel in spectral clustering methods for computing 
the similarity matrix. The parameters obtained in the 
training stage along with the eigenvectors of the nor-
malized Laplacian of the similarity matrix and the GMM 
are employed to estimate the likelihood ratio needed 
for the VAD task. Simulation results prove the high per-
formance of the proposed method, particularly its ad-
vantage in treating transient noises, as opposed to the 
conventional statistical model-based VAD algorithms.

2) Minimum Statistics Tracking
Noise PSD estimation can be accomplished by exploit-
ing the fact that even when speech is present in a time 
frame, speech energy is not necessarily present in all fre-
quency bins of that time frame. Voiced speech sounds, 
for example, are quasi-periodic in the time domain and 
thus are quasi-harmonic in the power spectrum domain, 
having spectral peaks located at specific frequencies. 
Therefore, the spectral content between these spectral 
peaks is representative of the noise PSD. In fact, when a 
speech spectral peak is present in a frequency bin, the 
noisy speech power rises far above the noise PSD level. 
Yet, in many time frames, the noisy power spectrum var-
ies around the true noise PSD level [68]. The minimum 
statistics (MS) method proposed by Martin [76] mainly 
uses this observation to estimate the noise PSD with-
out using a VAD. The major idea of this fundamental ap-
proach is to collect smoothed noisy periodogram values 
at each frequency bin, namely P( , )k l , using a sequence 
of neighboring time frames. By having a large enough 
number of time frames, i.e., corresponding to around 1 
to 2 seconds, it can be guaranteed that the minimum 
value in the sequence P( , )k l , say ( , )P k lmin , refers to 
PSD level without speech presence. However, by consid-
ering the minimum of P( , )k l , in general, the distribution 
of ( , )V k l 2  is sampled below its true mean value, and 
therefore, ( , )P k lmin  is an underestimate of { ( , ) }E V k l 2 . 
In order to fix this issue, a bias compensation is nec-
essarily applied on the minimum statistic, ( , )P k lmin , as 

( , ) . ( , )B k l P k lmin min , and the latter term is considered as 
the noise PSD estimate. However, obtaining this bias 
is mathematically challenging and approximate bias 

compensation methods are addressed in [76] and fur-
ther on in [77].

In practice, although the concept of the MS approach 
is relatively simple, an efficient implementation of this 
algorithm with the bias compensation requires a few 
parameter settings that may not be optimal. Also, a 
drawback of this MS approach is that by computing 
the spectral minimum of past time frames, detection 
of a fast change in the noise level, i.e. in highly non-
stationary environments, has an unfavorable amount of 
delay. Depending on the parameter settings and type of 
noise, this delay can be as large as one to two seconds. 
Therefore, abrupt changes in the noise level cannot be 
generally tracked accurately using the MS approach, re-
sulting in a large amount of residual noise in the under-
lying noise reduction method due to an underestimated 
noise PSD. For the aforementioned reasons, there has 
been a few major modifications and improvements in 
the literature to the original MS approach. In [78], by 
making use of a constrained variance smoothing filter, 
which is actually a generalization of the original MS 
method in its smoothing parameter, the authors pro-
pose a development of the MS method, that is capable 
of tracking the non-stationary and fast changing behav-
ior of noise more efficiently while reducing its variance. 
In this approach, the minima of the smoothed periodo-
grams are tracked with a low delay and then they are 
used to construct VADs, which in turn, are employed to 
detect the noise-only segments. Finally, the noise PSD is 
estimated by averaging the noisy periodograms on the 
noise-only regions.

The original MS method tracks the minimum values 
of a smoothed power estimate of the noisy speech with-
in a finite search window. To this end, a fixed size for 
the minimum search window is used regardless of the 
environmental conditions. However, in [79], the authors 
suggest to determine variable optimal window lengths 
according to a variety of noise types. To do this, the win-
dow length is selected such that the highest speech qual-
ity is achieved depending on individual sources of noise 
and the underlying speech enhancement technique. The 
classification of noise in each frame is performed by an 
ML method which is eventually based on the GMM. As 
compared to the conventional MS method via various 
objective and subjective evaluations, it is demonstrated 
in [79] that the proposed approach provides more accu-
rate noise PSD estimates resulting in the improvement 
of speech quality.

3) Minimum Controlled Recursive Averaging
The major drawback of the MS method and its variations, 
however, is that such estimators have a large variance 
and sometimes they attenuate low energy phonemes. 
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Another class of soft-decision noise PSD estimators that 
overcome many drawbacks of the MS method is the so-
called improved minima controlled recursive averag-
ing (IMCRA) proposed by Cohen in [80]. This method 
updates the noise PSD estimate by using a recursive 
smoothing scheme with time frame and frequency de-
pendent smoothing parameter. The latter is in fact de-
cided by the a posteriori speech presence probability 
(SPP) which is itself controlled by the minima values 
of a smoothed periodogram. Basically, the estimation 
of the SPP consists of two iterations of smoothing and 
minimum tracking. Whereas the first iteration acts as an 
approximate VAD, the smoothing step in the second it-
eration excludes relatively strong speech components in 
the noise PSD estimation. This makes the IMCRA method 
robust against strong presence of speech components. 
More specifically, it follows that [80]
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with ( , )p k l  denoting the a posteriori SPP defined as 
( , )X k lP H1^ h and d0a  a fixed smoothing parameter. 

The latter can be obtained using the noise PSD estimate 
in the last frame, the a priori SNR and the a priori speech 
absence probability, defined as P H0^ h, with a two-pass 
searching. The first pass is a coarse estimation where a 
coarse decision is made to identify the speech and noise 
components. The second pass is fine searching, which 
only uses the noise components identified by the first 
pass searching to calculate the speech presence and 
absence probabilities. Performance evaluations of the 
IMCRA approach reported in [80] confirm its noise can-
cellation advantage over the conventional MS approach 
when used in a speech enhancement system.

One of the issues with the IMCRA method, however, 
is that due to the two-pass searching used for local 
minima tracking, the delay to follow an abrupt noise 
spectral rise is actually doubled. Also, there still ex-
ists considerable speech leakage to the estimated noise 
PSD by this approach, which causes distortion in the 
enhanced speech. In [81], an enhanced version of the 
IMCRA method has been proposed that demonstrates 
less speech signal leakage and faster response to follow 
abrupt changes in the noise PSD level. There has also 
been a few major improvements to the estimation of the 
a posteriori SPP, or in brief SPP, which plays a critical role 
in the accuracy of the IMCRA method. As such, in [82], 
an approach to estimate the SPP via HMMs has been 
proposed. Therein, unlike the conventional SPP which is 
based solely on the current frame, the temporal correla-
tion present in speech spectra is exploited to obtain the 

SPP. Specifically, the conventional SPPs are assumed to 
be the observations of channel-specific two-state HMMs 
and based on this set of SPPs, the ultimate estimate of 
the SPPs is obtained via statistical inference techniques 
such as the forward or forward–backward algorithms. 
In this sense, the two-state configuration of underlying 
speech models leads to a low complexity in the HMM 
processing, and relative to the conventional methods, 
there is a slight increase in the computational burden.

The SPP in the IMCRA method is commonly calculated 
independently across the time and frequency in the STFT 
domain. However, due to the overlap in the STFT frames 
as well as the correlated nature of the speech signal, 
there always exist a correlation between subsequent time 
frames and neighboring frequencies. In this sense some 
IMCRA-based methods tend to take into account the in-
herent time and frequency correlations in the calculation 
of the SPP. In this regard, a major contribution to the IM-
CRA method has been presented in [83] where the SPP is 
determined by taking into account the time and frequen-
cy correlations in the noisy speech. In this work, by calcu-
lating the auto-correlation and cross-correlation across 
the time and frequency, a primary decision about speech 
presence is made. Using this decision, the smoothing and 
weighting parameters in the original IMCRA are refined. 
Furthermore, the searching process of the local minima 
is improved by adding a minimum search with a shorter 
window. Extensive experimental results illustrate that the 
suggested algorithm improves the accuracy in noise PSD 
estimation, as compared with the conventional IMCRA. 
A more recent work that considers inter-frame and inter-
band correlations in the STFT domain in the calculation 
of the SPP has been presented in [84]. Therein, it has 
been shown that the detection accuracy of the SPP es-
timators can be increased by taking into account only a 
few neighboring time frames and frequency bins.

The conventional Bayesian approach to estimate 
the SPP is based on a likelihood ratio that is derived 
by assuming a Gaussian distribution for the speech. 
However, some recent developments on the SPP estima-
tion consider likelihoods of speech presence based on 
super-Gaussian speech models or, alternatively, based 
on averaged observations. As such, in [85], these two 
aspects are combined and a closed-form solution for the 
generalized likelihood of speech presence has been de-
rived. Furthermore, contrary to the conventional IMCRA 
methods, in order to obtain SPP estimates close to zero 
in the speech absence, fixed values for the a priori SNR 
and a priori SPP have been employed. The proposed im-
proved SPP estimation is shown to outperform SPP es-
timation methods that consider averaged observations 
with a Gaussian speech model, a super-Gaussian model 
with no averaging, and also the conventional IMCRA.
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D. Performance Evaluation of Speech Enhancement
In order to judge the efficiency of a speech enhance-
ment system, the quality of the enhanced speech at its 
output has to be evaluated. In principle, there are two 
types of methods for the evaluation of speech quality: 
subjective and objective methods. The former is based 
on listening tests performed by human and the latter 
is done by calculating the so-called objective perfor-
mance measures. Even though the most accurate and 
reliable way for evaluating speech quality is to perform 
subjective listening tests, they are often costly and 
time consuming given that they have to be performed 
under stringiest conditions [86]. For this reason, much 
effort has been made to develop objective measures 
that would be able to determine speech quality con-
sistently with subjective tests. The most important 
objective performance measures include segmental 
SNR (segSNR), weighted-slope spectral (WSS) distance, 
perceptual evaluation of speech quality (PESQ) and the 
linear prediction coefficients (LPC)-based objective 
measures [86]. In this part, we briefly discuss a handful 
of the most commonly used objective and subjective 
measures for speech quality.

The basic version of the segSNR measure in the time 
domain can be expressed as [87]
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where sl  and slt  are respectively the lth frame of the 
clean and enhanced speech, L is the number of total 
frames and $  denotes the Euclidean norm. To avoid 
reaching unreasonably high or low values for the seg-
SNR, high and low thresholds are often set on this quan-
tity. The segSNR can also be defined in the frequency 
(STFT) domain in which case it is usually referred to as 
the frequency weighted segSNR. The proper weighting 
can be taken as a raised power of the amplitude spec-
trum of the clean speech in order to emphasize on the 
time-frequency units where clean speech exists [86].

The WSS distance measure is a direct spectral 
distance measure that is based on the comparison be-
tween the smoothed spectra from the clean and distort-
ed speech. Since the smoothed spectra can be obtained 
by different approaches such as using linear prediction 
(LP) analysis, cepstrum liftering (a term coined for filter-
ing in the cepstrum domain), or a filter bank analysis, it 
can be implemented in different ways. One famous ex-
pression for this measure is as follows [88]
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where ( , )S k lc  and ( , )S k ld  are the spectral slopes typi-
cally defined as the spectral differences between neigh-
boring frequency bins and ( , )W k l  is a proper weighting.

The PESQ measure is one of the most computa-
tionally complex objective measures and is the one 
recommended by the International Telecommunication 
Union-Telecommunication Standardization Sector (ITU-T)  
for speech quality assessment of handset telephony and 
narrow-band speech codecs [89]. Basically, the PESQ 
score is calculated as a linear combination of the average 
disturbance value Dind and the average asymmetrical dis-
turbance value Aind as follows

	 a a D a APESQ 0 1 2ind ind= + + � (28)

Note that the primarily suggested values for the three 
parameters a0 , a1  and a2  are optimized for speech pro-
cessed through networks and not through noise reduc-
tion methods. However, in [86], three modifications of 
this parameter set have been suggested that make the 
PESQ measure suitable for evaluating speech distortion, 
noise distortion and overall speech quality.

Another popular group of objective quality mea-
sures is the LPC-based objective scores which include 
the log-likelihood ratio (LLR), the Itakura-Saito (IS), and 
the cepstrum distance measures as the most important 
[86]. The LLR measure is defined as
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where ac  and ap  are respectively the LPC coefficient 
vectors of the clean and enhanced speech frame and 
Rc  is the autocorrelation matrix of ac . In practice, the 
smallest 95% of the frame LLR values may be used to 
calculate the average LLR and the frame LLR values are 
also limited to the range of [ , ]0 2 . The IS measure is de-
fined as
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where c
2v  and p

2v  are respectively the LPC gains of the 
clean and enhanced speech. The IS values are typically 
limited in the range of [ , ]0 100 . An objective measure 
based on cepstrum coefficients can be computed as  
the following
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where ( )c kc  and ( )c kp  are the cepstrum coefficients of 
the clean and enhanced speech, respectively, and p is 
the order of the underlying LPC analysis. The cepstrum 
coefficients can be in turn calculated from the LPC co
efficients, ( )ka , in a recursive manner, using the fol-
lowing expression
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To minimize the number of outliers, the cepstrum dis-
tance can be limited to the range of [0], [10].

Since the aforementioned objective performance mea-
sures cannot be relied to be fully correlated with speech/
noise distortions and overall speech quality, composite 
objective measures may come useful [86]. These mea-
sures can be obtained through combining the introduced 
basic objective measures by utilizing techniques such as 
multiple linear regression analysis, e.g. [90].

Subjective quality measures are based on the subjec-
tive opinion of a group of listeners on the quality of en-
hanced speech samples. The most famous subjective 
quality measures for speech transmission over voice 
communication systems have been recognized and stan-
dardized by ITU-T. In this regard, opinion rating methods 
can be used to evaluate the overall perception quality of 
a speech sample. The mean opinion score (MOS), initially 
developed for telephone bandwidth speech, is one of the 
most widely used opinion rating methods. In MOS, listen-
ers are required to rate the speech sample under the test 
into one of the five quality categories. Each category is 
represented by a number from 5 to 1, and it corresponds 
to an excellent, good, fair, poor and unsatisfactory speech 
quality. The ultimate MOS value is the average of all listen-
ers for each of the speech samples under the test. Clear-
ly, the enhanced speech in general suffers from various 
aspects of degradation including bandwidth limitation, 
additive noise, echo and nonlinear distortions. The MOS 
measure provides an overall impression of all different 
degradations, measured as one numerical value [88].

III. Recent Advances
In this section, we discuss the major aspects in the re-
cent development of STFT-based noise reduction meth-
ods for single- and multi-channel cases. With a focus on 
the most recent literature, we elaborate in the single-
channel case, on the spectral subtractive method in the 
modulation domain, STSA estimation using non-Gauss-
ian speech prior models, estimation of the two major 
noise reduction parameters, i.e. the noise PSD and the a 
priori SNR, and the estimation of speech spectral phase. 
In the multi-channel case, we investigate the extension 
of STSA estimators from single to multiple channel, 
the estimation of noise PSD matrix (mostly used in the 
MVDR beamformer) and some recent advances in the 
multi-channel Wiener filtering.

A. Use of Super-Gaussian Speech Priors
The speech STSA estimators discussed in Section II and 
the MMSE amplitude estimators represented in Table  2 

are all based on the Rayleigh distribution for speech 
STSA. The latter arises from the fact that speech STFT 
coefficients are generally assumed to have a complex 
Gaussian distribution. Recently, however, there has 
been numerous works directed towards the estimation 
of speech STSA using super-Gaussian statistical models, 
especially for the speech STSA. In [91] and references 
therein, various non-Gaussian distribution models for the 
speech STSA are discussed, which include exponential, 
Laplacian, Chi, Gamma (one-sided) and generalized Gam-
ma distributions. These distributions each have unknown 
parameters and different speech data-based (adaptive) 
schemes have been proposed for the estimation of their 
corresponding parameters. According to the experiments 
in [92], [93], the generalized Gamma distribution (GGD) 
has the potential to fit the empirical (e.g. histogram-
based) distribution of speech STSAs best, however, 
closed-form solutions for an STSA estimator is available 
only for specific choices of the parameters of the GGD. 
In fact, the GGD is a very flexible parametric distribution 
which covers many super-Gaussian distributions as par-
ticular cases. The one-sided GGD family with shape pa-
rameters a and c and scaling parameter b is given by [94]
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with a and c as the shape parameters and b as the scal-
ing parameter. Note that since this subsection deals with 
spectral amplitude estimation, only right-sided distribu-
tions are discussed. In fact, the GGD model is a very gen-
eralized form of different super-Gaussian distributions and 
a few useful super-Gaussian distributions in the context of 
STSA estimation can be derived by considering particular 
choices of the GGD model, which is summarized in Table 4.

Fig. 4 shows GGD values for a few choices of its 
shaping parameters and b 2= . This indicates that 
by a dynamic selection of these parameters at each 
STFT frequency bin and time frame, one can gain con-
trol over the statistical model of the speech STSA and 
thus the corresponding gain function of STSA estima-
tors. In a theoretical viewpoint, the estimation of GGD 

Table 4.  
Parameter sets of the GGD leading to Rayleigh, Gamma, 
Chi, or exponential speech spectral amplitude models.

Parameters of the GGD STSA Prior 

a = 2, c = 1 Rayleigh 
a = 1 Gamma
a = 2, b = 1/2 Chi 
a = 1, c = 1 Exponential 
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parameters can be done through an ML procedure us-
ing the available noisy speech data. However, the exact 
determination of the GGD parameters independently by 
solving likelihood equations is cumbersome [93]. In the 
context of speech STSA estimation, however, closed-
form solutions (for ML, MAP or MMSE-based) estima-
tors are available only for the choices of a = 1 and a = 
2. Note that for the choice of a = 2, the GGD prior is ac-
tually simplified into a generalized form of the Chi dis-
tribution with 2c degrees of freedom and / b1 2  as the 
scale parameter. Also, the second moment of the GGD 
prior in (33), i.e. the speech STSA variance, is given as 
the following [94]
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Therefore, having an estimation of the speech STSA spec-
tral variance, A

2v , the scale parameter b will be obtained 
based on the choice of the shaping parameters. Various 
combinations of the GGD shape parameters that lead to 
specific closed-form solutions for speech STSA estima-
tors have been presented in [94]. Therein, solutions have 
been presented for the case of MMSE-based estimators 
using Gaussian and exponential speech priors, and MAP 
estimators using GGD speech priors with a = 1, 2. It is 
concluded that in the case of MMSE-based estimation, 
higher order shape parameters generally results in nu-
merical analysis since such expressions rely on integra-
tions with no closed-form solution. Also, in the case of 
MAP estimators, certain combinations of lower order 
shape parameters can result in monotonic cost functions 
for which a MAP solution does not actually exist. STSA 
estimation solutions using special cases of the GGD for 

noise distribution have also been discussed in [94], yet, 
in accordance with the results reported in [13], no im-
provements have been obtained as compared to using 
the Gaussian distribution for noise. Table 5 summarizes 
the major solutions of STSA estimation using the GGD 
prior presented in [94]. Note that in this table, ( , )a cs s  and 
( , )a cv v  respectively denote the GGD shape parameters 
for the clean speech and noise priors.

In [95], a family of log-spectral amplitude (LSA) esti-
mators have been proposed, using GGD priors with a = 
1, 2. Therein, due to providing mathematical flexibility in 
the statistical STSA modelling, objective improvements 
with respect to several older STSA estimators including 
the LSA estimator in [20] have been achieved. Although 
closed-form solutions are not obtainable for the general 
case of a = 1, 2, estimators were expressed in [95] as 
limits, and were mathematically approximated. In [96], 
MMSE-based and MAP estimators of speech STSA have 
been proposed based on Gamma and Chi priors for  
speech STSA, and data-driven schemes for the selec-
tion of the shape parameter of the priors have been sug-
gested. In that work, rather than relying on a priori 
estimated values of the shape parameter, the focus is 
on seeking those values that maximize the quality of the 
enhanced speech, in an a posteriori fashion. To this end, 
the performance of the parameter selection schemes is 
first evaluated as a function of the shape parameter and 
then optimal values are found by means of a formal sub-
jective listening test. The main conclusion was that the 
shape parameters control a trade off between the level 
of the residual noise and its musical character. Also, it 
was found that the optimal parameter values maximiz-
ing the subjective performance are different than those 
maximizing the scores in objective performance mea-
sures. It is believed that this discrepancy is mainly due 
to the poor ability of objective measures to penalize the 
musical noise artifacts. Another finding of the research 
in [96] is that very close performance results can be 
obtained using the same estimator, i.e. MMSE-based or 
MAP, but with different STSA priors. This can be attrib-
uted to the flexibility provided by the shape parameters 
of the STSA prior, allowing the listener to closely match 
the performance of two estimators with different speech 
priors. As further conclusions of this work, the type of 
the estimators, i.e. MMSE-based or MAP, has significant 
impact on the quality of the enhanced speech. Whereas 
MAP estimators result in lower residual noise levels, the 
MMSE-based estimators are more successful in the res-
toration of the speech spectral components and are able 
to achieve higher scores in the objective speech quality 
measures. Both type of STSA estimators, however, can 
produce an enhanced speech free of musical noise arti-
facts, given the correct setting of their parameters.

Figure 4. One-sided GGD function for different values of the 
scale parameters and b = 2.
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In [97], a generalized MAP estimator using the Gamma 
STSA prior along with a data-driven scheme to estimate its 
shape parameter has been proposed. The shape param-
eter scheme is based on the fact that a higher estimated 
SNR corresponds to stronger presence of speech compo-
nents with respect to noise, and thus, a higher gain value 
is required for speech segments with higher SNRs. There-
fore, since the derived gain function is monotonically de-
creasing with the Gamma shape parameter, the proposed 
parameter scheme suggests lower shape parameters for 
higher SNRs and vice versa. Performance comparisons 
with other conventional STSA estimators, i.e. the MMSE, 
ML and MAP methods, confirms that the suggested MAP 
estimator provides better objective scores in low SNRs 
while having comparable performance in high SNRs.

The STSA estimators discussed so far incorporated 
improved statistical models with the original MMSE or 
log-MMSE cost functions. In [98], the authors make use 
of the Chi STSA prior to derive estimators using per-
ceptually motivated spectral amplitude cost functions, 
namely the WE and WCOSH primarily developed in [21]. 
The major purpose in [98] is to determine the advantage 
of incorporating improved cost functions with more 
accurate (i.e. super-Gaussian) STSA priors. Therein, it 

was shown that whereas the perceptually-motivated 
cost functions emphasize spectral valleys rather than 
spectral peaks (formants) and indirectly account for au-
ditory masking effects, the incorporation of the Chi STSA 
prior demonstrates considerable improvement over the 
Rayleigh model for the speech prior. Yet, no systematic 
parameter choice has been proposed for the two WE and 
WCOSH estimators and the shape parameter of the cor-
responding Chi STSA prior is selected empirically. Along 
the same line of work, in [99], the authors take advan-
tages of the b -order MMSE cost function firstly adopted 
in [22] with Laplacian priors for the real and imaginary 
parts of speech STFT coefficients. Even though using 
Laplacian model as speech prior primarily results in a 
highly non-linear estimator with no closed-form solution 
and high computation costs, by using approximations 
for the distribution of speech STFT and also for the in-
volved Bessel functions, an improved closed-form ver-
sion of the estimator has been derived and evaluated in 
[99]. The comparative evaluations confirm the superior-
ity of the suggested estimator relative to the state-of-the-
art estimators that assume either Gaussian or Laplacian 
STSA priors such as [100]. Finally in [101], a general form 
of an STSA estimator under Wb -SA cost function and 

Table 5.  
Speech STSA estimators for particular parameter choices of the GGD speech and noise priors.
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GGD speech prior has been derived. New schemes have 
then been proposed for the estimation of the cost func-
tion as well as speech prior parameters using: an initial 
estimate of the speech STSA, the noise masking feature 
of the human auditory system and the estimated SNR. It 
is concluded that the exploitation of a primary STSA esti-
mate in the parameter selection for speech prior leads to 
more efficient control on the gain function values. Objec-
tive performance evaluation in different noise conditions 
demonstrates the superiority of the proposed estimator 
over the state-of-the-art STSA estimators.

Based on the aforementioned works, it can be conclud-
ed that even though statistical methods for the estimation 
of the parameters of super-Gaussian priors exist, e.g. [102], 
subjectively driven schemes based on speech observa-
tions or solid theoretical methods to maximize objective 
measures, such as [96], [97], prove to be more efficient. 

B. Advances in Noise PSD Estimation
In Section II, three main methods of noise PSD estimation 
and their improvements were studied. However, recently 
there has been growing interest in the statistical model-
based estimation of noise PSD, which also takes advan-
tage of some of the concepts in the older methods. These 
statistical model-based methods allow to relax the as-
sumption that time-frequency units can be found where 
only the noise component is dominant. Note that the lat-
ter assumption along with the assumption that noise is 
generally more stationary than speech are the basis for 
noise estimation methods like MS and IMCRA. Using sta-
tistical models for the noise PSD, however, enables the 
estimation of noise PSD even if speech signal is dominant 
in a time-frequency unit. We present in this part the most 
important of these statistical methods, including MAP, 
MMSE and ML noise estimation.

1) MAP Estimation
In [103], [104], the authors address the MAP estimation 
of noise PSD for a general non-stationary noisy environ-
ment. This is made possible only by assuming the avail-
ability of an initial estimate of the speech PSD. Therefore, 
the suggested MAP-based algorithm is meant to be used 
as a post-processor to a first speech enhancement stage. 
The estimation of the parameters of the noise process 
is then reduced into the problem of estimating the vari-
ance of a complex-valued zero-mean white Gaussian ran-
dom process using noisy observations, which is solved 
by a MAP-based estimation method in [103]. The major 
advantage with this approach is the ability to follow 
non-stationary noise dominated by strong speech com-
ponents even in the critical case of rapidly rising noise 
level. The presented experimental comparison with the 
state-of-the-art noise tracking algorithms demonstrates 

smaller estimation errors under low SNR conditions and 
smaller fluctuations of the estimated noise PSD values. In 
[104], an improved version of the MAP-based noise esti-
mation has been proposed, where an empirical bias com-
pensation and bandwidth adjustment are suggested to 
reduce the bias and variance of the noise PSD estimate, 
resulting in smaller estimation variance.

2) MMSE Estimation
In [105], an MMSE estimator of the noise PSD with low 
complexity has been firstly proposed that is highly use-
ful for applications with low-complexity constraints such 
as hearing aids. Therein, an MMSE estimator of the noise 
amplitude-squared STFT coefficients has been formu-
lated in the Bayesian framework, as the following [105]
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2 2 2
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t # 	 (35)

where V  denotes the noise amplitude and ( )p V|XV  is 
its distribution conditioned on the speech observation. 
Assuming that both the speech and noise STFT coeffi-
cients are modelled by a complex Gaussian distribution, 
it follows that
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giving the noise PSD estimate as an instantaneous func-
tion of the a priori and a posteriori SNRs. Even though 
this estimator is generally unbiased, due to the inaccura-
cies in the estimation of the a priori SNR, a necessary 
bias compensation is suggested in [105]. When used in 
a speech enhancement system, this MMSE-based noise 
tracking provides superior performance compared to 
the MS-based method. Yet, compared with the state-of-
the-art noise PSD estimation methods, the MMSE-based 
approach has almost similar performance but with a 
considerably lower computational burden. In [106], the 
authors further analyze the MMSE-based approach and 
suggest to use it in a recursive smoothing scheme. Next, 
by suggesting a modified version of the original MMSE-
based noise estimation, its performance is further 
improved. In this sense, the original method is firstly in-
terpreted as a VAD-based noise PSD estimator, and next, 
it is shown that the bias compensation step is unneces-
sary if the VAD is replaced by a soft-decision SPP-based 
method with fixed priors. The use of SPP with fixed op-
timally set priors is advantageous in this approach, as 
compared to the IMCRA method where the priors are 
adaptively determined at each time-frequency unit. In 
[106], the following expression for the SPP is derived
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with fixed a priori SPPs assumed as ( ) ( ),P P HH v1 1
2v= t  

evaluated by the estimated PSD at the previous frame 
and H1g  denoting the optimal value for the a priori SNR 
under H1 . The latter is obtained by minimizing the to-
tal error probability in the speech presence/absence 
hypothesis testing [106]. In terms of performance, it 
is demonstrated that the proposed MMSE- and SPP-
based approach maintains the quick noise tracking 
performance of the original MMSE-based method while  
exhibiting less overestimation of the noise PSD and hav-
ing an even lower computational complexity. In [107], 
the same authors further work on the MMSE-based 
noise estimator by employing a more advanced esti-
mator of the speech PSD, instead of the conventional 
ML-based a priori SNR estimator, based on temporal 
cepstrum smoothing (TCS). The latter, even though im-
plies heavier computational burden, is able to provide 
a more precise estimate of the speech PSD through ex-
ploiting knowledge about the speech spectral structure. 
Moreover, the requirement for the bias compensation 
in the original approach, that is fulfilled by using the 
decision-directed method to estimate the speech PSD, 
is eliminated. Using this noise PSD estimator in a noise 
reduction framework, it is concluded that a higher noise 
reduction performance with a comparable amount of 
speech distortion is achieved.

3) ML Estimation
Another major method in the category of statistical 
model-based noise PSD estimators has been proposed 
in [108] wherein a recursive ML-based noise estimation 
algorithm is derived. Within this approach, the a priori 
and a posteriori SPPs as well as noise statistics are ana-
lytically retrieved from an expectation maximization 
(EM) algorithm at every time-frequency unit. The recur-
sive updating of these three terms are performed in a 
unified manner through new closed-form expressions 
and without relying on the conventional tracking of 
speech PSD minima. As compared with the MS, IMCRA 
and MMSE-based approaches, the aforementioned ap-
proach is optimal in the ML sense and requires only one 
tuning parameter, i.e. the forgetting factor in the corre-
sponding recursive smoothing process. In addition to its 
low computational load, the ML-based noise estimator 
can achieve a performance level superior or comparable 
to that of the previous algorithms.

4) Evaluation of Noise PSD Estimation Methods
The diversity of the proposed methods for the estima-
tion of noise PSD and the growing interest in this field 
makes it necessary to compare the most well-known ap-
proaches in a unified framework. In [109], the authors 
investigate the performance of several major recent 

approaches of noise PSD estimation and some of their 
variations in adverse acoustic environments. In this 
evaluation, to be independent of an underlying noise 
reduction method, the standalone performance of the 
noise PSD estimators is measured with respect to the ref-
erence noise PSD that is obtained by smoothing the noise 
STFT. To do so, both the mean of a spectral distance 
measure and the variance of the estimators are compara-
tively assessed and through a variety of non-stationary 
noise types, the robustness of the noise estimators in ad-
verse environments is examined. In this regard, a total of 
8 algorithms with their variations including the MS [76] 
method, the IMCRA [80] method, a subspace decomposi-
tion based approach [110] and the MMSE-based method 
[105] have been implemented and compared.

First of all, it is concluded that any deviation from the 
specific parameter setting suggested by each algorithm, 
such as that for the amount of STFT overlap, deterio-
rates the performance of the algorithm under investiga-
tion. Next, it is found that some of the noise estimators 
are more sensitive to the level of SNR than the others. In 
this sense, while the IMCRA method performs very well 
in low SNRs, by increasing the SNR, the estimation error 
measure increases for this method. This is despite the 
fact that the MS and MMSE-based methods are more ro-
bust to the fluctuations in the noise level. Another main 
conclusion is that when the noise PSD does not change 
rapidly in the time, most of the algorithms perform simi-
larly, whereas for non-stationary noise a few methods 
show to be more robust. The most robust noise estima-
tor, however, based on the experiments in [109], is found 
to be the MMSE-based method in [105]. The subspace 
decomposition based approach in [110] also provides 
similar performance in most of the noise scenarios with 
inferior performance in others.

At the end of this section, it should be noted that even 
though there are numerous methods in the literature 
targeting the noise PSD estimation topic, this problem is 
still challenging in low SNR conditions and fast-changing 
non-stationary noise environments. Therefore, there is 
room for further research on this topic in the future in 
order to improve the accuracy (reduce the error vari-
ance) of the current approaches and make their tracking 
ability robust against sudden changes in the noise level.

C. Speech Enhancement in the Modulation Domain
Modulation domain processing has found applications in 
areas such as speech coding, speech recognition, speak-
er recognition, objective speech intelligibility evaluation 
as well as speech enhancement. There is considerable 
psychoacoustic and physiological evidence to support 
the importance of the modulation domain in speech 
signal processing. While the envelope of the acoustic 
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amplitude spectrum is capable to represent the shape 
of the vocal tract, the modulation spectrum represents 
how the vocal tract changes by time. In fact, it is these 
temporal changes that convey most of the linguistic in-
formation (or intelligibility) of speech signal [111].

The speech enhancement techniques discussed so 
far employ the analysis-modification-synthesis (AMS) 
framework to perform enhancement in the acoustic 
spectral domain. Speech enhancement in the modu-
lation spectral domain is an extension of the acous-
tic AMS framework to include modulation domain 
processing features. Firstly introduced by Atlas et al. 

[112], the short-time modulation spectrum is basically 
a function of time, acoustic frequency and modula-
tion frequency. Whereas the acoustic spectrum is the 
STFT of the speech signal, the modulation spectrum at 
a given acoustic frequency is the STFT of the time se-
ries corresponding to the acoustic spectral amplitudes 
at that frequency. More specifically, the modulation 
spectrum can be expressed using STFT analysis as the 
following [113]

	 ( , , ) ( , ) ( )k m X k l w l eX /

l

j ml M2h h= -
3

3
r

= -

-/ 	 (38)

where h  is the acoustic frame number, m refers to the in-
dex of the discrete modulation frequency, M is the mod-
ulation frame duration (in terms of acoustic frames) and 
( )w h  denotes a modulation analysis window function. 

The spectral subtractive methods discussed in Section 
II can now be implemented in the short-time modula-
tion domain defined by (38) instead of the conventional 
STFT domain. In [113], to obtain the best performance, 
it is proposed to use the following generalized spectral 
subtraction in the modulation domain
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with t1, t2 and t3 the fix parameters of the spectral 
subtraction scheme. The estimate of the modulation 
amplitude spectrum of the noise, ( , , )k mD ht , is obtained 
using a decision from a simple voice activity detector 
(VAD) applied in the modulation domain. Note that, 
in order to keep the estimated modulation amplitude 
spectrum, ( , , )k mA ht , from approaching very small val-
ues, a flooring scheme has been applied in the second 
branch of (39). It is stated in [113] that unlike the acous-
tic phase spectrum, the modulation phase spectrum 
contains important information about the speech sig-
nal, yet, the estimated modulation phase spectrum is 
taken as the acoustic phase spectrum of noisy speech. 
Finally, the estimate of the modified acoustic amplitude 
spectrum, i.e. the STFT amplitude ( , )A k lt , is obtained by 
taking the inverse STFT of ( , , )k m eA ( , , )j k mXh hHt  followed 
by overlap-add with synthesis windowing. A block dia-
gram of the general scheme of the spectral subtraction 
in the modulation domain is shown in Fig. 5. The most 
challenging problem with the speech enhancement in 
the modulation domain, however, is that the enhanced 
speech generally suffers from temporal slurring dis-
tortion which appears as speech unintelligibility. On 
the other hand, the conventional STFT domain tech-
nique does not suffer from the slurring distortion, even 

Figure 5. Block diagram of the modulation domain speech 
enhancement procedure [113].
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though it is less effective at removal of background 
noise and suffers from the musical noise effect. Thus, 
it was proposed in [113] to exploit the strengths of the 
two methods, while trying to avoid their weaknesses, 
by combining (fusing) them in the acoustic STFT do-
main, as the following scheme

	 ( , ) ( ) ( , ) ( ( )) ( , )k l k l k l1( ) ( )1 2c cU UA A A= + -t t t 	 (40)

with ( , )k l( )1At  and ( , )k l( )2At  denoting the STFT ampli-
tude spectra estimated through the acoustic and modu-
lation STFT techniques, respectively, and ( )cU  is the 
fusion weighting function. The latter is suggested to be 
an increasing function of the a posteriori SNR c , in or-
der to give emphasis to the modulation domain estima-
tion in lower SNRs while favoring the acoustic domain 
estimate in higher SNRs. Using an objective speech 
quality measure, namely the perceptual evaluation of 
speech quality (PESQ) as well as formal subjective lis-
tening tests, it was shown in [113] that the MMSE-based 
modulation domain technique results in improved 
speech quality with respect to the MMSE-based acous-
tic STFT domain technique. Furthermore, the fusion of 
the two techniques, i.e. the modulation and the acous-
tic domain, as in (40), results in further improvements 
due to the good compromise between different types of 
spectral distortions, namely musical noise and tempo-
ral slurring.

In [114], a few contributions to the basic MMSE-based 
modulation domain method in [113] have been made 
and investigated. These include the extension from the 
MMSE cost function to the log-MMSE case and use of 
speech presence probability (SPP) to involve the un-
certainty in the presence of speech in the gain func-
tion. In [115], motivated by psychoacoustic evidence 
of frequency selectivity in the modulation domain, the 
authors introduce the concept of frequency channel se-
lection in the spectral modulation domain as a potential 
means of improving the speech intelligibility. Therein, 
the SNR measure in the spectral modulation domain is 
employed to identify the modulation frequencies domi-
nated by speech and those dominated by noise. Next, 
the speech-dominated modulation frequencies are re-
tained, whereas the noise-dominated ones, which are 
detrimental to speech intelligibility, are discarded. This 
work has further been shown to be beneficial in speech 
recognition in the presence of noise. In [116], the famous 
method of Kalman filtering is investigated in the modu-
lation spectrum domain and its performance evaluation 
against time domain and STFT domain Kalman filtering 
demonstrates superiority in noise reduction and mini-
mal speech distortion. This is because the Kalman filter 
is basically a joint amplitude and phase spectrum esti-

mator, it is highly useful in modulation-domain process-
ing, as phase information plays an important role in the 
modulation spectrum domain contrary to the acoustic 
spectrum domain [113]. Also in [117], in order to pre-
serve the phase information of speech in the modula-
tion spectrum domain, it is suggested to perform the 
spectral enhancement on the real and imaginary parts 
of the complex-valued spectra separately. Objective 
and subjective evaluation experiments indicate that the 
proposed method outperforms the modulation domain 
amplitude spectral subtraction, nonlinear spectral sub-
traction and the conventional MMSE-based estimator in 
the STFT domain.

D. Speech Phase Estimation
Typical speech enhancement methods in the STFT do-
main modify only the amplitude spectrum and keep the 
phase spectrum of noisy speech unchanged. However, 
especially recently, there has been growing interest in 
the estimation of the speech spectral phase and aiming 
at further improvement of speech quality by employing 
a closer estimate of speech phase to the clean one than 
the noisy phase. In this subsection, we explain the rea-
son why most of the research in STFT-based noise re-
duction has been focused on amplitude estimation and 
why spectral phase estimation is recently becoming 
more attractive in the literature. Next, we present a brief 
overview of the most major and recent spectral phase 
estimation approaches in the STFT domain and draw a 
few conclusions. To this end, we mainly take advantage 
of the work by T. Gerkmann et al in [118] which presents 
a comprehensive overview on the history and advances 
in speech phase processing.

Early in the literature of speech enhancement in the 
frequency domain, Wang and Lim [14] conducted experi-
ments where the speech spectral phase was corrupted 
by white noise at different SNRs, while the amplitude 
remained the same. Their conclusion was that the dif-
ference in the output SNR for speech signals with vari-
ous noisy phases is not considerable, and therefore, 
enhancement of speech phase is not really important. 
Also, Ephraim and Malah [16] proved theoretically that, 
given the independence of speech spectral amplitude 
and phase, the MMSE optimal estimate of the spectral 
phase is actually the noise phase. Note that the indepen-
dence of speech spectral amplitude and phase is not gen-
erally true but is assumed to make the speech amplitude 
estimation mathematically tractable. As a consequence, 
the focus of attention in the spectral enhancement tech-
niques has mainly been on improving the speech ampli-
tude with using the unchanged noisy phase.

However, with the increase in processing power, re-
searchers have started investigating the role of spectral 
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phase in improving the speech quality over the past few 
years. Paliwal et al. [119] demonstrated through extensive 
subjective and objective performance evaluations that, 
given the STFT overlap is increased a bit, the performance 
of amplitude estimators can be significantly improved if 
combined with less noisy spectral phases. Also in [118], 
experiments have been done to show that part of the 
speech signal’s structure can be drawn from its phase in 
the STFT domain. Therein, spectrogram inspections have 
been done for speech phase, group delay and instanta-
neous frequency (IF). It is shown that, even though the 
spectrogram of speech phase does not carry much infor-
mation about the speech signal, the group delay and IF 
(which are both obtained from the phase) include similar 
structures to the speech amplitude. This experimentally 
proves the fact that speech phase contains useful infor-
mation about speech signal that can be employed to re-
cover clean speech.

In the following, we present a brief survey of the main 
directions that have been recently explored about the 
estimation of speech spectral phase according to [118]. 
These directions include real-time iterative spectrogram 
inversion (RTISI), sinusoidal modelling of speech phase, 
group delay and transient processing, and joint estima-
tion of speech phase and amplitude. The real-time itera-
tive spectrogram inversion (RTISI) is among the first 
techniques proposed for speech phase estimation. A 
detailed discussion of this techniques along with a few 
contributions to each of its steps have been provided in 

[120]. As Fig. 6 from [120] shows, this method, which is 
actually based on iterative phase estimation from ampli-
tude, consists of applying STFT synthesis and analysis 
iteratively with retaining the updated phases and then 
substituting the updated amplitudes by the given ones. 
The reasoning behind this approach is to exploit the 
correlations across neighboring STFT time frames to 
obtain an estimate of the spectral phase along with the 
time domain speech signal. Research in this direction 
has been going on and various contributions have been 
proposed on modifying the original technique to more 
efficient methods. As such, in [121], the idea of multiple 
input spectrogram inversion (MISI) has been proposed, 
where multiple signals can be reconstructed from their 
amplitude spectrograms and their mixture signal. 
Therein, it is shown that the signal spectral phase is a 
very useful side information which can be employed by 
imposing that the reconstructed complex spectrograms 
add up to the mixture complex spectrogram when es-
timating their phases, resulting in better signal recon-
struction quality. Another recent contribution in this 
direction is to extend the MISI method to modify both 
the speech amplitude and phase [122]. The latter has led 
to the informed source separation using iterative recon-
struction (ISSIR) method, which is specifically efficient 
in the context of informed speech source separation, 
where a quantized version of the oracle amplitude spec-
trogram is available.

Another main direction in this area is the method of 
sinusoidal model-based phase estimation presented re-
cently in [123]. Contrary to the aforementioned iterative 
approaches, this method does not require any estimate 
of the clean speech amplitude, and instead, the clean 
spectral phase is estimated by using only an estimate of 
the fundamental frequency that is blindly obtained from 
the noisy speech. However, the drawback is that since 
the sinusoidal modelling is reasonable only for voiced 
sounds, this approach cannot provide valid estimates 
of the spectral phase for unvoiced sounds such as frica-
tives or plosives [118].

Inherent speech information in the phase are not 
limited to voiced sounds, but are also present for other 
sounds, like impulses or transients, i.e. sounds of short 
duration and speech onsets. The speech structures in 
these sounds appear well in the group delay, as stud-
ied in [118], proving that group delay is a useful tool 
for phase processing [118]. In this sense, group delay 
has been employed in [124] as a means of performing 
phase-sensitive noise reduction. Therein, the authors 
propose to combine a group-delay based phase estima-
tor with a phase-aware amplitude estimator in a closed 
loop design which checks on the consistency of the esti-
mated amplitude and phase. Other than the group delay, 

Figure 6. Block diagram representation of the basic version  
of the RTISI method for phase estimation [120].
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the IF, corresponding to the temporal derivative of the 
phase, has also been employed in the literature for the 
detection of transient sounds. In [125] and references 
therein, by making use of the fact that the IF changes 
abruptly when a transient is occurred, algorithms have 
been proposed for the detection of transient sounds. 
These algorithms, however, are not only useful in the 
detection but also in the reduction of transient noises. 
According to [118], in the presence of transient noise 
with low SNR, the noisy phase is close to the approxi-
mately linear phase of the transient noise. This results 
in large artifacts if only a amplitude estimator is used 
along with the noisy phase. To overcome this problem, 
recently in [126], it has been proposed to use the idea 
of phase randomization. In this algorithm, the time-fre-
quency units which are dominated by strong transient 
noise are first detected through the phase-based detec-
tion of transient sounds, e.g. in [125]. Next, the phase of 
theses time-frequency units is replaced by a uniformly 
distributed random phase, a.k.a., the phase randomiza-
tion. This helps reducing the effect of the predominant 
linear phase of the transient noise.

Considering the joint estimation of the spectral 
amplitude and phase, the first recent work in this di-
rection has been proposed in [127] in the context of 
Wiener filtering. Contrary to a classical Wiener filter 
which only aims at the modification of the spectral 
amplitude, in [127], the relationship among STFT co-
efficients across time and frequency is considered in 
order to derive a Wiener filter which modifies both the 
amplitude and phase of the noisy speech. In this meth-
od, under Gaussian assumptions, a joint optimization 
on phase and amplitude is formed and solved through 
a conjugate gradient method. Performance assess-
ments show an improved source separation capability 
as compared to a few previous methods including the 
classical Wiener filter.

Another recent approach to jointly estimate the 
speech amplitude and phase has been presented in 
[128]. Therein, a joint MMSE-based estimator of ampli-
tude and phase is derived directly in the STFT domain, 
given that an uncertain initial phase estimate is avail-
able. This leads to a phase-aware complex estimator of 
STFT coefficients referred to as the complex estimator 
with uncertain phase (CUP). The key idea in the deriva-
tion of CUP in [128] is to incorporate prior knowledge 
about speech phase by using a Bayesian framework 
for phase estimation. In this context, ML and MAP es-
timators for the spectral phase are derived, assuming 
complex Gaussian distribution and Chi distribution re-
spectively for noise STFT coefficients and speech ampli-
tudes. Whereas the ML estimator is simply equivalent to 
the noisy phase of speech, the MAP estimator allows for 

the incorporation of the prior knowledge of the phase. 
Furthermore, a joint MMSE-based estimator of the clean 
speech amplitude and phase is derived, given uncertain 
prior knowledge of the speech phase. It is shown that 
while combining a deterministic speech phase estimate 
with the amplitude may result in annoying artifacts in 
the enhanced speech (as investigated in [129]), incor-
porating the uncertainty of the prior phase estimate 
using the proposed Bayesian estimators reduces these 
artifacts. Other interesting aspects of this approach in-
clude its capability to be used as a statistically optimal 
phase estimator at the output of an MVDR beamformer 
and also applicability in a multi-speaker scenario when 
a multi-pitch tracker is employed to estimate the prior 
phase information.

Apart from the investigation of different methods 
of phase estimation, there exists a question of how an 
available standalone spectral phase estimate can be 
employed best to improve speech quality. While it may 
seem that the most obvious way to do this is to combine 
the separately enhanced amplitude with the estimated 
phase, according to Wang and Lim [14], combining an 
independently estimated amplitude and phase does not 
result in improvements. This can be justified due to the 
inconsistency between the independently improved 
amplitude and phase. Instead, a phase-aware ampli-
tude estimator, e.g. [129], should be used in which the 
amplitude estimator is derived based on an available 
phase estimate. In [129], it is also demonstrated that the 
spectral phase can be employed to derive an improved 
version of speech amplitude estimator being capable 
of reducing noise outliers that are neglected by the un-
derlying noise PSD estimator. This idea has recently 
been exploited in [130] in order to propose amplitude 
estimators that, contrary to the conventional amplitude 
estimators, treat the spectral phase as a determin-
istic parameter. Based on an available estimate of the 
spectral phase, the amplitude estimator is then derived 
and it is shown that the suggested estimator has the 
potential to provide even further improvements given 
more accurate estimates of the spectral phase. Thus, 
an efficient way to combine a phase estimate with the 
corresponding enhanced speech amplitude is to use 
the available phase estimate in the amplitude estimator 
given by [130] and then reconstruct the enhanced sig-
nal using the available phase and obtained amplitude. 
Another method for combining amplitude and phase 
estimates is described in [124] where it is proposed to 
place a phase-aware amplitude estimator in the closed 
loop of an iterative approach. This approach is enable to 
enforce consistency within only a few iterations.

As a final conclusion to this section, it should be re-
marked that speech phase processing is an exciting and 
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newly emerged field of research, which is capable of ex-
tending further the current limits on the performance 
of amplitude estimators in the STFT domain and make 
them more robust in challenging acoustic environments.

E. Estimation of Noise PSD Matrix
The noise reduction performance of all beamforming 
techniques studied in Section II-B1 depends on the ac-
curacy in the estimation of the underlying noise PSD ma-
trix to a large extent. Beamformers such as MVDR and 
multi-channel Wiener filter use the noise spatial informa-
tion contained in the noise PSD matrix to be adaptively 
steered in the direction of interest and reduce the effect 
of noise impinging on the array from other directions. 
An inaccurate estimation of the noise PSD matrix can re-
sult in unsuccessful cancellation or even amplification 
of noise directions and also annoying distortion in the 
enhanced speech. Therefore, for the spatial beamform-
ers to be able to efficiently adapt to the surrounding 
noise field, accurate knowledge of the noise PSD matrix 
is necessary [58]. As discussed in Section II-C, there are 
numerous method for the estimation of the noise PSD in 
the case of single channel. Yet, until almost recently, the 
estimation of the noise PSD matrix in a generic non-sta-
tionary scenario was not well explored. It is only within 
the past few years that growing research has been initi-
ated and continuing in this direction. In this section, we 
discuss in brief the most important approaches to noise 
PSD matrix estimation with a focus on the most recent 
methods. We use the same notations used in Section II-B.

By its definition, the noise PSD (or namely correla-
tion) matrix, VVR , is
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As it is deduced from (41), here, the problem of noise 
PSD estimation can be extended to the noise PSD ma-
trix estimation with its diagonal elements as the noise 
auto-PSDs, {| | }E Vi

2 , at individual channels and the 
non-diagonal elements as the complex noise cross-PSDs, 
{ }E V V*

i j , between each two microphones. The extension 
of noise PSD estimation techniques to the noise cross-
PSD estimation, however, is not often straightforward. 
This is due to the fact that, unlike noise PSD, the cross-
PSD terms are not real-valued and following convention-
al smoothing, minimum tracking or soft-decision based 
noise estimators is not reasonably accurate. Despite this, 
a few efforts have been made rather recently to directly 
extend/modify the basic noise PSD estimation methods 
to handle the estimation of the cross-PSD. In this sense, 

the following smoothing scheme is often used in a soft-
decision context to update each of the cross-PSD terms
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with ( , )k lv vi jvt  denoting the estimate of the cross-PSD 
term { }, ( , )E V V k l*

i j sa  as the smoothing parameter, and 
( , )X k li  and ( , )X k lj  denoting the noisy observations 

in the ith and jth channels respectively. In [131], by us-
ing a joint VAD for both of the two channels, presence 
of speech is detected at each time-frequency unit and 
then the basic MS method along with (42) are used to 
update the noise cross-PSDs in time-frequencies where 
speech does not exist. Yet, since the noise cross-PSDs 
are updated only at speech pauses, this approach can-
not trace fast changes in a non-stationary noisy field. In 
general, denoting by ( , )k lH0  and ( , )k lH1  respectively 
the states where absence and presence of speech is de-
tected by a VAD, the VAD-based cross-PSD estimators 
act as the following scheme
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where the updating of ( , )k lv vi jvt  is performed by an ex-
tension of a noise PSD estimation method. Later in [132], 
a more advanced extension of the MS approach for noise 
PSD estimation was presented and then extended to 
cross-PSD estimation. The entire algorithm is soft-de-
cision based and no VADs are used. Performance com-
parisons of the suggested approach to two other noise 
cross-PSD estimators based on VAD and MS revealed 
improvements in noise reduction.

Another group of methods for noise PSD matrix esti-
mation assume certain structures for the type of noise 
field. The most important methods in this group are 
those considering a diffuse noise field which is based 
on the fact that for the case of a spherically or cylindri-
cally isotropic diffuse noise field, the coherence func-
tion, ( , )k lv vi jC , is ideally known and depends only on 
the frequency and the distances between microphones, 
as the following [133]

	 ( , )
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with ~  the angular frequency defined as /k K2r , fs the 
sampling frequency, d ,i j  the distance between micro-
phones i and j, and C as the sound velocity. However, 
imposing a diffuse noise field assumption is not always 
realistic and these coherence-based methods cannot 
be used for the general scenario of spatially (across 
microphones) highly correlated noise. To improve the 
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performance of such methods, a two-microphone ap-
proach for the estimation of noise cross-PSD based on 
the assumption of a diffuse noise field has been proposed 
in [134]. In this approach the speech phase information 
has been employed to estimate the noise cross-PSD, 
which in turn, is used to calculate a coherence-based 
gain function for noise reduction. In the same direction, 
the same authors present another two-microphone 
method in [135] where the noise cross-PSD and a noise 
reduction filter gain are iteratively estimated. The filter 
gain is used to mitigate the speech components in the 
estimated noise cross-PSD in order to avoid leakage of 
speech into the noise estimates. Later in [133], instead of 
directly estimating the noise cross-PSDs and using them 
in a beamformer, a dual-microphone speech enhance-
ment technique is suggested based on the coherence 
function. Without requiring to estimate noise statistics 
directly, this technique utilizes the coherence function 
between the speech and noise sources as a criterion 
for noise reduction and formulated a filter whose coef-
ficients are dependent on the estimated coherence func-
tion. The suggested method was evaluated particularly 
in a dual-microphone application with highly spatially 
correlation noise and yielded a substantial improve-
ment with respect to conventional beamforming. More 
recently in [136], another dual-microphone approach 
has been proposed, which is particularly useful in a mo-
bile phone in hands-free position. In this work, instead 
of using predefined models for the coherence function, 
a single microphone noise PSD estimation algorithm 
based on the SPP and a dual microphone technique ex-
ploiting the coherence properties of the speech source 
and the background noise are combined. Therein, a new 
technique is presented to estimate the coherence func-
tion which is not practically known.

The idea of the SPP has primarily been used in the 
context of noise PSD estimation particularly by the fa-
mous IMCRA method of Cohen [80]. Souden et al. ex-
tend this idea to the multi-channel case in [137] based 
on Gaussian models of speech and noise. The principle 
contribution in [137] is to extend the definition of the 
SPP from { ( , )}X k lP H1 ;  to { ( , )}X k lP H1 ;  for the multi-
channel case in a Bayesian framework. The authors use 
a fixed a priori SPP, { }P H0 , and derive a closed-form 
expression for the multi-channel SPP under the assump-
tion that the speech and noise components are complex 
multivariate Gaussian and that the real and imaginary 
parts of all signals are uncorrelated and identically dis-
tributed. It is shown by theoretical and numerical evalu-
ations that the suggested multi-channel SPP increases 
the detection accuracy of speech as compared to the 
classical single-channel SPP. Later in [138], the authors 
employ the proposed multi-channel SPP along with an 

alternative formulation of the IMCRA method to pro-
pose a recursive algorithm for the noise PSD matrix 
estimation. Therein, the multi-channel SPP is employed 
for the accurate detection of speech components and 
then an iterative modification of the IMCRA approach 
is performed for tracking the noise PSD matrix. The ith 
iteration of this algorithm can be summarized as the 
following [138]
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As it is observed, the estimated multi-channel SPP, i.e. 
{ | ( , )}X k lP H ( )i

1 , which is used to obtain the smooth-
ing parameter ( , )k l( )

v
ia  in the second line, is itself a 

function of the noise PSD matrix ( , )k lVV
( )i 1R - , as indi-

cated in the first line. Thus, a recursion exists between 
the SPP and the noise PSD matrix, which has to be 
conducted until convergence is reached. The perfor-
mance of the proposed algorithm is assessed by using 
it in different beamformers for noise reduction in vari-
ous conditions including stationary or non-stationary 
noise and in anechoic or reverberant acoustic rooms. 
It is demonstrated that good performance in terms of 
speech detection, noise tracking and noise reduction is 
obtained. As well, the proposed multi-channel SPP in 
[137] has been more recently employed in [139] in or-
der to derive an improved multi-channel Wiener filter. 
The latter, as compared to using the noise PSD matrix 
estimation in [138] in beamforming, helps significantly 
reduce the background noise while suffers from only a 
little speech distortion.

Hendriks and Gerkmann investigate the noise PSD 
matrix estimation problem from another aspect in [140]. 
Therein, they present a general approach which can 
be applied to a non-stationary noise scenario without 
adopting a VAD or a coherence function for the noisy 
observations or considering any assumptions about 
the distribution of noise or speech. Rather, they exploit 
the fact that if the steering vector, i.e. A in (16), of the 
speech source is known, a noise reference can be cal-
culated, that is independent of any speech components. 
Specifically, the noise reference between the two micro-
phones i and j is given as [140]

	 P X A
A X V A

A V,i j i
j

i
j i

j

i
j= - = - 	 (46)

with Ai as the ith element of the steering vector A. This 
noise reference can be exploited to estimate the cross-
PSD term, based on the conventional assumption that 
speech and noise are uncorrelated and that there is 
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ideally no speech component in P ,i j  in (46). In this re-
gard, the following expression can be derived [140]

	 { }E P X A
A

,
*

v v i j j
j

i
v
2

i j jv v= +t 	 (47)

Therefore, the estimation of the cross-PSD term, 
v vi jvt , reduced to the estimation of { }E P X, *

i j j  and v
2
jv , 

which are, respectively, estimated by a simple recur-
sive smoothing and a single-channel noise PSD estima-
tor from the literature. However, both of these estima-
tion procedures are not error-free and they reduce the 
accuracy of the proposed method. The authors suggest 
to use the Hermitian symmetry property of the PSD 
matrix and calculate the ultimate estimate of v vi jv  as 
the average of the two terms v vi jvt  and *

v vj ivt^ h  obtained 
from (47). Moreover, it is shown that if the proposed 
noise PSD matrix estimator is employed in an MVDR 
beamformer under far-field and free-field conditions, 
the ultimate form of the MVDR weights become inde-
pendent of the underlying noise auto-PSD estimates 
and therefore, the estimation error decreases even 
further. Performance of the suggested noise PSD ma-
trix estimation approach is evaluated by employing 
it in an MVDR beamformer in noisy and reverberant 
environments and measuring different quality objec-
tives and the superiority of the suggested method is 
proved with respect to a few other method such as 
VAD-based noise estimation and the GSC method. How-
ever, it should be noted that perfect knowledge of the 
steering vector A is assumed in this approach, and this 
assumption, particularly in reverberant environments, 
is not quite realistic. Since in such environments, this 
assumption is equivalent to knowing the transfer func-
tion of the acoustic room which is not often available. 
The main idea in [140], which is based on blocking the 
signal components in noisy observations prior to the 
calculation of the noise PSD matrix, has been also ex-
ploited in [141]. Therein, a blocking matrix, similar to 
that in the GSC method, is used to mitigate the speech 
components and the resulting output is used in an ML 
framework to estimate the noise PSD matrix. Evaluation 
of this method shows satisfying performance for high 
SNR values where the speech component is dominant.

As two more recently proposed approaches to noise 
PSD matrix estimation in a generic non-stationary noise 
field with no limiting assumptions, the works in [142] and 
[143] can be mentioned. The work in [142], which is based 
on the popular IMCRA method consists of two main con-
tributions. The first contribution is an improvement to 
the single-channel IMCRA method, where a special noise 
level detector is employed in order to enhance the noise 
tracking capability of the original IMCRA. The second con-
tribution concerns the estimation of the noise cross-PSD 

by means of a smoothed cross-periodogram. The latter is 
obtained by using estimated noise-only components de-
rived as residuals after applying speech enhancement on 
the noisy observations at each channel. Evaluation of the 
suggested approach shows its advantage when used by 
an MVDR beamformer in noisy and also reverberant en-
vironments. As well, the robust noise PSD matrix estima-
tion approach presented in [143] assumes a non-station-
ary noise field without prior knowledge about the noise 
or speech. In this approach, a smoothing scheme for the 
noise PSD estimation is proposed, which takes advantage 
of the close subsequent speech frames in addition to the 
current and past frames. The smoothing parameter in the 
proposed smoothing scheme is calculated in as a func-
tion of an overall SNR measure in all channels. Since the 
latter is obtained based on an available estimate of the 
noise PSD matrix, similar to [138], the smoothing param-
eter becomes a function of the noise PSD matrix and thus 
a recursive algorithm is formulated. As a second stage, an 
extension of the MS approach is applied over the primary 
estimate of the noise PSD matrix obtained from the recur-
sion, in order to increase the noise estimation accuracy. 
The proposed recursive method converges within only 
two iterations, and thanks to its increased accuracy in the 
second stage, it outperforms two other recent noise PSD 
matrix estimation methods in the literature.

IV. Summary and Conclusions
This work presented an overview on different aspects of 
noise reduction methods in the STFT domain. In gener-
al, the straightforward implementation and low compu-
tational costs have made these methods appealing for 
practical and real-time applications. In Section II, a brief 
review of the conventional methods in this field was 
presented. In the case of single-channel approaches, we 
studied in brief spectral subtractive methods, Wiener 
filtering based methods, estimators of speech STSA in-
cluding Bayesian (MMSE) and MAP approaches and es-
timators of the complex speech STFT coefficients. In the 
case of multi-channel speech enhancement, we briefly 
reviewed the most important conventional beamform-
ing and post-filtering techniques. The former includes 
DAS beamformer, multi-channel Wiener filter and its 
distortionless version, maximum SNR spatial filter and 
the MVDR beamformer; and the latter includes Zelins-
ki’s post-filter, Wiener-based and coherence-based post-
filters, and a special post-filtering method for the GSC 
beamformer. This section is followed by a brief review 
on noise estimation methods and performance mea-
sures for speech enhancement.

Section III discussed the most recent contributions 
in STFT-based noise reduction algorithms. In subsec-
tion A, the use of super-Gaussian distributions and the 

Authorized licensed use limited to: McGill University. Downloaded on November 28,2022 at 07:10:27 UTC from IEEE Xplore.  Restrictions apply. 



third quarter 2016 		IEEE   circuits and systems magazine	 73

estimation of their parameters to model the speech 
prior in STSA estimators were investigated. It is notable 
that all these distributions are special cases of the GGD, 
and therefore, the underlying STSA estimators differ 
mostly in the parameter selection of the speech prior. 
It can be concluded that whereas the investigation of 
more sophisticated Bayesian cost functions (than those 
presented in Table 2) has not been considered much for 
the past few years, there has been growing interest in 
the literature in the employment of more perceptually 
meaningful prior distributions with adaptation of their 
parameters to the speech STSA. In this regard, since 
there has not been an optimal scheme for the parameter 
selection nor a unified criterion for the adaptation of the 
speech prior parameters, further research is required 
to enhance or optimize the performance of STSA estima-
tors with parametric speech priors.

Subsection II-C covered the most famous methods of 
noise PSD estimation, which include VAD-based meth-
ods, MS tracking, IMCRA, and the more recent statistical 
model-based approaches such as MMSE, MAP and ML 
methods. Contrary to the hard-decision (i.e. VAD-based) 
methods, which tend to estimate the noise PSD only in the 
absence of speech components, the soft-decision meth-
ods are able to potentially update noise PSD estimates in 
all speech frames. It is well-known that the soft-decision 
group of methods outperforms the hard-decision group. 
Despite this, still, approaches involving a combination 
of the two group of methods receives attention in the 
literature. Also, various attempts have been made to im-
prove the empirical schemes and experimentally chosen 
parameters of the MS and IMCRA approaches. In doing 
so, decreasing the estimation error variance and a faster 
tracking of abrupt noise changes have been targeted the 
most. Even though the performance of noise estimation 
methods depends to a high degree on the noise condi-
tions, it appears that the recently proposed statistical 
model-based methods, especially the MMSE-based ap-
proach, are able to offer good performance with more ro-
bustness to adverse non-stationary noise conditions.

Another appealing direction recently suggested 
is the spectral subtraction in the modulation domain 
which was reviewed in subsection III-C. It is concluded 
that there exists possibility to improve the performance 
of the STFT-based noise reduction methods by imple-
menting them in the modulation domain at the cost of 
only an additional Fourier and inverse Fourier trans-
forms. Also, fusion of this domain with the conventional 
STFT domain has been shown to be helpful in establish-
ing a trade-off between the drawbacks of each domain. 
So far, various modifications and improvements have 
been applied to this approach, most of which have been 
borrowed from the conventional STFT domain.

Speech phase processing in the STFT domain is an-
other topic which has, in the past few years, drawn lots 
of interest in the literature. This topic was studied in sub-
section D. Major phase estimation approaches proposed 
to date include real-time iterative spectrogram inversion, 
sinusoidal phase modeling, group delay and transient 
processing, and joint amplitude-phase estimation. The 
latter has been derived in a Bayesian framework and is 
more similar to the conventional amplitude estimators in 
the implementation. Based on extensive recent investiga-
tions, it is proved that using phase estimates instead of the 
noisy phase can provide further quality and intelligibility 
improvements, given that the estimated phase is properly 
combined with the estimated amplitude, e.g. used in a 
phase-aware amplitude estimator. However, as compared 
to speech amplitude estimation, phase estimation seems 
to be a more complicated problem with still many aspects 
to explore. Yet, with the increase in technology and the 
processing power, phase processing is an exciting area of 
research that is likely to lead to further push in the cur-
rent limits on speech enhancement.

Finally in subsection E, estimation of the noise PSD ma-
trix was investigated. Whereas numerous methods have 
been introduced for the noise PSD estimation, not as many 
have been suggested for the estimation of the noise PSD 
matrix so far. Compared to the noise PSD estimation, the 
problem here is more challenging as the cross-PSD is gener-
ally complex-valued and noise can also be spatially non-
stationary. Yet, recently, this topic has captured more at-
tention by trying to improve and then extend many 
single-channel noise estimation methods to their multi-
channel counterpart. A few extensions, in this regard, have 
been presented to estimate noise cross-PSD terms and then 
combine them with the corresponding auto-PSD terms to 
built an estimation of the noise PSD matrix consistently. 
Other than these extensions, a few important methods in-
clude coherence-based approaches, soft-decision methods 
based on multi-channel SPPs, the method of Hendriks and 
Gerkmann, and a few more recent combinational approach-
es. Still, with the large performance gap between the ideal 
noise PSD matrix estimation, i.e. by using noise-only sam-
ples, and the suggested methods, there is considerable 
room for further research in this newly explored topic.
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