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Abstract—This paper addresses the problem of centralized
transceiver design for multiuser MIMO amplify-and-forward
(AF) relaying within a cloud radio access network (C-RAN). The
aim is to optimize AF matrices of remote radio heads (RRHs)
acting as relays, in order to improve the reception quality at
the destinations while reducing network power consumption and
feedback overhead on the fronthaul links. A two-stage method is
proposed to solve this problem efficiently. The first stage relies
on interference leakage minimization subject to per-relay trans-
mit power constraints along with signal preserving constraints.
To reduce the total network power, RRH selection is achieved
by incorporating in the objective function a regularization term
that promotes group-sparsity among the RRHs. In the second
stage, to reduce feedback overhead, a different penalty term is
added that induces weight-level sparsity in the AF matrix of
each active RRH. For both stages, low-complexity iterative algo-
rithms based on the alternating direction method of multipliers
(ADMM) are developed to solve the corresponding regularized
problems with low complexity. Extensive simulations are per-
formed to demonstrate the explicit benefits of the proposed
design method, which results in notably lower power consump-
tion, computational complexity and weight feedback overhead
than conventional approaches.

Index Terms—ADMM, amplify-and-forward, cloud-RAN,
group-sparsity, multiuser MIMO, RRH, wireless relaying.

I. INTRODUCTION

NETWORK densification along with massive multiple-
input multiple-output (MIMO) processing are widely

recognized as key enabling technologies to meet the exact-
ing performance targets for fifth generation (5G) wireless
networks [1]–[4]. To fully reap the benefits of these new
technologies, however, advanced interference coordination and
resource allocation schemes need to be employed. The low-
cost implementation of these sophisticated schemes will be
facilitated by an innovative centralized radio access network
(RAN) architecture, called the cloud-RAN (C-RAN) [5].
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In the C-RAN architecture, traditional base station function-
alities are apportioned between a centralized pool of baseband
units (BBUs) and spatially distributed remote radio heads
(RRHs) [6]. The BBUs handle the demanding baseband sig-
nal processing functions while the RRHs provide wireless
connectivity to the user equipments (UEs). Besides reducing
deployment and maintenance costs, C-RAN can improve the
network spectral efficiency by exploiting cloud computing to
jointly process user data and perform interference coordina-
tion. To enable the exchange of vast amounts of data between
the BBU pool and RRHs, comprising user data signals, chan-
nel state information (CSI), transceiver parameters and control
signals, low-latency high-capacity fronthaul links (e.g., optical
fibers) must be deployed. The use of powerful BBUs, multiple
RRHs and high-speed transport links inevitably introduces
additional power consumption across the network [7], which
has motivated various research efforts devoted to designing
energy-efficient, or “green”, C-RAN.

A. Related Works

Multiple-antenna solutions for green C-RAN have been
extensively studied in multi-cell downlink (DL) and uplink
(UL) setups. A group sparse RRH beamforming framework
was proposed in [8] with the aim to minimize the total power
consumption in a C-RAN DL multicast scenario. The resulting
design method reduces the number of active RRHs, conse-
quently leading to lower network power consumption. The
effect of imperfect CSI under the same network setup was
addressed in [9] and a robust version of the group sparse
beamforming method was proposed. To enhance group spar-
sity in DL multicast beamforming, a smoothed lp minimization
approach relying on the iterative reweighted l2 minimization
algorithm was developed in [10]. Group sparse beamforming
still suffers from high computational complexity, especially in
the solution of the RRH ordering criterion needed to deter-
mine the active RRHs and associated fronthaul links. In [11],
by leveraging on Lagrange duality and random matrix theo-
ries, new approaches were proposed to reduce the complexity
of this crucial step.

The works in [12]–[14] addressed the joint problem of
user-RRH association and RRH DL beamforming design
by optimizing some alternative network performance met-
rics under a set of finite-capacity constraints on the fronthaul
or backhaul links. The joint DL and UL network power
minimization problem under C-RAN was investigated in [15],
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where the UL-DL duality was invoked to derive two near-
optimal beamforming solutions, respectively based on group
sparse optimization and relaxed integer programming. In [16],
the joint problem of RRH association, sub-channel assignment,
and power allocation for network sum-rate maximization in
single-carrier frequency division multiple access (SC-FDMA)-
based multi-tier C-RAN was studied, and a two-step iterative
algorithm was conceived to solve the underlying non-linear
mixed-integer problem.

A key requirement to fully leverage the performance bene-
fits of C-RAN is the availability of a high capacity fronthaul
connecting the RRHs and BBU pool. However, due to the
dense deployment of RRHs in C-RAN, the cost for provid-
ing such high-speed links may be extremely high, while in
certain locations, the installation of new fibers may not be
possible. For these reasons, practical C-RAN may rely on
fronthaul with limited bandwidth, including dedicated wireless
links [5], [7], [17]. Therefore, given fixed fronthaul capacity,
minimizing the performance loss due to quantization becomes
a primary issue. In this regard, some previous works have
focused on the design of robust quantization schemes for the
efficient transmission of baseband user signals over fronthaul
links in C-RAN, e.g., [18], [19].

The above works on green C-RAN focus mainly on coor-
dinated beamforming design in DL or UL setups, without
consideration of relaying strategies. In the context of existing
wireless standards such as Evolved Universal Terrestrial Radio
Access (E-UTRA) [20], Long-Term Evolution Advanced
(LTE-Advanced) [21] and Worldwide Interoperability for
Microwave Access (WiMAX) [22], cooperative relaying has
proven to be extremely valuable in extending cell coverage,
improving link quality, and increasing network capacity [23].
Consequently, it has attracted considerable attention in recent
years and is still being studied under a variety of new scenar-
ios, e.g., [24]–[28]. While it is anticipated that similar benefits
can be reaped from the use of cooperative MIMO relaying
in dense 5G networks[29], the use of RRHs as relays for
further improving coverage and performance under C-RAN,
along with the associated relay selection and transceiver design
algorithms, remain largely undisclosed.

In [30], the joint design of the wireless fronthaul and access
links for C-RAN was studied under the assumption that the
multi-antenna RRHs use either the decode-and-forward (DF)
or the decompress-and-forward (DCF) strategies to relay the
user signals from a BBU to the users. In [31], the design of a
multiuser amplify-and forward (AF) MIMO relaying subnet-
work within C-RAN was investigated from an energy-efficient
perspective, and a joint RRH selection and relay transceiver
optimization algorithm was devised to minimize the network
power subject to mean-square error-based quality-of-service
(QoS) constraints. While the AF scheme leads to reduced
processing delays and simplified implementation, the resultant
block-coordinate descent type iterative algorithm still exhibits
high computational complexity. Regarding the issue caused by
limited fronthaul capacity, we note that different from the DL
and UL scenarios, in a AF relaying scenario under C-RAN, the
RRHs will collect their received signals and then process and
forward them to the corresponding destination users. Hence,

in this case, attention should be focused on the quantization of
the optimized RRH transceiver parameters at the BBU pool,
which are fed back to the RRHs over the fronthaul links at
regular intervals.

B. Contributions and Paper Organization

In this paper, we present a full-fledged extension and
study of the concepts introduced in [32], where we inves-
tigated the problem of RRH transceiver optimization in
a multiuser amplify-and-forward (AF) relaying subnetwork
within C-RAN. We consider the scenario where multiple
source-destination pairs communicate with the aid of multiple
cooperative MIMO RRHs connected to a BBU pool. There
are three key aspects in designing practical green relay
transceivers for the C-RAN architecture. The major concern
in green communications is, of course, reducing the network
power consumption. Since the calculated RHH weights are
transmitted via fronthaul links, reducing the feedback overhead
is another important aspect. Finally, since the BBU pool is
simultaneously performing the transceiver design for multiple
clusters of source and destination users under mobility con-
dition, the required aggregate computational resources must
be minimized by developing low complexity design proce-
dures. Therefore, while focusing on improving the QoS at the
destination users, our design approach aims at: 1) Reducing
network power consumption by performing RRH selection; 2)
Reducing fronthaul feedback overhead by resorting to RRH
antenna weight selection and quantization; and 3) Developing
efficient design algorithms with low computational complexity.

The novel transceiver design algorithms that we propose
for MIMO AF relaying in C-RAN capitalize on sparse signal
processing techniques to address these aspects. Specifically, to
enforce a small number of active RRHs, group-level sparsity
is first employed, whereby selected AF matrices (correspond-
ing to inactive RRHs) are collectively zeroed. Subsequently,
to reduce fronthaul overhead, a form of weight-level sparsity
is utilized, whereby the number of non-zero weights asso-
ciated with each active RRH is reduced, so that more bits
can be allocated to the non-zero weight. Based on these
two different levels of sparsity, a two-stage RRH transceiver
optimization method with low complexity is proposed. Our
main contributions are summarized as follows.

• In the first stage, we perform joint RRH selec-
tion and transceiver optimization by formulating the
problem as a group sparsity-inducing interference leakage
minimization subject to per-relay power constraints and
linear signal preserving constraints at the destinations.
The problem is converted into a form suitable for appli-
cation of the alternating direction method of multipliers
(ADMM) [33]. A simple closed-form solution can be
derived for each one of the main ADMM steps, leading
to a very low-complexity iterative algorithm.

• In the second stage, given the selected RRHs, we re-
optimize their weights by solving a modified interference
leakage minimization problem, where the objective func-
tion is now penalized with a sparsity-inducing term at the
weight level. A low-complexity ADMM-based iterative
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algorithm is developed here as well for efficiently solving
the joint weight selection and design problem. Based on
the statistical properties of the optimized weights, we also
present a non-uniform scalar quantization scheme (based
on Lloyd-Max algorithm) for the purpose of weight
feedback on the fronthaul.

• We perform extensive simulation studies to evaluate the
performance of the proposed design method. Results
show that the latter can yield a satisfactory QoS
level at all destinations while significantly reducing the
total network power. When used in conjunction with
non-uniform scalar quantization, the weight selection
approach allows a significant reduction in the total num-
ber of bits needed for weight quantization. Finally, the
processing time of the proposed algorithms is signif-
icantly reduced as compared to benchmark methods
relying on external optimization solvers.

The rest of the paper is organized as follows. The
C-RAN-based multiuser relaying system model is introduced
in Section II. In Section III, the constrained and regularized
interference leakage minimization problem is formulated for
joint RRH selection and transceiver optimization, followed by
the development of the low-complexity ADMM-based algo-
rithm. In Section IV, the RRH weight selection method is
developed by resorting to weight-level regularization; non-
uniform scalar quantization is also investigated in this section.
Simulation results are presented and discussed in Section V.
Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL

We consider a multiuser relaying sub-network consisting
of L RRHs serving as AF relays and K pairs of source
and destination UEs, as depicted in Fig. 1. Each source UE
is paired with a single destination UE, both modeled as
single-antenna nodes due to their limited processing capa-
bilities and low power budgets. By contrast, the l th RRH,
l ∈ L = {1, 2, . . . ,L}, is equipped with Nl ≥ 1 antennas. A
narrowband flat-fading model is assumed for the radio chan-
nels between the UEs and RRHs. The CSI is assumed to
be known and remain constant within a given transmission
interval. There is no direct link between the source and desti-
nation UEs. In C-RAN architecture, all RRHs are connected to
a central node, namely the BBU pool, whose role is to select
and activate a subset of RRHs and design their AF transceiver
matrix; the entries of the computed AF matrices are then
quantized and fed back to the RRHs via the fronthaul links.

Communication is performed in a two-hop half-duplex man-
ner. During the first hop, the k th source UE, k ∈ K =
{1, 2, . . . ,K}, transmits its information symbol sk , mod-
eled as a zero-mean complex random variable with variance
E{|sk |2} = 1. Let hlk ∈ C

Nl×1 denote the channel vec-
tor between the k th source UE and the l th RRH. The latter
receives the superposition of the transmitted symbols from
each source UE, corrupted by additive noise. This can be
written as

rl =
K∑

k=1

hlk sk + nl , (1)

Fig. 1. Multiuser sub-network where communication between the source-
destination pairs is assisted by cooperative MIMO relays; under C-RAN, the
relay AF matrices are designed at the BBU pool and fed back in quantized
form to the RRHs via fronthaul links.

where nl ∈ C
Nl×1 is a spatially white noise vector, with zero

mean and covariance matrix Σl = σ2l INl
.

During the second hop, under the AF scheme, the l th RRH
first applies a linear transformation to rl , represented by the
matrix Bl ∈ C

Nl×Nl , and then transmits the resulting vector.
We assume that the average transmission power of the RRH
is constrained by an antenna power budget Pmax

l , that is,1

P tr
l = Tr

(
Bl

(
K∑

k=1

hlkh
H
lk + σ2l INl

)
Bl

H

)
≤ Pmax

l . (2)

The k th destination UE receives the sum of the transmitted
signals from each RRH along with additive noise, which may
be expressed as

dk =

L∑

l=1

gHklBl rl + nk = Sk + Ik + nk , (3)

where gHkl ∈ C
1×Nl denotes the channel vector between the

l th RRH and the k th destination UE, and nk is an additive
noise term with zero-mean and variance ς2k . In (3), the super-
imposed signal from the RRHs is expressed as the sum of
two distinct components, i.e., the desired signal Sk and the
interference leakage Ik :

Sk =

L∑

l=1

gHklBlhlk sk (4)

Ik =

K∑

j=1,
j �=k

L∑

l=1

gHklBlhlj sj +

L∑

l=1

gHklBlnl . (5)

The objective of the transceiver optimization for multi-
user MIMO relaying is to enhance the reception quality
of the desired signal Sk at each destination UE subject to
relaying power constraints, as specified by (2). Motivated
by interference alignment techniques [34], to achieve this
objective, we minimize the total interference leakage at all
destination UEs, defined as

∑K
k=1 E{|Ik |2}, while enforcing

1User symbols and noise terms are assumed to be mutually independent.
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a set of linear constraints meant to preserve the integrity of the
desired signal Sk . Using (4), these constraints can be stated as

L∑

l=1

gHklBlhlk = ck , ∀k ∈ K, (6)

where ck are predefined positive constants. Hence, the
interference leakage minimization problem can be written as

min{Bl |l∈L} I �
∑K

k=1 E
{|Ik |2

}
s.t. (2) and (6), (7)

where the total interference leakage can be expressed as

I =

K∑

k=1

⎛

⎝
∑

j �=k

∣∣∣∣∣

L∑

l=1

gkl
HBlhlj

∣∣∣∣∣

2

+

L∑

l=1

σ2l

∥∥∥BH
l gkl

∥∥∥
2

2

⎞

⎠. (8)

In this work, our aim is to solve the above problem within
the framework of green C-RAN. Consequently, minimization
of the total power consumption is our primary objective, which
is addressed in Section III by penalizing the objective function
so as to promote group-sparsity among the RRHs. However, to
further satisfy the requirements imposed by the C-RAN archi-
tecture, minimization of the fronthaul overhead is taken into
consideration in Section IV by penalizing the objective func-
tion in a different way, so as to promote weight-level sparsity
for the active RRHs. For each one of these sub-problems, an
efficient algorithm with low-complexity is developed to obtain
the desired solution.

III. RRH SELECTION SCHEME

In this section, we first reformulate (7) in a convenient
matrix form to simplify later derivations. We then incorporate
a regularization term to promote the deactivation of a subset
of RRHs and thus obtain an energy-efficient solution. Finally,
we propose an ADMM-based algorithm with low complexity
to solve the regularized problem.

A. Problem Reformulation

To obtain more compact expressions, we replace each AF
matrix by its vectorized version bl = vec{Bl} (obtained by
stacking the columns of Bl ) and collect the resultant relay-
ing vectors into a global relaying vector b � [bT1 , . . . ,bTL ]

T
.

For ease of presentation, let us rewrite the total interference
leakage I in (8) as I =

∑K
k=1(I1,k + I2,k ). Applying the

Kronecker product property vec(ABC) = (CT ⊗ A)vec(B),
I1,k can be expressed as

I1,k =
∑

j �=k

∣∣∣∣∣

L∑

l=1

(
h∗lj ⊗ gkl

)H
bl

∣∣∣∣∣

2

. (9)

Defining δ
(j )
k � [(h∗1j ⊗ gk1)

T , . . . , (h∗Lj ⊗ gkL)
T ]T ∈

C

∑
N 2

l ×1, the above expression further simplifies to

I1,k =
∑

j �=k

∣∣∣bH δ
(j )
k

∣∣∣
2
= bHΔkb, (10)

with Δk �
∑

j �=k δ
(j )
k δ

(j )
k

H
. Noting that INl

=
∑Nl

i=1 eie
H
i ,

where ei are the standard basis vectors, I2,k can be written as

I2,k =

L∑

l=1

Nl∑

i=1

σ2l gkl
HBleie

H
i BH

l gkl . (11)

Applying the same Kronecker product property as above, this
latter expression simplifies to

I2,k =

L∑

l=1

bHl Gklbl = bHGkb (12)

with Gkl � σ2l
∑Nl

i=1(ei ⊗ gkl )(ei ⊗ gkl )
H and Gk �

blkdiag{Gk1, . . . ,GkL}.
To complete the reformulation, we apply the property

Tr(ABAH ) = vec(A)H (B ⊗ I) vec(A) to the power con-
straint (2) and use the results in (9) and (12), which leads to

min
b

bHΘb (13a)

s. t. bl
HΨlbl ≤ Pmax

l , ∀l ∈ L (13b)

ΦH b = c, (13c)

where

Θ �
K∑

k=1

Δk +Gk , Ψl �
(

K∑

k=1

hlkh
H
lk + Σl

)
⊗ INl

, (14)

c � [c1, c2, . . . , cK ]T and Φ � [φl ,k ] ∈ C

∑L
l=1 N

2
l ×K

which is partitioned into L × K blocks, each given by
φl ,k = h∗lk ⊗ gkl .

Before proceeding to the optimum transceiver design, we
emphasize that at this stage of the formulation, nothing
prevents any of the RRHs from participating in the relay-
assisted transmission, potentially leading to a situation where
all RRHs are activated. Hence, the solution to the optimization
problem (13) is referred to as a non-sparse solution. In the fol-
lowing, we modify (13) by adding a regularization term, with
the aim of reducing the number of active RRHs while still
providing an acceptable QoS level.

B. Relay Selection via Group-Sparsity

We first note that according to (2) and (13b), the l th RRH
being inactive is equivalent to the condition ‖bl‖2 = 0.
Consequently, to have a small subset of active RRHs requires
that the solution vector b be group-sparse [8]. That is, B �
[‖b1‖2, . . . , ‖bL‖2]T only contains a reduced number of non-
zero elements. This property can be captured by the l0-“norm”
constraint ‖B‖0 < L.

Bearing in mind that our aim is to achieve energy effi-
ciency across the network, a group-sparse solution is desired.
Motivated by the widely used least absolute shrinkage and
selection operator (LASSO) method in machine learning [35],
an efficient way to promote group sparsity during optimization
is to penalize the objective function (13a) with an l1-norm
term on B, i.e., ‖B‖1 =

∑L
l=1‖bl‖2. More generally, we

penalize the objective function by the regularization term
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∑L
l=1 λl‖bl‖2, where λl > 0 is an adjustable parameter

representing the weight given to the l th RRH.
To further simplify the presentation, we define Ψ �

blkdiag{Ψ1, . . . ,ΨL} and x � Ψ1/2b = [xT1 , . . . , xTL ]T with

xl = Ψ
1/2
l bl . Note that Ψl in (14) is non-singular, which

implies that ‖xl‖2 = 0 if and only if ‖bl‖2 = 0. Hence,
both vectors x and b share the same group-sparsity structure.
Based on this observation, a regularized version of (13) can
be formulated as

min
x

xH Θ̆x+
L∑

l=1

λl‖xl‖2 (15a)

s. t. xHl xl ≤ Pmax
l , ∀l ∈ L (15b)

Φ̆H x = c, (15c)

where Θ̆ � Ψ− 1
2ΘΨ− 1

2 and Φ̆ � Ψ− 1
2Φ.

It can be seen that (15) is convex, and therefore can
be solved with global optimality using Newton-based inte-
rior point methods via standard optimization packages [36].
However, invoking general-purpose solvers becomes less com-
putationally efficient as the problem dimension increases. In
the current setup, the latter is defined by the number of
RRHs and the size of the antenna arrays, i.e.,

∑L
l=1Nl ,

which could be significant, especially in future wireless
networks employing millimeter-wave transmissions with mas-
sive antenna arrays. Besides, the BBUs are expected to
implement the transceiver design procedure repeatedly in real-
time as the channel conditions change due to user mobility,
and this for a large scale C-RAN consisting of several sub-
networks of the type described in Section II. Hence, in this
work, we develop an alternative approach that leads to a
low-complexity method to solve problem (15).

C. ADMM-Based Low-Complexity Algorithm

In what follows, we develop an algorithm for solving
the regularized relaying optimization problem (15) based on
ADMM [33]. In particular, we show that each one of the
main steps in ADMM admits a closed-form solution, which
significantly reduces the computational complexity of the
resulting algorithm.

To rewrite (15) in a form amenable to ADMM, we introduce
a synthesized copy of x, namely z, via the linear constraint
x = z. Defining the constraint sets

C1 =
{
x|Φ̆H x = c

}
(16)

C2 =
{
z|zHl zl ≤ Pmax

l , ∀l ∈ L
}
, (17)

(15) can be re-expressed as

min
x,z

xH Θ̆x+

L∑

l=1

λl‖zl‖2 (18a)

s. t. x ∈ C1, z ∈ C2, x = z. (18b)

The ADMM algorithm seeks to iteratively minimize the
augmented Lagrangian given by

Lρ(x, z, y) = xH Θ̆x+

L∑

l=1

λl‖zl‖2 +
ρ

2
‖z− x‖22

− 2Re
(
(z− x)H y

))
, (19)

where ρ > 0 is an internal parameter which remains con-
stant during the ADMM iterations, y denotes the Lagrange
multiplier associated with the constraint x = z, and Re(·)
extracts the real part of its argument. Clearly, solving (18)
becomes equivalent to the following problem,

min
x,z,y

Lρ(x, z, y) s. t. x ∈ C1, z ∈ C2, x = z. (20a)

The basic idea behind ADMM is to solve the above problem
with respect to x and z separately in an alternating manner, i.e.,
one variable at a time with the other being fixed. After each
round of update of x and z, a dual ascent update is performed
on y to ensure that x and z become closer to each other. In
effect, the optimization problem can now be decoupled into
two separate steps, both of which, interestingly, admit a simple
closed-form solution, as detailed below.

1) Updating x: The subproblem for x can be expressed
as minx∈C1 Lρ(x, z, y), with z and y fixed. Using (19), this
subproblem can further be expressed as the following linearly-
constrained quadratic program after neglecting all terms that
are independent of x:

xopt = argmin
x

xH Θ̆x+
ρ

2
‖z− x‖22 − 2Re

(
yH (z− x)

)

(21a)

s. t. Φ̆H x = c. (21b)

It is observed that the objective function (21a) is strictly
convex in x and the Slater’s constraint qualification holds,
i.e., (21) is strictly feasible. Hence, the Karush-Kuhn-Tucker
(KKT) sufficient conditions hold for the optimal solution xopt

together with some optimal dual variable νopt, yielding:
{
Qxopt = ρ

2z− y + Φ̆νopt

Φ̆H xopt = c,
(22)

where Q � Θ̆+ ρ
2 I

∑L
l=1 N

2
l

.
Re-arranging the first equation in (22), we obtain

xopt = Q−1
(ρ
2
z− y + Φ̆νopt

)
. (23)

To determine the value of the optimal dual variable νopt, we
substitute (23) back into the second equation of (22). After
some matrix manipulations, νopt can be expressed as

νopt = Q̆−1
(
c− Φ̆HQ−1

(ρ
2
z− y

))
, (24)

where Q̆ � Φ̆HQ−1Φ̆. Then substituting (24) back into (23),
the following closed-form solution is obtained

xopt = Q−1
((

I− Φ̆Q̆−1Φ̆HQ−1
)(ρ

2
z− y

)
+ Φ̆Q̆−1c

)
.

(25)

2) Updating z: Similarly, the subproblem for z can be
written as minz∈C2 Lp(x, z, y), where the values x and y are
obtained from the previous iteration. Observing that the first
term in (19) is independent of z, we can write

zopt = arg min
z∈C2

L∑

l=1

λl‖zl‖2 +
ρ

2
‖z− x‖22 − 2Re

(
yH z

)
.

(26)
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Algorithm 1 ADMM for RRH Selection

1: Initialization: primal variable z(0) (arbitrary non-zero
vector); dual variable y(0) = 0; set ADMM iteration
index j = 0

2: repeat
3: Update x(j+1) using (25)
4: Update z

(j+1)
l using (31) for all l ∈ L

5: Update the Lagrange multiplier y by

y(j+1) = y(j ) +
ρ

2

(
x(j+1)−z(j+1)

)

6: j ← j+1
7: until ‖r(j+1)‖2 ≤ εr and ‖s(j+1)‖2 ≤ εs

Decoupling (26) over each zl , we obtain L parallel subprob-
lems each expressed by

zoptl = arg min
‖zl‖22≤Pmax

l

λl‖zl‖2 +
ρ

2
‖zl − xl‖22

− 2Re
(
yHl zl

)
, (27)

where the original Lagrange multiplier is decomposed into
L such multipliers, i.e., y = [yT1 , . . . , yTL ]

T
. A closed-form

solution to (28) can be obtained based on the following lemma.
Lemma 1: Consider the following convex minimization

problem in C
n , where a is constant:

min
‖x‖22≤P

λ‖x‖2 +
ρ

2
xH x− 2Re

(
xH a

)
. (28)

The global minimizer xopt admits the closed-form solution

xopt =
a

‖a‖2
(ρ
2 + ηopt

) [‖a‖2 − λ]+ (29)

where [c]+ � max{0, c} and the optimal dual variable ηopt

associated with the quadratic constraint ‖x‖22 ≤ P is given by

ηopt =

[
[‖a‖2 − λ]+√

P
− ρ

2

]

+
. (30)

Proof: See the Appendix.
Using Lemma 1, the solution to (27) is directly obtained as

z
opt
l =

al
‖al‖2

(ρ
2 + ηl

) [‖al‖2 − λl ]+ (31)

where ηl = [
‖al‖2−λl√

Pl
− ρ

2 ]+ and al =
ρ
2 xl +yl .

In brief, both the updates of x and z are obtained in closed-
form at each iteration with the aid of (25) and (31). In addition,
the update step for z can be carried out in a parallel fashion
over each zl . The ADMM-based algorithm is summarized in
Algorithm 1, where the primal and dual residuals are defined
as follows (see [33]),

r(j+1) = x(j+1) − z(j+1), (32)

s(j+1) = −ρ

2

(
z(j+1) − z(j )

)
, (33)

and εr , εs > 0 denote the tolerance parameters.
Referring to Step 4 of Algorithm 1, the thresholding opera-

tor in (31) accounts for the possible group sparse property

associated with the outputs of the algorithm, i.e., some of
the elements in [‖z1‖2, . . . , ‖zL‖2]T are zero. Therefore, the
subset of active RRHs can be determined as:

A = {l ∈ L : ‖zl‖2 > 0}. (34)

Only the RRHs in the above subset will be considered in the
next step of RRH weight selection.

IV. RRH WEIGHT SELECTION SCHEME

In this section, we consider the problem of RRH weight
selection with the aim of reducing the number of non-zero
weights in the optimized RRH weight vectors. We then
develop an ADMM-based algorithm to solve the correspond-
ing regularized problem with low complexity. Finally, we
examine the use of non-uniform quantization for efficient feed-
back of the optimized non-zero weights over the fronthaul
links.

A. RRH Weight Selection via Weight-Level Sparsity

The objective of the RRH weight selection scheme is to
reduce the number of non-zero weights associated with the
active RRHs, which serves two complementary purposes. First,
given a fixed total number of bits for RRH weight quantiza-
tion, reducing the number of weights translates into more bits
being assigned to each non-zero weight, so that the quantiza-
tion error for these weights can be reduced. Second, when the
number of quantization bits for each weight is fixed, reducing
the number of weights leads to a corresponding reduction in
the total number of bits that need to be fed back to the RRHs.

To achieve this objective, the following hard sparsity con-
straint can be imposed:

‖xl‖0 ≤ Imax
l , l ∈ A, (35)

where Imax
l is a positive integer which constrains the number

of non-zero elements in xl . Then, the weight vectors for the
selected active RRHs can be optimized by solving

min
x̆

x̆H Θ̆Rx̆ (36a)

s. t. xHl xl ≤ Pmax
l , ‖xl‖0 ≤ Imax

l , ∀l ∈ A (36b)

Φ̆H
R x̆ = c, (36c)

where x̆ now only consists of weights from active RRHs, i.e.,

x̆ =
[
xl1 , xl2 , . . . , xl|A|

]
(37)

where {l1, . . . , l|A|} = A, and Θ̆R and Φ̆R are the reduced

versions of Θ̆ and Φ̆, respectively, with the elements corre-
sponding to the inactive RRHs removed. Exploiting estab-
lished results from the theory of sparse signal recovery [37],
the effect of the hard sparsity constraint (35) can be equiva-
lently captured by augmenting (36a) with an l1-norm regular-
ization term for each xl , yielding:

min
x̆

x̆H Θ̆R x̆+
∑

l∈A
γl‖xl‖1 (38a)

s. t. xHl xl ≤ Pmax
l , ∀l ∈ A (38b)

Φ̆H
R x̆ = c, (38c)
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where γl is a positive tuning parameter which controls the
sparsity level of each xl . At this point, it is worth noting that
in (38), the l1-norm term ‖xl‖1 is introduced to encourage the
sparsity at the weight level while in (15), the l2-norm term
‖xl‖2 is used to promote group sparsity, i.e., all weights in xl
are compelled to be zero simultaneously.

B. ADMM-Based Algorithm

Similar to Section III-C, we now proceed to derive an
ADMM-based low-complexity algorithm to solve (38). We
introduce a synthesized copy of x̆, i.e., η = x̆, and express (38)
in the following equivalent form:

min
x̆,η

x̆H Θ̆R x̆+
∑

l∈A
γl‖ηl‖1 (39a)

s. t. ηHl ηl ≤ Pmax
l , ∀l ∈ A (39b)

Φ̆H
R x̆ = c, x̆ = η. (39c)

The augmented Lagrangian function associated to (39) can be
expressed as

Lρ(x̆, η, ν) = x̆H Θ̆R x̆+
ρ

2
‖η − x̆‖22 +

∑

l∈A
γl‖ηl‖1

− 2Re
(
(η − x̆)H ν

)
, (40)

where ρ > 0 is a tuning parameter and ν denotes the
Lagrangian multiplier associated with the equality constraint
x̆ = η. Our goal is to minimize Lρ(x̆, η, ν) with respect to
the primal variables x̆ and η and the dual variable ν in a
Gauss-Seidel way.

To begin, note that by removing all the terms indepen-
dent of x̆ in (40), the resultant subproblem for the optimal x̆
becomes similar to (21). Therefore, after some manipulations,
the following result can be obtained:

x̆opt = P−1
((

I− Φ̆R P̆−1 Φ̆R
H
P−1

)(ρ
2
η − ν

)

+ Φ̆R P̆−1c
)
, (41)

where P � Θ̆R+ρ
2 I

∑
l∈A N 2

l
and P̆ � Φ̆R

H
P−1 Φ̆R.

Then, to update each ηl for l ∈ A, we need to solve the
following subproblem:

η
opt
l = arg min

‖ηl‖22≤Pmax
l

γl‖ηl‖1 +
ρ

2
‖ηl − xl‖22

− 2Re
(
νHl ηl

)
. (42)

To this end, we make use of the following lemma, the proof
of which is conceptually similar to the proof of Lemma 1 and
is omitted due to lack of space.

Lemma 2: Consider the following convex minimization
problem in C

n , where a = [a1, . . . , an ]
T ∈ C

n is constant:

min
‖x‖22≤P

λ‖x‖1 +
ρ

2
xH x− 2Re

(
aH x

)
. (43)

The global minimizer xopt admits the closed-form solution

xopt =
a

‖a‖2
(ρ
2 + μopt

) softλ(a), (44)

Algorithm 2 ADMM for RRH Weight Selection

1: Initialization: primal variable η(0); dual variable
ν(0) = 0; set ADMM iteration index j = 0

2: repeat
3: Update x̆(j+1) using (41)
4: Update η

(j+1)
l using (46) for all l ∈ A

5: Update the Lagrange multiplier ν by

ν(j+1) = ν(j ) +
ρ

2

(
x̆(j+1)−η(j+1)

)

6: j ← j+1
7: until ‖r̆(j+1)‖2 ≤ εr and ‖s̆(j+1)‖2 ≤ εs

where softλ(a) denotes the element-wise soft threshold-
ing operator with threshold λ, i.e., softλ(a) = [[|a1| −
λ]+, . . . , [|an | − λ]+]

T . The optimal dual variable μopt asso-
ciated with the quadratic constraint ‖x‖22 ≤ P is given by

μopt =

[‖softλ(a)‖2√
P

− ρ

2

]

+

. (45)

The solution of (42) follows directly from Lemma 2, i.e.,

η
opt
l =

al
‖al‖2

(ρ
2 + μl

) softγl (al ), (46)

where μl = [
‖softγl (al )‖2√

Pmax
l

− ρ
2 ]+ and al =

ρ
2xl + νl .

The ADMM algorithm for RRH weight selection is sum-
marized as Algorithm 2, where r̆(j+1) = x̆(j+1)−η(j+1) and
s̆(j+1) = −ρ

2 (η
(j+1) − η(j )) denote the primal and dual

residuals, respectively, and εr , εs > 0 denote the tolerance
parameters.

C. Non-Uniform Scalar Quantization

We now investigate the potential performance benefits of
the proposed weight selection algorithm when used in con-
junction with a practical quantization scheme. Uniform scalar
quantization has been considered in a number of prior works
on RRH transceiver optimization within C-RAN due its flex-
ibility and simplicity [7], [18]. However, it is well known
that uniform quantization is optimal only for uniformly dis-
tributed input data. For non-uniformly distributed data, it can
lead to an increase of the mean squared quantization error
(MSQE) by several dB [38]. Therefore, we first examine the
statistical properties of the optimized RRH weights, and on
this basis, further consider a non-uniform scalar quantization
scheme relying on the Lloyd-Max algorithm [39].

Let us denote by x̃ the vector that collects all the selected
non-zero weights from the output of Algorithm 2. For the
purpose of statistical analysis, x̃ is further normalized by

x̄ =
1

σ̂
(x̃− μ̂1), (47)

where μ̂ and σ̂ denote the sample mean and variance of the
elements of x̃, respectively, and 1 = [1, . . . , 1]T is an all-one
vector of appropriate dimension. As x̄ is complex valued, it
can be represented by the sum of its real and imaginary parts
as x̄ = x̄I + jx̄Q, where j =

√−1. We analyze the statistical
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properties of x̄ through simulations, as per the methodology
described in Section V.

We first generate a set of M independent normalized weight
vectors, where the real and imaginary parts of the i th nor-
malized vector are denoted by x̄

(i)
I and x̄

(i)
Q , respectively, for

i ∈ {1, . . . ,M }. We then construct two sets, i.e.,

XI =
{
x̄
(1)
I , . . . , x̄

(M )
I

}
, XQ =

{
x̄
(1)
Q , . . . , x̄

(M )
Q

}
. (48)

From the empirical distributions of XI and XQ it was observed
that the real and imaginary parts of the non-zero RRH weights
are approximately uncorrelated. Additionally, both the distri-
butions of real and imaginary parts follow bell-shape curves
similar to the Gaussian distribution. Hence, the uniform quan-
tization is not an optimal scheme for the RRH weight feedback
purpose.

We therefore consider the use of a non-uniform quantiza-
tion scheme. To obtain an optimal non-uniform quantizer in
terms of the partition regions and codewords, one can rely
on the Lloyd-Max algorithm [39]. This algorithm, however,
requires the distribution of the weight vector. We performed
the Shapiro-Wilk test [40] of the null hypothesis that the sam-
ples from XI and XQ follow Gaussian distributions. The null
hypothesis was rejected, so we do not assume that the samples
are Gaussian distributed. Instead, we rely on the empirical dis-
tribution (i.e., the discrete distribution of XI and XQ) for the
determination of the optimal non-uniform scalar quantization
levels.

For the real samples of the weight vector contained in XI ,
given a predefined number of quantization levels, say NI , let
us denote the initial codebook as c

(0)
I = [c

(0)
I,1, . . . , c

(0)
I,NI ]

T .
The codebook is then improved by the Lloyd-Max algorithm,
i.e., alternating between the following two steps, where the
superscript m denotes the iteration index:

1) Find the optimal partitions using the nearest-neighbor
condition with distance measure d(x, y) � |x − y|:

R(m)
i =

{
x ∈ XI : d

(
x , c

(m)
I,i
)

≤ d
(
x , c

(m)
I,j
)
, ∀j 
= i

}
. (49)

2) Update the codewords based on the centroid condition:

c
(m+1)
I,i =

1∣∣∣R(m)
i

∣∣∣

∑

x∈R(m)
i

x , i = 1, . . . ,NI . (50)

The same procedure can be applied to obtain the codebook
cQ for the imaginary samples in XQ.

Finally, to reconstruct the weight vector, the RRHs require
the knowledge of the sample mean and variance of the weight
vector [see (47)] and a bit map (consisting of zeros and
ones) indicating the selected non-zero RRH weights. Let us
denote the number of bits required for quantizing the sample
mean and variance by Qmean and Qvar, respectively. Further,
the number of bits required for transmitting the bit map is
Qmap =

∑L
l=1N

2
l . Therefore, given a total budget of Q bits

for weight quantization and feedback, the number of bits allo-
cated to each scalar weigh parameter (i.e., real or imaginary

Algorithm 3 Overall System Implementation at BBU Pool
1: Perform RRH selection using Algorithm 1
2: Perform RRH weight selection based on Algorithm 2
3: Re-optimize xl for the selected weights for l ∈ A
4: Quantize xl and send back to the corresponding RRHs.

part of a normalized RRH weight) is given by2

Qper =
1

2‖x̄‖0
(
Q −Qmean −Qvar −Qmap

)
, (51)

where ‖·‖0 gives the total number of non-zero RRH weights.
It is then expected that more bits can be allocated to non-
zero weights when weight selection is invoked compared to
the non-sparse method.

D. System Implementation

It is worth noting that the addition of the group and weight
level regularization terms in the objective functions of (15)
and (38) may lead to higher total interference leakage (also
referred to as “bias-variance tradeoff” in the machine learn-
ing literature on LASSO method [37]). In practice, however,
the final interference level can be reduced by solving for the
optimal RRH weights once more for those selected weights of
active RRHs from the previous stages. To conclude this sec-
tion, we summarize as Algorithm 3 the resulting overall system
implementation at the BBU pool, which comprises ADMM-
based RRH and weight selection, re-optimization and weight
quantization.

V. RESULTS AND DISCUSSION

In this section, numerical simulations are performed to
assess the performance of the proposed ADMM-based algo-
rithms. After describing the methodology, the overall RRH
transceiver optimization performance is studied in terms of
average SIR, average number of active number of RHHs
and average number of non-zero RHH weights. Moreover,
in order to demonstrate that the proposed group-sparse relay
transceiver design complies with the three main requirements
of green C-RAN-based communications, i.e., reduced network
power consumption, reduced fronthaul feedback overhead, and
low computational complexity design procedure, correspond-
ing simulation results are presented in separate subsections,
respectively. Finally, comparisons with existing methods under
a simplified beamforming scenario are presented.

A. Methodology

In our simulations, unless otherwise specified, we consider
a RRH sub-network consisting of K = 6 user pairs and L = 6
RRHs. For simplicity, the number of antennas and power bud-
get are identical for all RRHs, i.e., Nl = 4 and Pmax

l = 2W
for all l ∈ L. We note that these values, corresponding to a
small scale system, are of the same order as those used in
related works [8], [11] on group sparse beamforming under

2If Qper is fractional, we first assign �Qper	 to each parameter, and then
assign the remaining bits singly to a selected subset of the parameters.
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Fig. 2. Average SIR at destinations versus normalized RRH transmission
power.

Fig. 3. Average number of active RRHs as a function of λ for different
NTxP values.

C-RAN control. The channel coefficients and additive noise
terms are generated as independent and identically distributed
zero-mean complex circular Gaussian random variables. The
variance of the channel coefficients is set to unity while
the noise variance at the lth RRH, σ2l , is set according to
the desired value of the normalized RRH transmission power
(NTxP), defined as 	l = Pmax

l /Nlσ
2
l . All the simulation

results are averaged over 100 independent channel realiza-
tions. For the proposed ADMM-based algorithms, identical
values of λl ≡ λ and γl ≡ γ are used for all RRHs to sim-
plify the discussion (see (15a) and (38a)). Different algorithms
are considered for the purpose of comparison, as explained in
the corresponding subsections.

B. Performance of Overall System

The performance of the overall RRH transceiver
optimization specified by Algorithm 3, which performs
RRH selection followed by weight selection is evaluated
in Figs. 2–5. At this stage, no quantization scheme is
considered. The signal-to-interference ratio (SIR) averaged
over all destinations is adopted as an indicator of quality for

Fig. 4. Average number of non-zero RRH weights for different choices of
γ and NTxP values.

the received signals at the destinations, which is expressed as

SIR =
1

K

K∑

k=1

E
{|Sk |2

}

E{|Ik |2}
, (52)

where Sk and Ik are defined in (4) and (5), respectively. The
achieved SIR of the proposed scheme with different combi-
nations of (λ, γ), which affect the numbers of active RRHs
and non-zero weights, respectively, is compared with an upper
bound on performance, referred to as “non-sparse” approach
in the sequel. The latter is obtained by solving for the optimal
RRH weight vectors without employing any form of sparsity-
inducing regularization, i.e., no RRH and weight selection, as
obtained by setting λl = 0 ∀l in (15a). In Fig. 2, it is observed
that, as the values of λ and γ increase, the gap between the
proposed algorithm and the upper bound also increases owing
to the reduced number of RRHs and weights.

To gain more insight into the observed performance, we
further evaluate the average number of active RRHs involved
in the transmission and the total number of non-zero RRH
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Fig. 5. Total RRH network power consumption for different NTxP values
(Pmax

l = 2W, σ2l is varied).

weights. In Fig. 3, the former is shown as a function of λ
for different NTxP values. In each case, it is observed that
the number of active RRHs monotonically decreases as λ
increases. For instance, when λ reaches a value of 50, less
than 5 of the 6 available RRHs participate in the transmission,
on average, regardless of the RRH noise level; this number
drops to around 4 when λ further increases to 100. The effect
of varying the regularization parameter γ in controlling the
number of non-zero RRH weights is investigated in Figs. 4(a)
and 4(b), where the results are reported for different values
of NTxP. In Fig. 4(a), it is assumed that no RRH selection
is performed prior to weight selection with Algorithm 2, i.e.,
the number of active RRHs is 6 and the original number of
non-zero weights is 6 × 36 = 216. It is seen that the proposed
algorithm is capable of significantly reducing the number of
non-zero weights, e.g., by over 65%, but the required value
of γ depends on the NTxP level. In Fig. 4(b), RRH selection
is first performed using Algorithm 1 with λ = 100, leading
to an average of around 4.3 active RRHs, prior to the appli-
cation of Algorithm 2. The latter can still significantly reduce
the number of non-zero weights, e.g., by over 55% with an
appropriate choice of γ. Overall, Figs. 4(a) and 4(b) show a
similar trend, i.e., the number of non-zero weights decreases
with an increase in γ, as expected.

C. Network Power Consumption

To better appreciate the benefits of the proposed algorithms
in terms of energy efficiency, we examine the total power
consumption of the RRH subnetwork within C-RAN. For
each RRH, the following simplified power model is adopted
from [10]:

P rrh
l = P

amp
l + I (‖xl‖2)P sta

l , (53)

where Pamp
l denotes the power consumption of the RRH’s

power amplifier (PA), P sta
l denotes the static power consump-

tion of the fronthaul link and other RRH components, and I(x)
is the indicator function, i.e., I(x) = 1 for x 
= 0 and I(x) = 0
otherwise. The power consumption of the PA can be expressed
as Pamp

l = P tr
l /η, where P tr

l denotes the transmission power

of the RRH (see (2)) and η is the drain efficiency of the PA. A
representative value of η for a high-efficiency broadband PA
for next-generation wireless standards is 50% [41]. According
to (53), when an RRH and its corresponding fronthaul link
are switched off (sleep mode), we must have ‖xl‖2 = 0 and
therefore, the static power consumption can be saved. A typ-
ical value of Psta

l = 5.6W is used here [10]. Based on the
above model, the total RRH network power consumption can
be calculated as Pnet =

∑L
l=1 P

rrh
l .

In Fig. 5, the values of Pnet achieved by the proposed algo-
rithms are compared for different RRH noise levels, where
“RRH sel.” refers to Algorithm 1 and “RRH+weight” refers
to Algorithm 3 (but without quantization). It is observed
that in all cases, the non-sparse algorithm yields the highest
network power consumption while the proposed RRH selec-
tion Algorithm 1 effectively reduces the network power by
around 18%–25% depending on the noise level. When weight
selection is used in conjunction with relay selection, i.e.,
Algorithm 3, the network power can be reduced further for
medium to high RRH noise levels.

D. Fronthaul Feedback Overhead

In this subsection, we verify the performance benefits of
the proposed RRH weight selection algorithm when the non-
uniform quantization scheme described in Section IV-C is
employed. Referring to (51), the numbers of bits for quantizing
the mean and variance are set to Qmean = 20 and Qvar = 10,
while the number of bits for transmitting the bit map is
Qmap = 216. Fig. 6 shows the SIR performance of different
transceiver design using Algorithm 3 and possible variants.
The upper-bound represents the SIR value obtained from the
non-sparse solution without any quantization (i.e., analog RRH
weights), “w/o weight selection” refers to Algorithm 1 with
quantization, while “weight selection” refers to the complete
Algorithm 3 with Step 4. It is observed that the proposed
weight selection algorithm yields a significantly higher SIR
than that of the solution obtained without weight selection. For
instance, when the total number of bits is Q = 3000, use of
quantization with the weight selection algorithm (γ = 10−3)
leads to a SIR loss of around 2 dB compared to the upper
bound, while direct quantization of the full set of RRH weights
yields a SIR loss of more than 15 dB. Note also that the choice
of γ = 10−4 leads to a lower SIR than γ = 10−3, due to the
resulting larger number of non-zero RRHs weights, and hence
less available bits per sample for quantization.

E. Computational Complexity

The convergence of the proposed ADMM-based algorithms
is studied in Figs. 7(a) and 7(b). The values of the objective
function, primal residual, dual residual and sparsity pat-
terns are shown in the four subfigures within each figure.
Fig. 7(a) illustrates the convergence behavior of Algorithm 1,
which jointly performs RRH selection and weight vector
optimization, for one specific channel realization. It can be
observed from the top-left figure that the value of the objective
function, i.e., (15a), decreases sharply within a few iterations,
owing to the exact nature of the closed-form solutions in the
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Fig. 6. SIR performance of the proposed weight compression algorithm with
non-uniform quantization.

Fig. 7. Convergence behavior of Algorithm 1 and 2 for RRH selection with
εr = εs = 10−3.

ADMM steps. The algorithm converges (i.e., stops) within less
than 40 iterations when both values of the primal and dual
residuals become smaller than the predefined tolerance, set to
10−3 in this case. In practice, when a larger tolerance is used,
the algorithm may stop even faster. It is interesting to observe
that the weight vectors of three RRHs converge to zero, which
means that for this specific realization, the algorithm yields a
subset of only L − 3 = 3 active RRHs.

Fig. 7(b) illustrates the convergence of Algorithm 2, which
jointly performs weight selection and optimization. Here, it
is assumed that prior to the weight selection, no RRH selec-
tion is performed and therefore, the initial number of non-zero
weights is L × N 2

l = 216. It is seen that by setting γ = 0.5,
the number of non-zero RRH weights decreases from 216 to
around 75, which in turn leads to a reduction of the fron-
thaul overhead during the weight feedback stage. Finally,
we compare the processing time of the proposed ADMM-
based Algorithm 1 for group-sparse RRH transceiver design,
with two alternative solution approaches relying on exter-
nal optimization solvers, namely, SeDuMi and MOSEK. In
effect, these alternative approaches implement Algorithm 1 by
directly solving problem (15) with the assistance of the cor-
responding solver. The results,3 listed in Table I, show that

3Based on the use of a desktop computer equipped with 8th Generation
Intel i7-8700 6-core processor (12M Cache, 4.6 GHz) and 32GB RAM.

TABLE I
PROCESSING TIME OF DIFFERENT SOLUTIONS (IN SECONDS)

the complexity of the proposed ADMM-based algorithms is
only a small fraction of that of the solver-based approaches,
owing to the use of simple, exact closed-form solutions in
the main ADMM steps. Similar gains in processing time have
been observed in the case of Algorithm 2.

F. Comparison With Other Methods

Direct comparison of our method with previous studies is
not possible since the functionality of RRHs as AF MIMO
relays within a C-RAN architecture has not yet been addressed
in the literature. However, the problem of energy efficient
multi-user DL beamforming under C-RAN has been recently
studied in [8] and [11], where a group sparse beamform-
ing (GSBF) algorithm based on weighted mixed 
1/
2-norm,
and an enhanced GSBF (EGSBF) algorithm based on iterative
reweighted 
2-norm are presented, respectively. Therefore, we
consider the multi-user DL scenario to further examine and
compare the performance of our proposed ADMM-based algo-
rithms to existing solutions. Our system model applies to this
scenario by assuming that the destination users are served
by data readily available at the RRHs, which amounts to
the special choice hlk = ek and nl = 0 in (1), where
K ≤ Nl is implied. Under this setting, the selected RRHs and
AF matrices obtained from the application of our algorithms
can be used for group sparse multi-user DL beamforming
as in [8] and [11]. Here, we compare the performance of
our proposed Algorithm 3 (without quantization) to that of
the above GSBF and EGSBF algorithms. For the simulations,
we consider a sub-network consisting of L = 5 RRHs, each
equipped with Nl = 10 antennas, and serving K = 10 single
antenna users. To achieve a similar level of sparsity with the
different methods, the QoS constraint parameter is set to 2
for the GSBF and EGSBF algorithms, while the parameters
γ and λ in Algorithm 3 are set to 10−3 and 20, respec-
tively. The performance is evaluated in terms of the average
signal-to-interference plus noise ratio (SINR) and the average
bit error rate (BER) at the destination users, The former is
defined as

SINR =
1

K

K∑

k=1

E
{|Sk |2

}

E{|Ik |2}+ ς2k
(54)

while the latter is measured by transmitting 4-ary quadrature
amplitude modulation (4-QAM) symbols from the RRHs to
the destinations.

In Fig. 8(a), we plot the average SINR of the three algo-
rithms under comparison as a function of the total transmit
power at the RRHs, defined as P tr =

∑L
l=1 P

tr
l . It can

be observed that the proposed ADMM-based Algorithm 3
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Fig. 8. Comparison of the proposed ADMM Algorithm 3, GSBF in [8] and
EGSBF in [11].

achieves the highest SINR for all the considered val-
ues of P tr. To further evaluate the performance of the
proposed method, the average BER of the beamforming solu-
tions designed with the different algorithms is plotted as
a function of P tr in Fig. 8(b). Again, the results indi-
cate that our proposed Algorithm 3 can lead to significant
performance improvement over GSBF and EGSBF in the
design of group sparse beamforming solutions for green
C-RAN.

In Fig. 9(a) and 9(b), we show the average SINR and BER
versus the number of users for a total transmit power of 8 dB
at the RHHs, respectively. We consider L = 5 RHHs, with
a number of antennas at each RHH equal to the number of
users. We can observe from Fig. 9(a) that our design achieves
a SINR gain of more than 1.5 dB over GSBF and EGSBF,
regardless of the number of users. A performance improvement
is also observed in 9(b), where our design achieves a BER
performance of 10−3 for K = 6 users, and therefore signifi-
cantly outperforms GSBF and EGSBF with BER performance
of around 10−2.

Fig. 9. Comparison of the proposed ADMM Algorithm 3, GSBF in [8] and
EGSBF in [11] for Ptr = 8 dB, and L = 5.

VI. CONCLUSION

We addressed the problem of centralized transceiver design
for multiuser MIMO AF relaying within C-RAN, where the
aim is to optimize the AF matrices of selected RRHs acting as
relays, in order to improve the signal quality at the destination
users, while reducing the network power consumption and the
fronthaul feedback overhead. A novel two-stage method was
conceived to solve the problem with low complexity. The first
stage seeks to minimize the interference leakage subject to per-
relay transmit power constraints along with signal preserving
constraints at the destinations. To reduce the total network
power, the objective function was penalized with a regular-
ization term that promotes group-sparsity among the RRHs.
A low-complexity iterative algorithm based on the alternating
direction method of multipliers (ADMM) was then developed
to solve the regularized problem. In the second stage, the
interference minimization problem was extended by penaliz-
ing the objective function with a weight-level term inducing
sparsity in the AF matrix. A low-complexity ADMM-based
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algorithm was also conceived to solve this problem, which
leads to a reduction in the number of non-zero weights for each
active RRH. The performance of the proposed ADMM-based
two-stage method was studied by simulations, showing that it
can lead to substantial reductions in network power consump-
tion and in computational design complexity over benchmark
approaches.

APPENDIX

PROOF OF LEMMA 1

Consider the following minimization problem in x:

min
‖x‖22≤P

λ‖x‖2 +
ρ

2
xH x− 2Re

(
xH a

)
, (55)

which is convex and strictly feasible. Therefore, strong duality
holds, i.e., the optimal primal and dual pair (x∗, μ∗) must
satisfy the following KKT conditions:

⎧
⎨

⎩

0 ∈ λ∂‖x∗‖2 + ρ
2x

∗ − a+ μ∗x∗
‖x∗‖22 ≤ P , μ∗ ≥ 0
μ∗
(‖x∗‖22 − P

)
= 0

(56)

where ∂‖x∗‖2 is the subdifferential of ‖x‖2 at x∗, which is
given by

∂‖x‖2 =

{ x
‖x‖2 if x 
= 0,

{g | ‖g‖2 ≤ 1} if x = 0.
(57)

To find the optimal solution we distinguish between two cases,
namely, when x∗ 
= 0 and x∗ = 0.

If x∗ 
= 0, the first relationship in (56) yields
(

λ

‖x�‖2 +
ρ

2
+ μ�

)
x� = a. (58)

In order for (58) to hold, x∗ must take the form of x∗ = za
for some z > 0. Substituting x∗ = za back into (58), we find

z =
‖a‖2 − λ

‖a‖2
(ρ
2 + μ�

) . (59)

Since z > 0, we must have ‖a‖2 ≥ λ. Therefore, we have

x∗ =
a

‖a‖2
(ρ
2 + μ∗

) (‖a‖2 − λ), if ‖a‖2 ≥ λ. (60)

Now, if x∗ = 0, the first relationship in (56) becomes 0 ∈
λ‖g‖2 − a, which means

x∗ = 0, if ‖a‖2 < λ. (61)

Combining (60) and (61), x∗ can be written as

x∗ =
a

‖a‖2
(ρ
2 + μ∗

) [‖a‖2 − λ]+. (62)

To solve for the optimal dual variable μ∗, we substitute (62)
back into the second inequality in (56) and obtain

μ∗ ≥ ‖a‖2 − λ√
P

− ρ

2
. (63)

Since μ∗ ≥ 0, we must have

μ∗ =

⎧
⎨

⎩

‖a‖2−λ√
P
− ρ

2 if
‖a‖2−λ√

P
− ρ

2 > 0

0 if
‖a‖2−λ√

P
− ρ

2 ≤ 0.
(64)

In conclusion, the optimal variables may be succinctly
expressed by

x∗ =
a

‖a‖2
(ρ
2 + μ∗

) [‖a‖2 − λ]+, μ
∗ =

[‖a‖2 − λ√
P

− ρ

2

]

+
.

(65)
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