
1

Energy-Efficient Resource Allocation for
D2D-Assisted Fog Computing

Onur Karatalay, Ioannis Psaromiligkos and Benoit Champagne
Department of Electrical and Computer Engineering, McGill University, Montréal, QC, Canada.

Email: onur.karatalay@mail.mcgill.ca; ioannis.psaromiligkos@mcgill.ca; benoit.champagne@mcgill.ca

Abstract—In this paper, we address the problem of energy-
efficient resource allocation in a multi-device D2D-assisted fog
computing scenario, where the goal is to minimize the total energy
consumption subject to constraints on the transmit powers,
computation resources and task processing times. The considered
problem is non-convex and finding its global optimum is generally
intractable; hence we propose two sub-optimal approaches to
solve it. First, by investigating the relationship between the task
processing time and the total energy consumption, we show
how the original problem can be relaxed into a sequence of
convex subproblems whose solutions can be efficiently obtained
via standard algorithms. Second, to further reduce computational
complexity, we propose a low-complexity heuristic resource
allocation strategy which does not require calculating gradients
and the Hessian matrices in the solution process. We also develop
a lower bound on the total energy consumption for the considered
task offloading scenario as a benchmark for comparison purpose.
Computer simulations under a wide range of conditions and
parameter settings show that both methods achieve a near-
optimal solution in comparison to the lower bound.

Index Terms—D2D, resource allocation, fog computing, task
offloading, 5G

I. INTRODUCTION

By the end of 2023, there should be more than 13 billion
mobile wireless devices worldwide, which represents a nearly
50% increase since 2018 [1]. Along with the proliferation of
connected devices, the anticipated increase in computation-
intensive and latency-sensitive mobile applications such as
online gaming and virtual reality, will challenge the compu-
tation capabilities of mobile devices [2–4] due to the rigid
processing deadlines imposed by these applications. Recently,
task offloading, which allows devices to utilize more pow-
erful remote computation resources for task processing, has
attracted considerable interest [5], [6].

A. Related Works and Motivation

Cloud computing, one of the most studied task offloading
frameworks, allows mobile device data to be transmitted and
processed at remote servers through the internet [7], [8].
However, unpredictable wireless channel conditions and high
data traffic due to excessive user density limit the overall
task offloading speed, which in turn, reduces the Quality
of Service (QoS) [9]. Mobile Edge Computing (MEC) as a
substitute to cloud computing, brings data processing closer to

This work was supported in part by the Natural Science and Engineering
Research Council of Canada under the Discovery Grant program.

the mobile devices by locating data storage and computation
servers at the edge of the wireless network. These so-called
Edge Servers (ES)s are usually connected to Base Stations
(BS)s via high-speed links [7], [8], [10]. Overall, MEC can
lower end-to-end delays, reduce data processing bottlenecks
and increase energy efficiency within the network. In [11], the
authors consider joint task offloading and resource allocation
in a MEC scenario, in which the available resources are
allocated to minimize the total overhead in terms of both
energy consumption and task processing time. The authors in
[12] focus on total energy minimization subject to constraints
on the task processing times in an ultra-dense network. In
[13], the authors propose a resource allocation method for
MEC aiming to minimize the maximum task processing delays
among all the users, while in [14], energy consumption,
task execution delay and cost of task offloading are jointly
optimized by using queuing theory. In [15], energy-efficient
resource allocation is investigated for latency-sensitive tasks
in a multi-user offloading scenario. In [16], the authors study
a similar scenario, in which offloading decisions are modeled
by using a game-theoretic approach. Moreover in [17], a
distributed power allocation method is proposed based on a
game theoretic approach, and similarly in [18], minimization
of energy consumption and average response time is investi-
gated using game theory. While shedding light on the energy
efficiency of utilisation MEC, the aforementioned studies only
consider a single off-loading destination, such as a single ES.
However, the limited computational capability of ESs (com-
pared to cloud servers) limit the energy efficiency and restrains
the performance of task off-loading as data communication and
processing demands increase within the network.

As a complement to MEC and cloud computing, fog
computing can exploit the full potential of distributed data
processing by expanding the pool of computation resources
to include nearby mobile devices in addition to Edge/Cloud
servers and by allowing data-generating devices to offload their
tasks to them through incentive policies [19–22]. This strategy,
which leverages the availability of all computation resources
within radio proximity, referred to as ”fog devices”, can
significantly decrease the total energy consumption and task
processing time. Device-to-Device (D2D) communications,
which are envisaged to play a key role in the fifth (5G) and
future generations of wireless networks, provide an attractive
technology enabler for fog computing, by facilitating the
creation of direct communication links between neighboring
devices. In [23], the authors maximize the number of devices

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3190085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:25:30 UTC from IEEE Xplore. Restrictions apply.

2

in a D2D-aided cellular network subject to constraints on
both communication and computation resources. Besides, in
[24], the authors study computation latency minimization in
the case of a D2D-enabled MEC system, while in [25] the
authors focus on time-average energy minimization. Nonethe-
less, due to the difficulties posed by the optimal allocation
of communication and computation resources as the number
of offloading destination increases, the above studies only
consider a single D2D connection per device within a MEC
system. However, restricting the number of D2D connections
limits the potential gains in computation capacity and energy
efficiency of task offloading. Therefore, a scalable approach,
in which an arbitrary number of fog devices can be accessed
by multiple D2D connections in a MEC scenario is needed.

Another factor that directly affects the energy consumption
is whether the task offloading scheme is binary or partial. In
the former case, a task is either computed locally (i.e., on
the data generating device) or offloaded entirely to a single
neighboring device. In the latter case, a task is divided into
various portions for parallel computing on different devices,
including the local one. In [26], ES selection in binary task
offloading is tackled by minimizing a network access-based
cost function under delay and QoS constraints. In [27], the
authors consider binary task offloading in a D2D-assisted
fog computing scenario, and propose new algorithms based
on branch-and-price for jointly optimizing link scheduling,
channel assignment and power control. In [25], the authors
propose an optimization framework for binary offloading in
order to minimize the time-average energy consumption for
execution of all user tasks while taking into account fair
computation resource allocation as constraints. Likewise in
[28], the overall system utility is maximized with respect to
binary offloading decisions by developing a pricing game-
based algorithm.

In contrast to the binary scheme, partial task offloading
can take advantage of parallel computation to increase energy
efficiency [15]. In [29], partial task offloading is considered
in MEC, where the aim is to minimize the total energy
consumption by jointly optimizing the transmit power, com-
putation speed and task partitioning. In [30], the authors
investigate a cooperative partial task offloading scheme with
both cloud computing and MEC, wherein task partitioning
decisions are made to minimize the end-to-end delay. While
offering valuable insights into partial task offloading, these
works do not take advantage of D2D-aided fog computing to
further improve energy efficiency and reduce delay. In contrast,
references [31–33] explicitly focus on partial task offloading
with the help of D2D communications. In [31], a hybrid D2D-
aided fog and cloud computing scenario with a single task
offloading device is investigated, whereas [32], [33] focus
on a more general multi-device D2D aided fog computing
scenario. In these works, the task offloading decisions are
made by minimizing the total energy consumption subject
to relevant constraints, especially the task processing time.
Although significant improvements in energy efficiency can
be achieved with D2D-aided fog computing, these works do
not consider the allocation of transmit powers and utilization
of an ES, which could further enhance the performance of the

task offloading.

B. Main Contributions

In this work, motivated by the aforementioned studies, we
focus on a more general fog computing scenario, wherein
multiple devices can offload their tasks to nearby fog devices
via D2D links and to an ES. We adopt the partial task of-
floading scheme with transmit power management to improve
utilization of resources, especially, to minimize the total energy
consumption over the considered network. On the one hand,
the ES has more computation capability compared to the fog
devices, and hence can process more tasks simultaneously,
although achievable data rates on the ES links may limit
the task uploading speed. On the other hand, D2D-aided fog
computing can take advantage of close proximity, and hence
yields higher data rates and reduces the task offloading time.
Within this extended framework, the distinctive contributions
of this paper are summarized as follows:
• We consider a D2D-assisted fog computing scenario,

where multiple cellular devices can partially offload their
computation-intensive tasks not only to the ES but also
to nearby fog devices via D2D links. Our main objective
is to develop an optimal resource allocation strategy
by minimizing the total energy consumption subject to
constraints on transmit powers, computation resources
and task processing times.

• The formulated problem is non-convex and its optimal
solution is generally intractable; in response, we propose
two sub-optimal methods. For the first method, we
begin with investigating the relationship between the
task processing time and the total energy consumption.
By exploiting this relationship, we then show how the
original problem can be relaxed into a sequence of
convex subproblems whose solutions can be efficiently
obtained via standard convex optimization methods.

• While our first method achieves good performance, its
run time may be high. To remedy this, we propose a
second method, which targets similar goals as the first
one, but relies on a low-complexity heuristic resource al-
location strategy, thereby avoiding costly calculations of
gradients and Hessian matrices in the solution process.
We analyze in detail the computational complexity of
this method in terms of key system parameters, includ-
ing the number of mobile devices and task offloading
destinations.

• We develop a lower bound on the total energy con-
sumption for the considered task offloading scenario
as a performance benchmark for comparison purpose.
Computer simulations under a wide range of conditions
and parameter settings show that both methods approach
the lower bound for a wide range of practical conditions,
while the second method leads to a quite significant
reduction in run time.

The rest of the paper is organized as follows. In Section
II, we present the system model and formulate the problem
statement. In Section III, we analyze the original problem
and develop our first method for task offloading based on

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3190085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:25:30 UTC from IEEE Xplore. Restrictions apply.

3

convex programming. In Section IV, we derive our second
method, which relies on a low-complexity heuristic resource
allocation algorithm. Section V presents the simulation results
and accompanying discussions, while Section VI summarizes
our findings.

Notation: Boldface letters, e.g., a, are used to denote column
vectors, [·]⊤ represents the matrix transpose operation, and
∥·∥p stands for the ℓp norm. Sets are designated by calligraphy
letters, e.g., N , with their cardinality denoted by |N |.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we first present the D2D-aided fog comput-
ing scenario under study and the associate computation and
communication models. We then formulate the problem of
optimal resource allocation as a non-convex program.

A. System Model
We consider a stationary network consisting of a single BS

and I active cellular devices with computationally intensive
tasks. Each active device (indexed by i) can offload its task
to a single ES (indexed by 0) connected to the BS via a high-
speed link, and up to K nearby fog devices via D2D links,
as shown in Fig. 1. We assume that all active devices can
simultaneously utilize the ES, however the fog devices are not
shared among the active devices. We identify the available
task offloading destinations of the ith active device by a 2-
tuple κ ∈ Ki = {(i, 0), (i, 1), ..., (i,K)}, i ∈ I = {1, ..., I}.
In the sequel, to simplify notations, we represent the 2-tuple
(i, j) simply as ij. Similar to [34–36], we assume interference-
free links among D2D devices as well as between the active
devices and the BS, which can be achieved, for example, by
allocating orthogonal communication resources to the active
devices with the help of the BS. In addition, the assignment
of fog devices to the active ones is decided beforehand based
on various criteria such as distance, availability, incentive, etc.

Fig. 1. D2D-aided fog computing scenario, where active devices can offload
their tasks to nearby fog devices as well as to a central ES.

The computation task of the ith active device is character-
ized by the tuple (di, ci, t

max
i). Here, di indicates the task size

in bits, ci denotes the average number of CPU cycles required
to process one bit of data, and tmax

i is the task processing
deadline1 for the task. An active device may offload parts of

1That is, the latest time by which processing, including transmission time
if applicable, must be completed.

its task to available destinations. Accordingly, the task size of
the ith device can be decomposed as:

di = bi +
∑
κ∈Ki

bκ (1)

where bi and bκ indicate the sizes of the task portions kept
at the local device and sent to the κth offloading destination,
respectively. The task portion sizes for the ith active device
form the vector bi = [bi bi0 bi1 ... biK]⊤ with ∥bi∥1 = di.

Let fi, expressed in cycles per second, represent the com-
putation resources allocated by the ith active device to process
the local portion of its task. Then, we can calculate the time
taken to compute the local portion of the task as follows:

tco
i =

bici
fi
, ∀i ∈ I. (2)

Accordingly, the energy consumed for processing this task is
computed as:

Eloc
i = µbicif

2
i , ∀i ∈ I (3)

where µ is an effective capacitance constant depending on the
chip architecture of the devices [17].

During task offloading, the ith active device transmits bκ
bits to its κth offloading destination over a wireless link at a
data rate given by:

Rκ =W log2

(
1 +

PκGκ
N0

)
, ∀κ ∈ Ki,∀i ∈ I (4)

where Pκ is the allocated transmit power, Gκ is the channel
gain, W is the channel bandwidth, and N0 is the thermal noise
power. Then we calculate the time needed to complete the
transmission of the offloaded task size portion as follows:

tup
κ =

bκ
Rκ

, ∀κ ∈ Ki,∀i ∈ I (5)

Let fκ ≤ fmax
κ be the computation resources allocated by the

κth destination to process the task assigned to it, which cannot
exceed its maximum computation capability fmax

κ , ∀κ ∈
Ki,∀i ∈ I. Similar to (2), the time taken to compute the
offloaded portion of the task is defined as follows:

tco
κ =

bκci
fκ

, ∀κ ∈ Ki,∀i ∈ I (6)

and the energy consumed for uploading and processing the
task at the offloading destinations of the ith device is given
by:

Eoff
i =

∑
κ∈Ki

(
Pκt

up
κ + µbκcif

2
κ

)
, ∀i ∈ I (7)

Finally, the total energy consumption required to complete
the overall task for the ith active device is computed as:

Ei = Eloc
i + Eoff

i , ∀i ∈ I (8)

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3190085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:25:30 UTC from IEEE Xplore. Restrictions apply.

4

B. Problem Statement

In this paper, we focus on a resource allocation problem
for the D2D-aided fog computing scenario described earlier.
Specifically, we aim at identifying the optimal task offloading
strategy that minimizes the total energy consumption subject
to limits on computation resources, transmit powers and task
processing times. The overall problem is formally described
as follows:

P1 : min
p,f,b

∑
i∈I

Ei (9a)

s.t. 0 ≤
∑
κ∈Ki

∥bκ∥0Pκ ≤ Pmax, ∀i ∈ I (9b)∑
i∈I
∥bi0∥0fi0 ≤ fmax

0 , (9c)

fκ ≤ fmax
κ ,∀i ∈ I,∀κ ∈ Ki − {i0} (9d)

bi +
∑
κ∈Ki

∥Pκ∥0bκ = di, ∀i ∈ I (9e)

0 ≤ bici
fi
≤ tmax

i , ∀i ∈ I (9f)

0 ≤ bκ
Rκ

+
bκci
fκ
≤ tmax

i ,∀κ ∈ Ki,∀i ∈ I (9g)

0 ≤ bi, bκ, fi, fκ, Pκ ∀i ∈ I,∀κ ∈ Ki (9h)

where the vector p = [p⊤
1 p⊤

2 ... p⊤
I]

⊤ with pi =
[Pi0 Pi1 ... PiK]⊤ contains the allocated transmit powers of
each active device to its offloading destinations. In addition,
the vector f = [f⊤1 f⊤2 ... f⊤I]⊤ with fi = [fi fi0 fi1 ... fiK]⊤

contains the allocated computation resources, and the matrix
b = [b⊤1 b⊤2 ... b⊤I]

⊤ contains the task splitting decisions of
the active devices.

In problem P1, constraint (9b) limits the total transmit
power at the ith device to Pmax, while constraints (9c) and
(9d) restrict the ES and fog devices to allocate computation
resource beyond their maximum computation capability fmax

0

and fmax
κ ,∀i ∈ I,∀κ ∈ Ki − {i0}, respectively. Constraint

(9e) ensures that the task splitting adds up to original task
size, while constraints (9f) and (9g) require that the time to
complete the task does not exceed the task processing deadline
tmax
i ∀i ∈ I. Finally, constraint (9h) denotes that the decision

variables must be non-negative.
At this point, problem P1 can be re-formulated as a mixed-

integer program to avoid ℓ0 norms, however, non-convex ob-
jective functions and constraints still impose difficulty as they
make the problem intractable. Although various techniques are
available for solving the non-convex problem P1, such as
particle swarm optimization, genetic algorithm, and exhaustive
search, these techniques exhibit very slow convergence due
to the large search space, as we have been able to verify.
Therefore, in the next section, we propose a sub-optimal
method, which depends solely on convex programming, to
efficiently solve problem P1.

III. CONVEX PROGRAMMING METHOD

In this section, we take a closer look at problem P1 and
show how it can be relaxed into convex sub-problems.

A. Problem Analysis

Lemma 1: At the optimal solution of problem P1 the task
processing times must be equal to the deadline.

Proof: Let p⋆, f⋆ and b⋆ be the global minimizers of prob-
lem P1 yielding a total energy consumption E⋆ = Eloc⋆ +
Eoff⋆ . At the optimal solution, we have di = b⋆i +

∑
κ∈Ki

b⋆κ
and the computation resources corresponding to these task
portions are f⋆i and f⋆κ , respectively. Assume that the optimal
task processing time for the local portion of the task is smaller
than the task processing deadline, i.e., tco⋆

i =
b⋆i ci
f⋆
i

< tmax
i .

Then there is a f‡i < f⋆i such that tco⋆
i <

b⋆i ci

f‡
i

= tmax
i , which

yields Eloc‡
i = µb⋆i cif

‡
i

2
< Eloc⋆

i , and consequently reduces
the total energy consumption E‡

i = Eloc‡+Eoff⋆ < E⋆i further.
Therefore, f⋆i cannot be the global minimizer. Similarly,
assume that the optimal total task offloading time is smaller
than the task processing deadline, tup⋆

κ + tco⋆
κ = toff⋆

κ < tmax
i ,

or equivalently by using (5) and (6), we have b⋆κ
R⋆

κ
+

b⋆κci
f⋆
κ

=

toff⋆
κ < tmax

i , where R⋆κ is the data rate calculated by using the
optimal transmit power P ⋆κ . However, there is a f‡κ < f⋆κ such
that b⋆κ

R⋆
κ
+
b⋆κci

f‡
κ

= tmax
i or P ‡

κ < P ⋆κ such that b⋆κ
R‡

κ
+
b⋆κci
f⋆
κ

= tmax
i ,

in which both f‡κ and P ‡
κ yield smaller energy consumption

for task offloading, i.e., Eoff‡
i < Eoff⋆

i . Consequently, f⋆κ and
P ⋆κ cannot be the optimal minimizers since the total energy
consumption in (8) can be reduced further.

Based on the above, we can modify the objective func-
tion (9a) by replacing tco

i with tmax
i ,∀i ∈ I and tco

κ with
(tmax
i − tup

κ),∀i ∈ I,∀κ ∈ Ki, and write the total energy
consumption of the ith device as a combination of two terms
Ei = ξi(pi,bi) + ψi(pi,bi), i ∈ I. Specifically, the first term
is the total energy consumption for uploading the task size
portions:

ξi(pi,bi) =
∑
κ∈Ki

Pκbκ
Rκ

(10)

while the second term is the total computation energy and
obtained from (3) and (7) as follows:

ψi(pi,bi) =
µ(bici)

3

(tmax
i)

2 +
∑
κ∈Ki

µ(bκci)
3(

tmax
i − bκ

Rκ

)2 (11)

Note that reducing both terms simultaneously in Ei could not
be possible since decreasing transmit power Pκ might reduce
the first term, but it increases the second one due to elevated
uploading time tup

κ = bκ
Rκ

. Fortunately, the total computation
energy given in (11) is a convex function on a convex domain
as demonstrated in Appendix A. Next, by leveraging this
convexity, we will decompose problem P1 into convex sub-
problems that can be solved using standard techniques.

B. Allocation of Transmit Powers and Task Sizes

First, we allocate the transmit powers and task sizes. Specif-
ically, we determine the optimal task splitting under transmit
power constraints that, in turn, limit the data rates, without

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3190085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:25:30 UTC from IEEE Xplore. Restrictions apply.

5

considering the available computation resources at the ES and
fog devices:

P2 : min
p,b

∑
i∈I

ψi(pi,bi) (12a)

s.t. 0 ≤
∑
κ∈Ki

Pκ ≤ Pmax, ∀i ∈ I (12b)

bi +
∑
κ∈Ki

bκ = di, ∀i ∈ I (12c)

bκ − αRκtmax
i ≤ 0, ∀i ∈ I, ∀κ ∈ Ki (12d)

0 ≤ bi, bκ ∀i ∈ I,∀κ ∈ Ki (12e)

In constraint (12d) we include a factor α ∈ (0, 1) to limit
the task uploading time and provide sufficient time for task
computation at the offloading destinations tco

κ = (1 − α)tmax
i .

This naturally prevents the violation of constraint (9g) in
problem P1, and consequently, allows the solution of problem
P2 to be in the feasible solution set of the main problem.
However, we note that the choice of α cannot be arbitrary
since it plays an important role in the convexity of problem
P2 as demonstrated in Appendix A. Then, we allocate the
computation resources corresponding to the transmit powers
and the task splitting decisions p∗ and b∗ obtained by solving
problem P2.

C. Allocation of Computation Resources

To determine the computation resources corresponding to
p∗ and b∗, we first calculate the task uploading times using
(5) as tup∗

κ =
b∗κ
R∗

κ
,∀i ∈ I, ∀κ ∈ Ki, where R∗

κ is the data
rate calculated by using the transmit power P ∗

κ (cf. eq. (4)).
Then, using the remaining time tco∗

κ = tmax
i − tup∗

κ , we allocate
the computation resources at the κth offloading destination as
follows:

f∗κ =
b∗κci

tmax
i − tup∗

κ

, ∀i ∈ I ∀κ ∈ Ki. (13)

Similarly, the allocated computation resource at the ith device
is:

f∗i =
b∗i ci
tmax
i

, ∀i ∈ I. (14)

Using (13) and (14) we form the optimal allocated compu-
tation resource vector f∗ in the same manner as f. Recall
that problem P2 does not consider constraints (9c) and (9d),
therefore, it may happen that the allocated task sizes are such
that

∑
i∈I

b∗i0ci

tmax
i −

b∗
i0

R∗
i0

> fmax
0 or b∗κci

tmax
i − b∗κ

R∗
κ

> fmax
κ , for some

i ∈ I, κ ∈ Ki−{i0}. Consequently, constraints (9c) or (9d) are
violated. In that case, we reallocate the task sizes b∗ subject

to constraints (9c) and (9d) by fixing the transmit powers to
p∗ as follows:

P3 : min
b

∑
i∈I

ψi(p∗
i ,bi) (15a)

s.t.
∑
i∈I

bi0R
∗
i0ci

R∗
i0t

max
i − bi0

≤ fmax
0 (15b)

bκR
∗
κci

R∗
κt

max
i − bκ

≤ fmax
κ ,∀i ∈ I,∀κ ∈ Ki − {i0} (15c)

bi +
∑
κ∈Ki

bκ = di, ∀i ∈ I (15d)

bκ− αtmax
i R∗

κ≤ 0,∀i ∈ I,∀κ ∈ Ki (15e)
0 ≤ bi, bκ,∀i ∈ I,∀κ ∈ Ki (15f)

We denote the new task size allocations obtained by solving
problem P3 as b+. Then, we update the task uploading times
as tup+

κ =
b+κ
R∗

κ
,∀i ∈ I, ∀κ ∈ Ki. Finally, we calculate the

new allocated computation resources f+ as in (13) and (14)
by using b+ and p∗.

D. Summary of the Proposed Method

In Algorithm 1 we summarize the proposed convex-
programming-based sub-optimal method to solve problem P1.
The algorithm runs in a central location, for example at a BS,
where it first obtains the initial task sizes b∗ and the transmit
power levels p∗ by solving problem P2 in step 1, and then,
it calculates the corresponding computation resources f∗ in
step 3. If constraints (9c) or (9d) are violated, the BS solves
problem P3 in step 5 to update f∗ as f+ based on b+. Finally,
the obtained solution is relayed to the active devices.

Algorithm 1 Convex Programming Method
1: Solve Problem P2 to obtain initial b∗ and p∗

2: Calculate tup∗
κ =

b∗κ
R∗

κ
∀i ∈ I,∀κ∈ Ki

3: Calculate f∗ based on b∗ and p∗ by using (13) and (14)
4: if Constraint (9c) or (9d) are violated then
5: Update the task sizes by solving Problem P3

6: Calculate tup+
κ =

b+κ
R∗

κ
∀i ∈ I,∀κ∈ Ki

7: Calculate f+ based on b+and p∗ by using (13) and (14)
8: end

IV. HEURISTIC TASK OFFLOADING METHOD

In this section, we propose a heuristic algorithm to solve
problem P1. The main goal is to provide an accurate, low-
complexity method that does not require the computation of
gradients and Hessian matrices in the solution process. To
develop the heuristic method we will follow a sequential
approach as in Section III. We start by allocating the transmit
powers and the task sizes under data rate constraints, as we
did in problem P2. Then, we take the maximum computation
capability of the ES and the fog devices into account as in
problem P3 to prevent the violation of constraints (9c) and
(9d).

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3190085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:25:30 UTC from IEEE Xplore. Restrictions apply.

6

A. Initial Resource Allocation

Lemma 2: In an ideal scenario where the task uploading
is instantaneous and the offloading destinations have infinite
computation resources, a lower bound on the total energy
consumption is achieved when the task sizes are equally
divided among the offloading destinations.

Proof: Please refer to Appendix B.
Based on this, we first initialize the task sizes for the ith

active device as follows:

b∗
i = di(|Ki|+ 1)−11, ∀i ∈ I (16)

where 1 is the column vector of all-ones. If task uploading
from each active device to its offloading destinations were
instantaneous, then the total energy consumption based on
the initial task splitting strategy in (16) would clearly attain
the lower bound derived in Appendix B. However, in a
realistic scenario, due to wireless channel conditions as well
as the transmit power constraints, the achievable data rates are
limited. Hence, our next step is to reduce the task uploading
time as much as possible to approach the lower bound. To
this end, we allocate the transmit powers to compensate for
the channel conditions between the ith active device and its
offloading destinations:

p∗
i =

hi
∥hi∥1

Pmax, ∀i ∈ I (17)

where hi = ∥gi∥11 − gi is the vector that contains the
channel gains of the ith device that are subtracted from its
ℓ1-norm and the channel gain vector is defined as gi =[
Gi0 Gi1 ... GiK

]⊤
, i ∈ I. By initializing the transmit powers

as in (17), each active device allocates more transmit power
to its offloading destinations with relatively low channel gain
to increase data rates, and in turn, reduce task uploading time.
However, with the initial task sizes and transmit power alloca-
tion, the uploading time from ith device to its κth offloading
destination might exceed the task processing deadline, i.e.,
tup∗
κ > tmax

i , which violates constraint (9g).
Since p∗ is initialized to compensate for the physical

channel conditions, we update the initial task partitioning b∗

to have a feasible tup∗
κ similar to constraint (12d). Specifically,

for any active device i and its κth offloading destination
for which tup∗

κ > αtmax
i , we set tup∗

κ = αtmax
i , which is

the maximum time limit for uploading the task sizes as in
constraint (12d). Then, we re-calculate the corresponding task
size as b+κ = R∗

καt
max
i , which is smaller than b∗κ. Therefore,

there is an excess task size at the κth device be
κ = b∗κ−b+κ that

can not be uploaded, and must be re-allocated for processing
among other offloading destinations of the ith active device.
As in (16), we equally re-allocate this excess task size among
the ith active device and its remaining offloading destinations
whose indices are in the set Ki − {κ}. However, it is likely
that increasing the task sizes at those destinations under fixed
transmit power p∗ may increase the task uploading time
enough to violate constraint (12d). Therefore, we continue re-
allocating the task sizes b∗

i ∀i ∈ I in an iterative manner until
constraint (12d) is satisfied for all active devices and their
offloading destinations. Once the feasible task partitioning

is obtained with respect to p∗, we can then calculate the
computation resources f∗ for the corresponding new task sizes
as in (13) and (14). The overall heuristic resource initialization
strategy is given in Algorithm 2.

Algorithm 2 Initial Resource Allocation
1: Calculate b∗ and p∗ based on (16) and (17)
2: for i ∈ I do
3: Assign a temporary set Ki = Ki
4: Calculate tup∗

κ =
b∗κ
R∗

κ
,∀κ ∈ Ki

5: if tup∗
κ > αtmax

i ,∀κ ∈ Ki then
6: Set tup∗

κ = αtmax
i and update b∗κ as b+κ = R∗

καt
max
i

7: Calculate the excess task size be
κ = b∗κ − b+κ

8: Update Ki ← Ki − {κ} to partition be
κ

9: b+i = b∗i +
be
κ

|Ki|+1

10: b+κ = b∗κ +
be
κ

|Ki|+1
∀κ ∈ Ki

11: Update b∗
i ← b+

i then calculate tup∗
κ ,∀κ ∈ Ki

12: Go to line 5
13: end
14: end
15: Calculate f∗ by using b∗ and p∗ based on (13) and (14)

B. Re-allocating the Excess Resources
After running Algorithm 2, the offloaded tasks at the

ES or the fog devices may not be processed if the re-
quired computation resources exceed their maximum limit,
i.e., ∥f∗0∥1 > fmax

0 , where f∗0 = [f∗10 f∗20 . . . f∗I0]
⊤, or

f∗κ > fmax
κ ∀i ∈ I,∀κ ∈ Ki−{0}, respectively. Since multiple

tasks from the active devices are simultaneously processed at
the ES, we first focus on the violation of constraint (9c) while
assuming the fog devices have infinite computation resources.
In that case, the surplus task sizes at the ES must be re-
allocated to the other offloading destinations. To determine
what should be removed from the ES, we introduce the vector
r whose elements are inversely proportional to the amount of
the computation resources that should be allocated to the ES
for the corresponding task sizes b∗i0,∀i ∈ I:

r =
r∗

∥r∗∥1
(18)

where r∗ = ∥f∗0∥11 − f∗0. By using r, we can calculate the
new allocated computation resources at the ES by removing
the excess resources as follows:

f+0 = f∗0 − f er (19)

where f e = ∥f∗0∥1 − fmax
0 contains the excess computation

resources at the ES. Note that f+0 in (19) not only satisfies
constraint (9c), but also each element f+i0 , i ∈ I of f+0 is
still proportional to the amount of task sizes of the active
devices, which is important in terms of reducing the energy
consumption as shown in Appendix B. Finally, we obtain
the task sizes that should be left at the ES based on f+0 .
Specifically, given the data rate R∗

i0, we calculate the new
task size to be offloaded to the ES from the ith device by
using (5) and (6) as follows:

b+i0 =
R∗
i0f

+
i0t

max
i

f+i0 + ciR∗
i0

, ∀i ∈ I (20)

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3190085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:25:30 UTC from IEEE Xplore. Restrictions apply.

7

Nevertheless, if the amount of subtracted computation re-
sources surpasses the previously allocated resources by the
ES, then some of the elements of f+0 in (19) might become
negative, and constraint (9c) remains violated since the excess
resource f e could not be properly removed from f∗0.

In Algorithm 3, we present an iterative strategy to address
the above issue and re-allocate the resources by properly
removing the excess computation resource f e until it becomes
zero. Specifically, in line 2, we first calculate the excess
computation resources to obtain f+0 (19), which is the new
allocated computation resources by the ES to not violate
constraint (9c). If f+i0 ≥ 0,∀i ∈ I, we can directly determine
the corresponding task sizes that can be uploaded to the ES
b+i0, ∀i ∈ I (20) based on f+0 as given in line 15. Then, the
excess task size be

i , which cannot be processed at the ES, is
re-allocated among all the offloading destinations of the ith
device except the ES as given by lines 16 and 17. If the new
task uploading time exceeds the deadline, i.e., b+κ

R∗
κ
> tmax

i ,
as controlled in line 18, we run lines 5-13 in Algorithm 2
without (w/o) line 15 as it is now redundant. Hence, we
obtain the final task splitting decision of the ith device by
b+i = [b+i b+i0 b

+
i1 ... b

+
iK]⊤ to form b+. However, if f+i0 < 0

in f+0 for any i ∈ I, we first take its absolute value and add it
to the remaining excess resource f e to be removed in the next
iterations as it is not properly removed from the resources
that the ES initially allocated while obtaining f+0 in line 2.
This emphasizes that the active devices whose corresponding
computation resources allocated by the ES becomes negative
cannot utilize the ES for task offloading anymore. Hence, we
set f+i0 = 0 if f+i0 < 0, i ∈ I as given in 6. Since those devices
are not utilizing the ES, their initial allocated transmit power,
i.e., P ∗

i0, for the ES also becomes redundant. Therefore, we
should re-allocate the transmit powers of these active devices
among their other offloading destinations as given in line
8 by setting the 1st element of hi to zero and using (17).
In line 10, we replace f∗0 with f+0 to be used in the next
iteration in the case of f e ̸= 0. Thus, Algorithm 3 recursively
continues in this manner until f e = 0 and obtains f+0 , whose
elements are the new computation resources allocated by the
ES without violating constraint (9c). Finally, it outputs the
new task splitting decisions b+, hence, we can calculate the
corresponding computation resources f+ as in (13) and (14)
by using b+ and p∗.

At this point, the calculated computation resources f+ sat-
isfy constraint (9c), however, constraint (9d) might be violated
due to the limitation at the fog devices. Therefore, in step
25, we check this constraint for every fog device, and if it is
violated, we calculate the maximum task size bmκ that can be
processed at these fog devices as given in step 26. Then, we
calculate the excess task size bei in step 27 and assign it for
local processing in step 28. Finally, we update the allocated
task size b+κ , which is now feasible for processing at the fog
devices.

Algorithm 3 Re-allocating the Excess Resources

1: if ∥f∗0∥1 > fmax
0 then

2: Calculate f e = ∥f∗0∥1− fmax
0 and r (18) to obtain f+0 (19)

3: Reset f e = 0
4: if f+i0 < 0, i ∈ I then
5: Update f e ← f e + |f+i0 |
6: Set f+i0 = 0
7: Set the ith element of r∗ to 0
8: Set the 1st element of hi to 0 and re-calculate p∗

i (17)
9: end

10: Replace the previous allocation f∗0 ← f+0
11: if f e ̸= 0 then
12: Re-calculate r (18) to obtain new f+0 based on f∗0 (19)
13: Go to line 3
14: end
15: Based on f+0 , obtain b+i0, ∀i ∈ I (20)
16: Calculate the excess task size be

i = b∗i0 − b
+
i0,∀i ∈ I

17: Re-allocate be
i among Ki = Ki − {i0},∀i ∈ I for b+

b+i = b∗i +
be
i

|Ki|+1
,∀i ∈ I

b+κ = b∗κ +
be
i

|Ki|+1
, κ ∈ Ki,∀i ∈ I

18: if b+κ
R∗

κ
> tmax

i , κ ∈ Ki,∀i ∈ I then
19: Update b∗

i ← b+
i

20: Run lines 4-13 in Algorithm 2 w/o line 15
21: Update b+

i ← b∗
i

22: end
23: Calculate f+ by using b+ and p∗ based on (13) and (14)
24: end
25: if f+κ > fmax

κ ,∀i ∈ I,∀κ ∈ Ki − {0} then
26: Calculate the maximum task size that can be processed

bm
κ =

fmax
κ R∗

κt
max
i

R∗
κci+f

max
κ

27: Calculate the excess task size be
i = b+κ − bm

κ

28: Add the excess task size for local processing b+i ← b+i +b
e
i

to update f+i based on (14)
29: Update b+κ ← bm

κ

30: end

C. Complexity Analysis

In this section, we calculate the number of operations,
specifically, real multiplications and real additions, required
throughout the proposed heuristic method. For simplicity,
we assume that the maximum number of task offloading
destinations for any ith device is |Ki| = K. First, we
consider Algorithm 2, which takes I(K + 1) and I(5K + 1)
operations for (16) and (17), respectively. Note that the data
rates R∗

κ, ∀κ ∈ Ki can be obtained in advance, which
requires 4K operations ∀i ∈ I, hence, line 4 requires only
K operations. Assuming the if condition between the lines 5
and 13 is repeated ∀κ ∈ Ki, we have 2K2 + 5K operations.
Furthermore, line 15 takes 3K + 2 operations and repeating
all these operations I times yields the time complexity of
Algorithm 2 as O(IK2 + IK).

Second, we consider Algorithm 3 and begin with line 2
by calculating f e, r (18), and f+0 (19), which take I + 1, 3I
and 2I operations, respectively. Then, assuming lines 4-14 are

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3190085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:25:30 UTC from IEEE Xplore. Restrictions apply.

8

repeated for every active device, we have 5I2 + 5IK + 2I
operations. The rest of the required operations from line 15
to line 17 are 10I + 3K and from line 18 to line 20 are
2K2+5K. Furthermore, assuming lines 25 to 30 are repeated
for all active devices and their offloading destinations, the
number of required operations is equal to 9IK. Hence, the
time complexity of Algorithm 3 is O(I2 +K2 + IK).

Finally, the overall time complexity of the proposed heuris-
tic method is O(IK2 + I2 +K2).

V. SIMULATION RESULTS

In this section, we examine the performance of both the
convex-programming method and the heuristic method through
Monte-Carlo simulations in a variety of scenarios. As a bench-
mark we use a lower bound on the total energy consumption
derived in Appendix B. For the network layout, we uniformly
distribute the active devices (AD)s within a 500×500 m2 area
and the fog devices (FD)s are placed on a disk with a radius
of 15m centered at an active device. We consider independent
Rayleigh fading for all communication links and we use the
path loss model PLcell = 128.1+37.6 log10(d), where d is the
distance in km [37], for the cellular wireless links between
ADs and the BS, while for the D2D links between ADs and
FDs, we use PLD2D = 148 + 40 log10(d). At each simulation
run, the task size di, ∀i ∈ I, is chosen from a uniform distri-
bution U(2×104, 4×105). To better illustrate the performance
of the proposed methods, we consider the challenging situation
where conditions (9c) and (9d) in the original problem are
violated by limiting the maximum computation capability of
the ES fmax

0 to

fmax
0 = ηE

[∑
i∈I

f opt
i

]
(21)

and the maximum capability of the FDs to

fmax
κ = ηE

[
f opt
i

]
, ∀i ∈ I, ∀κ ∈ Ki (22)

where f opt
i is obtained from Appendix B and η ∈ [0, 1] is

a scaling term. In other words, we ensure that problem P3

and Algorithm 3 are always employed in the simulations for
both proposed methods. Specifically, we choose η = 0.8 to
reduce the computation capabilities by 20% of the average
total required computation resources in the ideal scenario given
in Appendix B. The rest of the system parameters are given
in Table I unless specified otherwise.

TABLE I. System parameters

Parameter Description Symbol Value
Network size - 500×500 m2

Max. radius of a D2D link - 25 m
Number of active devices I {2, 3, . . . , 12}
Number of fog devices K {0, 1, . . . , 5}
Task size di [2×104, 4×105] bits
CPU cycles to process 1-bit data ci 1500 cycles/bit
Effective capacitance constant µ 10−24 Ws3

Scaling term for fmax
0 η [0.8, 1]

Limiting term for task uploading time α 0.85
Max. computation capability at the ES fmax

0 [0.2, 1.5] GHz
Max. transmit power Pmax [0, 200] mW
Task processing deadline tmax

i [0.4, 1] s
Noise level N0 −114 dBm
Channel bandwidth W 10 MHz

Fig. 2. Total energy consumption versus different number of ADs while
tmax
i = 1 ∀i ∈ I and Pmax = 200 mW.

In Fig. 2, we show the total energy consumption as a
function of the number of ADs I ∈ {2, 4, . . . , 12} and the
number of FDs K ∈ {0, 1, 3, 5}. As the number of ADs
changes, we set the computation capability of the ES and
the FDs by using (21) and (22). We compare both proposed
methods to the lower bound on the total energy consumption
obtained in Appendix B. As we can see, by incorporating D2D
communications in the task offloading process, the total energy
consumption is reduced compared to utilizing only the ES, and
decreases as the number of fog devices increases.

We note that the performance of both proposed methods
starts deviating from the lower bound as the number of FDs
increases. This happens for two reasons. First, because the
computation capability of the ES is finite and due to constraint
(9c), task partitioning cannot be equally distributed as in
Appendix B. Second, task uploading time is not instantaneous
as opposed to the ideal scenario in Appendix B. Hence,
more computation resources must be allocated to complete
the tasks within the deadline in order to meet constraints (9f)
and (9g). Consequently, the total energy consumption deviates
from the lower bound. In what follows, we gradually relax the
constraints in our simulations to validate these explanations
and show that the proposed methods achieve near-optimal
performance.

To validate the first reason, in Fig. 3 we show the effect of
maximum computation resources on the total energy consump-
tion by plotting the utilization of the offloading destinations in
percentage for a given task under various values of fmax

0 and
fmax
κ . The task offloading ratio is defined as follows:

Task Offloading (%) =
1

I

∑
i

b+i
di︸ ︷︷ ︸

Local

+
1

I

∑
i

b+i0
di︸ ︷︷ ︸

ES

+
1

I

∑
i

1
K

∑
κ∈Ki−{0} b

+
κ

di︸ ︷︷ ︸
D2D

(23)

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3190085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:25:30 UTC from IEEE Xplore. Restrictions apply.

9

where b+κ ,∀κ ∈ Ki i ∈ I is obtained from Section III
and Section IV for the convex programming method and the
heuristic method, respectively. We set fmax

0 ∈ {.2, .4, .8}GHz
and η = {0.8, 0.95, 1}, while we choose I = 5, |Ki| ∈ {0, 1}
and tmax

i = 1 ∀i ∈ I. If both the convex-programming method
and the heuristic method allocate the tasks as equal as possible
while constraints (9c) and (9d) are relaxed, we can show that
the proposed methods can approach the optimal solution given
as the lower bound.

(a) When fmax
0 = 0.2 GHz and

η = 0.8 used in (22)

(b) When fmax
0 = 0.4 GHz and

η = 0.95 used in (22)

(c) When fmax
0 = 0.8 GHz and

η = 1 used in (22)

Fig. 3. Utilization of the offloading destinations in percentage under different
computation capability of the ES.

In Fig. 3a, when fmax
0 is 0.2 GHz and η = 0.8, the utilization

of the ES and the FDs are limited, hence, most of the tasks
are processed at the local device. In this case, the performance

deviations from the lower bound for the convex programming
and the heuristic method are 51% and 52%, respectively. When
the limitation of computation resources at the ES and the FDs
are gradually relaxed by choosing fmax

0 = 0.4GHz and η =
0.95 as in Fig. 3b, the participation of the ES and FDs for
task offloading increases, which reduces the performance gap
to 17% for the convex-programming and 20% for the heuristic
method. Finally, when there is no resource limitation at the ES
and the FDs (relatively to task sizes and the number of devices
in the network), both convex-programming and the heuristic
methods achieve almost equal task size allocation among the
active devices and their offloading destinations, which yields
near-optimal solution as the performance deviations are only
0.009% and 0.019%, respectively.

Fig. 4. Total energy consumption versus maximum computation capability of
the ES, i.e., fmax

0 .

To validate the second reason, we study the effect of the
limitation of data rates and transmit powers while changing
the number of FDs. We assume that the number of ADs is 6
and we set η = 0.8 while increasing fmax

0 as in Fig. 4. When
the computation capability of the ES is fmax

0 = 0.2 GHz,
the performance gap for both proposed methods in the case
of utilizing only the ES (black line) is significantly higher
compared to incorporating a single FD (blue line) as the
limitation of fmax

0 is being compensated with the additional
computation resources at the FD. However, for values of fmax

0

higher than 0.6 GHz, the effect of fmax
0 almost disappears and

both proposed methods approach to a near-optimal solution
for these two scenarios. Nonetheless, with the addition of one
more FD (red line), a constant offset appears between the
performance of the proposed methods and the lower bound,
which is a direct indication that the devices require more
computation resources to compensate for the task uploading
time as they try to meet constraints (9f) and (9g). Therefore,
we numerically demonstrated that both proposed methods
achieve a near-optimal solution and the performance gaps
occur mostly due to the imposed constraints rather then their
sub-optimal nature.

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3190085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:25:30 UTC from IEEE Xplore. Restrictions apply.

10

Fig. 5. Total energy consumption versus different maximum time constraints,
i.e., tmax

i ∈ [0.4, 1] ∀i ∈ I, while I = 6 and Pmax = 200.

In Fig. 5, we plot the total energy consumption as a
function of the task processing deadline. Similar to the result
in Fig. 4, as tmax

i ∀i ∈ I decreases, more computation
resources must be allocated by the devices to process the
offloaded tasks within the given deadline, and consequently,
the total energy consumption increases. However, it can be
also verified that both the convex-programming method and
the heuristic method in the case of utilizing only the ES or
a single FD achieve near-optimal performance regardless of
the task processing deadline, which again demonstrates that
the performance gaps are due to the imposed constraints as
including more FDs increases them.

Fig. 6. Total energy consumption with respect to different number of ADs
and IDs while tmax

i = 1 and Pmax = 200.

In Fig. 6, we study the total energy consumption with
respect to the change in the number of fog devices, where
K ∈ {0, 1, . . . , 5} and I ∈ {1, 3, 5}. Similar to Fig. 2,
the computation capability of the ES is determined based

on (21) as the number of devices in the network change
in each simulation run. It is shown that by increasing the
number of FDs in the task offloading process, the total energy
consumption can be significantly decreased. Specifically, it
takes ten times less energy to compute a similar task with
the help of 5 FDs via D2D links instead of utilizing only
the ES. Nevertheless, the total energy consumption is higher
in the case of 1 AD compared to the case of 5 ADs and
5 FDs. This shows that taking a computation intensive task
off a single device and effectively partitioning it across all
the available computation resources can significantly reduce
the overall energy consumption even though more devices are
involved in the task offloading process.

Fig. 7. Total energy consumption versus task size under different number of
offloading devices and computation capability of the ES, i.e., |Ki| ∈ {0, 1}
and fmax

0 ∈ {108, 109}, respectively.

In Fig. 7, we study the total energy consumption for the
different task sizes. The number of ADs is set to 5 while
there is only a single FD. In addition, we set the available
computation resource of the ES to pre-defined values as
fmax
0 ∈ {108, 109}. It is shown that when the task size

is 400kbits, there is a drastic increase in the total energy
consumption if D2D communication is not used for task
offloading, especially when fmax

0 = 108Hz. On the contrary,
by employing only a single FD in the task offloading process,
the total energy consumption decreases by almost 5 times.
More importantly, the change in the total energy consump-
tion with fmax

0 = 108Hz and fmax
0 = 109Hz is relatively

small when compared to utilizing only the ES. Hence, we
can conclude that by incorporating D2D communication and
exploiting nearby computation resources, we can alleviate the
dependence on the ES, which is crucial when the traffic density
is high and the available resources are scarce in the network.

In Fig. 8, we compared the performance of our proposed
methods to a benchmark study [33] in terms of energy
efficiency. The main reason for choosing [33] is because it
uses the same objective function, i.e., minimization of total
energy consumption. In addition, similar to our model, [33]
assumes a centralized cloud server utilized through a BS
and multiple D2D devices for task offloading. However, in

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3190085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:25:30 UTC from IEEE Xplore. Restrictions apply.

11

contrast to our work, where we assume a centralized ES
with a limited computation capability, no constraint is put
on the computational capability of the cloud server. Also,
power control and local task processing are not considered
during task offloading, which drastically increases the energy
efficiency regardless of the number of FDs and the maximum
time constraints chosen for the comparison. Therefore, the
proposed methods outperforms [33] while achieving near-
optimal solution.

Fig. 8. Total energy consumption versus different maximum time constraints,
i.e., tmax

i ∈ [0.4, 1] ∀i ∈ I, while I = 6 and Pmax = 200.

Finally, we compare the average run-time of both proposed
methods implemented in MATLAB and executed on an Intel
i7-3770 computer with 16GB RAM. For the first comparison,
we assume only one AD and three FDs while changing the
task processing deadline from 0.4 to 1 second as presented
in Table II. Even though the proposed convex programming
method slightly outperforms the heuristic one in terms of
energy efficiency as demonstrated earlier, its average run-time
is significantly higher. For the second comparison as shown
in Table III, we include four more ADs to the network while
keeping the number of FDs the same. For tmax = 0.4s, the
average run time of our heuristic method is 7.6x103 times
less than the convex programming method.

TABLE II. Average run-time comparison when I = 1 and J = 3

Simulation setup Convex Prog. Heuristic
tmax = 0.4 s 0.385 s 161.1 µs
tmax = 0.6 s 0.371 s 160.4 µs
tmax = 0.8 s 0.366 s 160.2 µs
tmax = 1s 0.349 s 159.8 µs

TABLE III. Average run-time comparison when I = 5 and J = 3

Simulation setup Convex Prog. Heuristic
tmax = 0.4 s 3.818 s 0.501 ms
tmax = 0.6 s 3.708 s 0.449 ms
tmax = 0.8 s 3.429 s 0.448 ms
tmax = 1s 2.847 s 0.448 ms

VI. CONCLUSION

In this paper, we addressed a resource allocation problem
in a multi-device D2D-aided fog computing scenario, wherein
a central ES and proximate fog devices are utilized for
task offloading. Since the formulated problem is intractable,
we first proposed a sub-optimal convex-programming based
method, in which the computation resources, task sizes and
the transmit powers are allocated to reduce the total energy
consumption in the network. Then, based on this first method,
we developed a heuristic task offloading method, which does
not require the computation of gradients and Hessian matrices
during the solution process. We showed in detail the com-
putational complexity of this method in terms of key system
parameters, including the number of mobile devices and task
offloading destinations. Finally, we developed a lower bound
on the total energy consumption as a performance benchmark
for both the convex-programming and the heuristic methods.
Computer simulations demonstrated that the proposed methods
significantly reduce the total energy consumption compared
to processing tasks only locally while attaining near-optimal
solution in comparison to the derived lower bound.

APPENDIX A
CONVEXITY OF PROBLEM P2

We begin with proving the each function that forms the
total computation energy given in (11) is convex. Since the
summation of convex functions is a convex function, without
loss of generality, we can consider an active device and a single
offloading device κ ∈ Ki = {i0} to prove the convexity of
(11) as follows:

ψi(pi,bi) =
µ(bici)

3

(tmax
i)

2︸ ︷︷ ︸
ψloc

+
µ(bκci)

3(
tmax
i − bκ

Rκ

)2︸ ︷︷ ︸
ψoff

, ∀i ∈ I

We denote the Hessian of ψloc and ψoff by ∆2ψloc and ∆2ψoff,
respectively. Obtaining ∆2ψloc is straightforward since it only
depends on bi. Hence, after calculating its eigenvalues as 0 and
6biµc

3
i

(tmax
i)2 , we can determine that ∆2ψloc is positive semi-definite

and ψloc is convex since bi ≥ 0, ∀i ∈ I. For the Hessian of
ψoff, we have:

∆2ψoff =

∂ψoff

2

∂b2κ

∂ψoff
2

∂bκ∂Pκ
∂ψoff

2

∂Pκ∂bκ

∂ψoff
2

∂P 2
κ

where we can show that its trace and determinant are positive
to prove the convexity of ψoff. Specifically, the first element
of the main diagonal is equal to:

∂ψoff
2

∂b2κ
=

6µb3κc
3
i

R2
κ

(
tmax
i − tup

κ

)2 +
12µb2κc

3
i

Rκ
(
tmax
i − tup

κ

)2 +
6µbκc

3
i(

tmax
i − tup

κ

)2
while the second entry is:

∂ψoff
2

∂P 2
κ

=
mib

4
κ

u
(
tmax
i − tup

κ

)3 +
2mib

4
κ

uκln(vκ)
(
tmax
i − tup

κ

)3
+

3b5κmiln(2)

Wuκln2(v)
(
tmax
i − tup

κ

)4

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3190085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:25:30 UTC from IEEE Xplore. Restrictions apply.

12

where mi = 2µc3iG
2
κln(2), vκ = (1 + PκGκ

N0
) and uκ =

WN0
2v2κln2(vκ) are positive variables. Since the task upload-

ing time is always smaller than the task processing deadline
due to constraint (15e), i.e., tup

κ ≤ αtmax
i , the trace of ∆2ψoff

is positive.
Furthermore, the determinant of ∆2ψoff is calculated as:

det(∆2ψoff) =
4µ2c6i b

5
κG

2
κln(2)si

N2
0W

3ln5(vκ)v2κ
(
tmax
i − tup

κ

)7
where

si = b2κln2(2) +W 2tmax
i ln2(vκ)

(
6tmax
i − 7tup

κ + 3tmax
i ln(vκ)

)
We can show that det(∆2ψoff) is positive if si and (tmax

i − t
up
κ)

are positive. Both can be ensured simultaneously if tmax
i >

7/6tup
κ . Hence, we must select α ∈ (0, 67) in constraint (15e)

to keep the determinant positive for any values of bκ and
Pκ, ∀κ ∈ Ki,∀i ∈ I. Therefore, ψoff is a convex function
over the convex set based on the constraints in problem P2.
Finally, we can conclude that ψi(pi,bi), ∀i ∈ I is convex as
it is a summation of convex functions.

APPENDIX B
OPTIMAL TASK OFFLOADING FOR THE IDEAL CASE

We calculate the lower bound on the total energy consump-
tion (8) by evaluating the optimal task offloading strategy in an
ideal scenario, where the task uploading time is instantaneous
and the offloading destinations have infinite amount of compu-
tation resources. As demonstrated in Lemma 1 in Section III-A,
the task size di, regardless of how it is split, must be computed
at exactly tmax

i to minimize energy consumption. Hence, we
can calculate the total resource required for computing di as
follows:

f tot
i =

dici
tmax
i

(24)

At this point, the main objective becomes finding the optimal
task splitting strategy, i.e, di = bi +

∑
κ∈Ki

bκ, such that
the allocated computation resources, i.e., fi and fκ ∀κ ∈ Ki,
minimize the total energy consumption in (8).

Suppose that there is no constraint on the computation ca-
pability of device k ∈ Ki and the task uploading speed is very
high. Hence, we can assume Pκ = 0 and tup

κ = 0, which yields
tco
i = tco

κ = tmax
i , ∀i ∈ I ∀κ ∈ Ki. Then, based on (2) and (6),

we have bi =
fit

max
i

ci
and bκ =

fκt
max
i

ci
, ∀κ ∈ Ki, equivalently,

the total required resource is f tot
i = fi+

∑
κ∈Ki

fκ. Therefore,
by using (3) and (7), the total energy consumption of the ith
device is equal to:

Ei = µf3i t
max
i +

∑
κ∈Ki

µf3κt
max
i (25)

To obtain the lower bound for (25), we define the following
problem:

min
f

∑
i∈I

Ei (26)

s.t. fi +
∑
κ∈Ki

fκ = f tot
i , ∀i ∈ I (27)

Since the problem is convex, we can find the optimal value
by using Lagrange multiplier method, where the Lagrangian
function for the ith device with a Lagrange multiplier λi is
defined as follows:

Li(fi, λi) = Ei − λi(fi +
∑
κ∈Ki

fκ − f tot
i) (28)

Then, by taking the gradient of (28) and solving it as
∇Li(fi, λi) = 0, we have:

3µ

f2i
f2i0
f2i1
...
f2iK

 tmax
i − λi1 = 0 (29)

where 1 is the column vector of all-ones. Hence, we obtain
fi = fκ =

√
λi

3µtmax
i
∀κ ∈ Ki, and by using (27), we have

λi = 3µtmax
i

(f tot
i

|Ki|+1

)2
. Consequently, the optimal computation

resources are calculated as fi = fκ =
f tot
i

|Ki|+ 1
, ∀κ ∈ Ki.

Finally, by considering (24), the optimal task splitting based

on (2) and (6) becomes bi = bκ =
di

|Ki|+ 1
.

This shows that the minimum total energy consumption
is achieved when the tasks are split equally. Accordingly,
the allocated computation resource at each device should
be identical, where we can denote the optimum resource as
f opt
i =

f tot
i

|Ki|+1 . Therefore, the lower bound of the total energy
consumption for the given task size di can be calculated as
follows:

E∗
i = µ

(
|Ki|+ 1

)
(f opt
i)3tmax

i ≤ Ei (30)

REFERENCES

[1] Cisco Annual Internet Report, 2018-–2023 [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html.

[2] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys & Tutorials,
vol. 19, no. 3, pp. 1628–1656, 2017.

[3] X. Chen, Z. Liu, Y. Chen and Z. Li, ”Mobile edge computing based task
offloading and resource allocation in 5G ultra-dense networks,” IEEE
Access, vol. 7, pp. 184172–184182, 2019.

[4] Y. Siriwardhana, P. Porambage, M. Liyanage and M. Ylianttila, “A
survey on mobile augmented reality with 5G mobile edge computing:
architectures, applications, and technical aspects,” IEEE Commun. Sur-
veys & Tutorials, vol. 23, no. 2, pp. 1160–1192, 2021.

[5] M. Huang, W. Liu, T. Wang, A. Liu and S. Zhang, “A cloud–MEC
collaborative task offloading scheme with service orchestration,” IEEE
Int. of Things Jour., vol. 7, no. 7, pp. 5792–5805, 2020.

[6] J. Yan, S. Bi, Y. J. Zhang and M. Tao, “Optimal task offloading
and resource allocation in mobile-edge computing with inter-user task
dependency,” IEEE Trans. on Wireless Commun., vol. 19, no. 1, pp.
235–250, 2020.

[7] Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[8] Y. Mao, J. Zhang, Z. Chen, and K. B. Letaief, “Dynamic computation
offloading for mobile-edge computing with energy harvesting devices,”
IEEE Jour. on Selec. Areas in Commun., vol. 34, no. 12, pp. 3590–3605,
2016.

[9] Y. Fan, L. Zhai and H. Wang, “Cost-efficient dependent task offloading
for multiusers,” IEEE Access, vol. 7, pp. 115843–115856, 2019.

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3190085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:25:30 UTC from IEEE Xplore. Restrictions apply.

13

[10] X. Ma, S. Zhang, W. Li, P. Zhang, C. Lin, and X. Shen, “Cost-efficient
workload scheduling in cloud assisted mobile edge computing,” in Proc.
IEEE Int. Symp. on Quality of Service, pp. 1–10. June 2017.

[11] C. Wang, F. R. Yu, C. Liang, Q. Chen and L. Tang, “Joint computation
offloading and interference management in wireless cellular networks
with mobile edge computing,” IEEE Trans. on Vehic. Tech., vol. 66, no.
8, pp. 7432–7445, 2017.

[12] X. Chen, Z. Liu, Y. Chen and Z. Li, “Mobile edge computing based task
offloading and resource allocation in 5G ultra-dense networks,” IEEE
Access, vol. 7, pp. 184172–184182, 2019.

[13] C. Zhao, Y. Cai, A. Liu, M. Zhao and L. Hanzo, “Mobile edge
computing meets mmWave communications: Joint beamforming and
resource allocation for system delay minimization,” IEEE Trans. on
Wireless Commun., vol. 19, no. 4, pp. 2382–2396, 2020.

[14] L. Liu, Z. Chang, X. Guo, and T. Ristaniemi, “Multi-objective optimiza-
tion for computation offloading in mobile-edge computing,” in Proc.
IEEE Symp. Comput. Commun., pp. 832–837, Jul. 2017.

[15] X. Chen, Y. Cai, L. Li, M. Zhao, B. Champagne and L. Hanzo,
“Energy-efficient resource allocation for latency-sensitive mobile edge
computing,” IEEE Trans. on Vehic. Tech., vol. 69, no. 2, pp. 2246–2262,
2020.

[16] X. Chen, L. Jiao, W. Li and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” in IEEE/ACM Trans. on
Networking, vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[17] N. Li, J. Martinez-Ortega and V. H. Diaz, “Distributed power control for
interference-aware multi-user mobile edge computing: A game theory
approach,” IEEE Access, vol. 6, pp. 36105–36114, 2018.

[18] B. Wu, J. Zeng, L. Ge, Y. Tang and X. Su, “A game-theoretical approach
for energy-efficient resource allocation in MEC network,” in Proc. IEEE
Int. Conf. on Commun., pp. 1–6, May 2019.

[19] H. Hong, “From cloud computing to fog computing: unleash the power
of edge and end devices,” in Proc. IEEE Int. Conf. on Cloud Comp.
Tech. and Sci., pp. 331–334, Dec. 2017.

[20] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar and J. H.
Abawajy, “Fog of everything: Energy-efficient networked computing
architectures, research challenges, and a case study,” IEEE Access, vol.
5, pp. 9882–9910, 2017.

[21] J. Wen, C. Ren and A. K. Sangaiah, “Energy-efficient device-to-device
edge computing network: An approach offloading both traffic and
computation,” IEEE Commun. Mag., vol. 56, no. 9, pp. 96–102, 2018.

[22] M. Mehrabi, D. You, V. Latzko, H. Salah, M. Reisslein and F. H. P.
Fitzek, “Device-enhanced MEC: Multi-access edge computing (MEC)
aided by end device computation and caching: A survey,” IEEE Access,
vol. 7, pp. 166079–166108, 2019.

[23] Y. He, J. Ren, G. Yu and Y. Cai, “D2D Communications meet mo-
bile edge computing for enhanced computation capacity in cellular
networks,” IEEE Trans. on Wireless Commun., vol. 18, no. 3, pp. 1750–
1763, 2019.

[24] H. Xing, L. Liu, J. Xu and A. Nallanathan, “Joint task assignment
and resource allocation for D2D-enabled mobile-edge computing,” IEEE
Trans. on Commun., vol. 67, no. 6, pp. 4193–4207, 2019.

[25] L. Pu, X. Chen, J. Xu and X. Fu, “D2D fogging: An energy-efficient and
incentive-aware task offloading framework via network-assisted D2D
collaboration,” IEEE Jour. on Selec. Areas in Commun., vol. 34, no. 12,
pp. 3887–3901, 2016.

[26] B. Gao, Z. Zhou, F. Liu, F. Xu and B. Li, “An online framework for joint
network selection and service placement in mobile edge computing,”
IEEE Trans. on Mobile Comp., doi: 10.1109/TMC.2021.3064847.

[27] C. Yi, S. Huang and J. Cai, “Joint resource allocation for device-to-
device communication assisted fog computing,” IEEE Trans. on Mobile
Comp., vol. 20, no. 3, pp. 1076–1091, 2021.

[28] L. Li, L. Gu, J. Hong and S. Jiang, “Joint computation offloading and
wireless resource allocation in mobile edge computing,” in IEEE Proc.
Int. Conf. on Comp. and Commun., pp. 705–711, Dec. 2018.

[29] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, 2016.

[30] Z. Ning, P. Dong, X. Kong and F. Xia, “A cooperative partial computa-
tion offloading scheme for mobile edge computing enabled internet of
things,” IEEE Int. of Things Jour., vol. 6, no. 3, pp. 4804–4814, June
2019.

[31] X. Meng, W. Wang and Z. Zhang, “Delay-constrained hybrid compu-
tation offloading with cloud and fog computing,” IEEE Access, vol. 5,
pp. 21355–21367, 2017.

[32] S. Yu, R. Langar and X. Wang, “A D2D-multicast based computation
offloading framework for interactive applications,” in IEEE Proc. Glob.
Commun. Conf., pp. 1-6, Dec. 2016.

[33] W. Liu, Y. Teng, M. Liu and M. Song, “Joint offloading and computation
resource allocation in D2D assisted hybrid framework,” in IEEE Proc.
Annual Int. Symp. on Pers., Indoor and Mobile Radio Commun., pp.
1–6, Sept. 2019.

[34] S. Jošilo and G. Dán, “Decentralized algorithm for randomized task
allocation in fog computing systems,” IEEE/ACM Trans. on Net., vol.
27, no. 1, pp. 85–97, 2019.

[35] P. Mach, Z. Becvar, and T. Vanek, “In-band device-to-device communi-
cation in OFDMA cellular networks: A survey and challenges,” IEEE
Commun. Surveys Tuts., vol. 17, no. 4, pp. 1885–1922, 4th Quart., 2015.

[36] S. Sharma, N. Gupta, and V. A. Bohara, “OFDMA-based device-to de-
vice communication frameworks: Testbed deployment and measurement
results,” IEEE Access, vol. 6, pp. 12019–12030, 2018.

[37] Y. Dai, M. Sheng, K. Zhao, L. Liu, J. Liu and J. Li, “Interference-aware
resource allocation for D2D underlaid cellular network using SCMA: A
hypergraph approach,” in Proc. IEEE Wireless Commun. and Network
Conf., pp. 1–6, Apr. 2016.

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2022.3190085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:25:30 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Works and Motivation
	Main Contributions

	System Model and Problem Statement
	System Model
	Problem Statement

	Convex Programming Method
	Problem Analysis
	Allocation of Transmit Powers and Task Sizes
	Allocation of Computation Resources
	Summary of the Proposed Method

	Heuristic Task Offloading Method
	Initial Resource Allocation
	Re-allocating the Excess Resources
	Complexity Analysis

	Simulation Results
	Conclusion
	Appendix A: Convexity of Problem P2
	Appendix B: Optimal Task Offloading for the Ideal Case
	References

