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Incorporating the Human Hearing Properties in the
Signal Subspace Approach for Speech Enhancement

Firas Jabloun and Benoît Champagne

Abstract—The major drawback of most noise reduction
methods in speech applications is the annoying residual noise
known as musical noise. A potential solution to this artifact is the
incorporation of a human hearing model in the suppression filter
design. However, since the available models are usually developed
in the frequency domain, it is not clear how they can be applied
in the signal subspace approach for speech enhancement. In this
paper, we present a Frequency to Eigendomain Transformation
(FET) which permits to calculate a perceptually based eigenfilter.
This filter yields an improved result where better shaping of the
residual noise, from a perceptual perspective, is achieved. The
proposed method can also be used with the general case of colored
noise. Spectrogram illustrations and listening test results are
given to show the superiority of the proposed method over the
conventional signal subspace approach.

Index Terms—Colored noise, Karhunen-Loeve transform
(KLT), masking threshold, signal subspace, speech enhancement.

I. INTRODUCTION

T HE performance of speech communication systems in ap-
plications such as hands-free telephony, degrade consid-

erably in adverse acoustic environments. The presence of noise
can cause loss of intelligibility as well as the listener’s discom-
fort and fatigue. Speech enhancement methods seek to improve
the performance of these systems and to make the corrupted
speech more pleasant to the listener. These methods are also
useful in other applications such as automatic speech recogni-
tion.

In this paper we focus on the signal subspace approach (SSA)
for speech enhancement [1]. This technique is based on the de-
composition of the noisy signal vector space into two orthog-
onal subspaces called the noise subspace and the signal sub-
space. In this context, the signal subspace decomposition can
be achieved either using the Karhunen-Loeve transform (KLT)
via eigenvalue decomposition (EVD) of the data covariance ma-
trix [1]–[4], or using the singular value decomposition (SVD) of
a data matrix [5]–[7]. The discrete cosine transform (DCT) has
also been proposed as an approximation to the KLT [8], [9].

In the SSA, enhancement is obtained by removing the noise
subspace as a first step. Then the clean speech is recovered in
the remaining signal subspace by optimally weighting the signal
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coefficients in this subspace. The different SSA methods vary
according to the weighting scheme used [6]. The SSA can also
be interpreted as a filterbank with the weighting coefficients
serving as the subband filters [10].

As in most single channel speech enhancement methods such
as spectral subtraction [11], the signal subspace methods suffer
from the annoying residual noise known asmusical noise. Tones
at random frequencies, resulting from poor estimation of the
signal and noise statistics, are at the origin of this artifact.

In spectral subtraction and its variants, modifications using a
human hearing model were proposed to reduce the prominence
of the musical noise [12]–[16]. This technique, which was first
introduced in audio coding [17], is based on the fact that the
human auditory system is able to tolerate additive noise as long
as it is below somemasking threshold. Methods to calculate
the masking threshold are developed in the frequency domain
according to critical band analysis and the excitation pattern of
the basilar membrane in the inner ear [18].

Recently, a DCT based SSA imitating the human hearing res-
olution was proposed [9]. However, no algorithm which em-
ploys a sophisticated hearing model with a KLT based SSA
is available. The reason is that the SSA do not operate in the
frequency domain where the available hearing models are de-
veloped. In this paper, we present a frequency to eigendomain
transformation (FET) which provides a way to calculate a per-
ceptually based eigenfilter. This is done by estimating an eigen-
value decomposition based power spectral density (PSD) from
which a masking threshold is calculated. This threshold is trans-
formed to the speech signal eigendomain using the FET al-
lowing to design the perceptual eigenfilter. This filter yields
better residual noise shaping from a psychoacoustic perspec-
tive. We provide an analysis of the FET and show how it can
be incorporated in the SSA to improve its performance. We also
show how the method can be modified to cover the more general
case of colored noise.

Informal as well as formal subjective listening test results
show that the proposed new method outperforms the conven-
tional SSA. The results also show that our method provides
better noise shaping in the sense that for a given speech signal,
the residual noise has relatively similar characteristics in dif-
ferent noisy environments.

The paper is organized as follows. In Section II we briefly in-
troduce the signal subspace approach for speech enhancement.
The masking model used is described in Section III. The details
of the FET are explained in Section IV. Section V deals with the
colored noise case and the overall proposed method is given in
Section VI. Experimental results are presented in Section VII
and finally a conclusion is given in Section VIII.
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II. SIGNAL SUBSPACEAPPROACH

In this section we briefly introduce the signal subspace ap-
proach. The reader is referred to [1] for further details.

Let be a -dimensional noisy observation vector
where is the desired speech vector andis the noise vector
with covariance matrix . The noise is assumed to be uncor-
related with the speech signal so that the noisy signal covariance
matrix can be written as

(1)

where is the clean speech covariance matrix. The eigenvalue
decomposition (EVD) of is given by

(2)

where with the eigenvalues ’s
in decreasing order, and is the unitary eigenvector matrix ex-
pressed as . In this section we assume the
noise to be white with variance , that is . Hence,
the EVD of can be written as

(3)

Note that in this case and have the same eigenvectors.
A key assumption in the signal subspace approach is that

is rank deficient with . Therefore, we have
for . Accordingly, can be written

as where spans the so-called
signal subspace and spans the noise
subspace.

With these assumptions, a linear filter,, toestimate the de-
sired speech vectorfrom the noisy observation is designed
as follows: Let denote the estimate ofat the filter output

(4)

The residual error signal is defined as

(5)

with being the signal distortion and
being the residual noise.

In the particular form of the SSA called the spectral domain
constrained approach (SDC), the enhancement filteris the
solution to the following optimization problem:

(6)

The goal here is to minimize the signal distortion subject to
keeping every spectral component of the residual noise, in the
signal subspace, below some predefined threshold. The solution
to this problem is given by [1]

(7)

where the entries of the gain matrix are
chosen to be

(8)

where is a parameter that controls the tradeoff between the
residual noise level and the signal distortion. Note that other
alternatives for the gain function are also possible [1].

The matrix is referred to as the Karhunen-Loeve Trans-
form1 (KLT) and its effect on the noisy signal vectoris to cal-
culate the coefficients of its projection onto the signal subspace.
These coefficients have the property of being uncorrelated so
that they can be processed independently using a diagonal gain
matrix. The enhanced signal vector is finally reconstructed in
the signal subspace using the matrix, the inverse KLT.

III. CALCULATING THE MASKING THRESHOLD

A potentially important development in noise reduction
methods is the incorporation of the psychoacoustic properties
of human hearing, namely the so called masking [12]. During
the past decades, research has been conducted to understand
the human auditory system and to develop models which mimic
its behavior. Among these we mention that of Johnston [17]
and the more sophisticated model 1 and model 2 of the ISO
MPEG-1 audio coding standard [19]. Several other models are
available for example in [20] and [21].

In this paper we use the MPEG-1 model 1 which was found
to be reliable in practice. We provide here a brief description of
this model and the interested reader can refer to [19] for further
implementation details.

The masking phenomenon can be explained by the so called
critical bands. Within one critical band, one sound (the maskee)
becomes inaudible in the presence of another sound (the
masker) with a higher intensity (here the speech signal is the
masker while the undesired noise is the maskee). A perceptual
measure, called the Bark scale, relates the acoustic frequency
to this nonlinear perceptual frequency resolution, in which one
Bark covers one critical bandwidth. The analytical expression
which can be used to map the frequency(in hertz) to the
critical-band rate (in Barks) is [18]

(9)

Tonal and nontonal (noise-like) components of the magni-
tude spectrum of the input signal are identified according to the
local spectral maxima. Using the mapping in (9), the masking
threshold of each of these individual components is then cal-
culated and the resulting individual thresholds are summedlin-
early to obtain the global masking threshold. A masking com-
ponent at a particular frequency is discarded if it is below the
absolute threshold of hearing at that frequency [18].

The masking threshold of a tonal component is given by

(10)

1In factU is not exactly the KLT since it does not contain all the compo-
nents of the “real” KLT,U . However, since these missing components have a
zero weight in the gain matrixG;U can still be considered to be the KLT.
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Fig. 1. Power spectrum of a voiced speech frame (the vowel /a/) (continuous)
and its corresponding masking threshold (dashed).

where is the masking threshold atbarks due to the
masking component located atbarks. is the sound
pressure level (in dB) of the masking component with critical
band index . The function is the threshold offset given
by

(11)

Similarly, the masking threshold of each nontonal component is
given by

(12)

where

(13)

is the spreading function which accounts for the
inter-band masking and is given by (see (14) at the bottom of
the page) where in barks. The spreading function
has no effect on regions of the spectrum that are outside the
range of to 8 barks on the critical band rate scale, relative
to the location of the masking component. in (14) stands
for either or .

Fig. 1 shows the power spectral magnitude of a voiced speech
frame (the vowel /a/) and its corresponding masking threshold.

IV. FREQUENCY TOEIGENDOMAIN TRANSFORMATION

The filter described in Section II provides some residual noise
shaping but this shaping is not based on the masking properties

of the human ear. If we can design the gain function (8) based on
the masking threshold described in the previous section, then we
can achieve better noise shaping from a perceptual viewpoint.
Therefore more residual noise can be allowed in the enhanced
signal without being perceived by the listener which reduces the
signal distortion and hence improves intelligibility. However, as
discussed in Section III, the masking threshold is better under-
stood and is calculated in the frequency domain. So to be able
to include the hearing properties in the eigenfilter design, a fre-
quency to eigendomain transformation (FET) is required which
relates the power spectral density (PSD) of a speech signal to
the eigenvalues of its covariance matrix.

A. Derivation

Consider a zero mean stationary signal with autocorre-
lation function , where is the
expectation operator. The PSD of is defined as follows:

(15)

In practice, however, we need to estimate the PSD from a single
realization of over a finite time interval of length . To
this end, consider the biased autocorrelation estimator given by

(16)

with and for . The PSD can
then be estimated using the periodogram defined as [22]

(17)

Now let be the covariance
matrix estimate of with being its th eigenvalue and

being the corresponding unit
norm eigenvector. is assumed in general to have rank ,
so that for .

It is not difficult to show that can be written in terms of
in the following way [22]:

(18)

where

(19)

(14)
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is the Discrete-Time Fourier Transform of the entries of
the eigenvector . Equation (18) will be called the Frequency
to Eigendomain Transformation (FET).

Multiplying in (17) by a length window ,
we obtain the Blackman-Tukey estimator

(20)

If is a Bartlett (triangular) window, then can be
written in terms of the eigenvalue decomposition ofas fol-
lows [23]:

(21)

Equation (21) can be viewed as a sort of “inverse” for (18). Ac-
cordingly, we refer to it as the Inverse Frequency to Eigendo-
main Transformation (IFET). For completeness, a proof of these
two relationships is included in the Appendix. The FET is to be
used in the new proposed method for speech enhancement de-
scribed in Section VI.

B. Properties of the Blackman-Tukey Spectrum Estimator

Since the Inverse FET provides a PSD estimate based on the
Blackman-Tukey spectrum estimator, we found it necessary to
examine the properties of this estimator to verify how adequate
it is for the current application.

The periodogram is a very popular spectrum estimator be-
cause it can be directly calculated from the samples of .
However, it suffers from a high variance [23]

(22)

This variance is in general considered to be high and can not be
tolerated. Precisely, in the current application, the same eigen-
filter designed using the FET, will be applied to several overlap-
ping adjacent vectors as will be discussed in Section VI. There-
fore, it is preferable that the designed filter have a minimal vari-
ance.

In the Blackman-Tukey estimator, the variance is reduced by
multiplying the autocorrelation function by the window. The
variance in this case is approximately [23]

(23)

which is less than since .
This lower variance is obtained at the expense of a reduced

resolution. The Blackman-Tukey estimate is a smoothed ver-
sion of the periodogram due to the convolution with the Fourier
Transform of the window in the frequency domain. So the reso-
lution depends on the bandwidth of the main lobe of the window
which in turn depends on its size and type. In our case, for a
length Bartlett window the resolution is given by
[22]

(24)

So for at 8 KHz sampling rate, the resolution will
be 160 Hz which will result in a wideband spectrum which
smoothes the fine structure of the harmonics while preserving
formant structure. For example in the case of vowels, the first
three formants, important for speech intelligibility, are on the
average 1 KHz apart [24] so they will be well identified with
the Blackman-Tukey spectral estimator.

The resolution of the periodogram, on the other hand, is
that is 28 Hz when [22]. S o the

periodogram will reveal unnecessary details for the present
application.

C. Implementation

In this subsection we show how (18) and (21) are imple-
mented as a matrix/vector multiplication and how they are used
to calculate perceptually based “eigenvalues”.

Define the eigenvalue vector and the
vectors for . Here

is the magnitude squared-point DFT of , that is

(25)

Consider also the vector
obtained from the -point DFT implementation of (20). Then
(21) is implemented as follows:

(26)

Or in matrix notation

(27)

where .
is used to calculate the masking threshold as out-

lined in Section III. Note that the sound pressure level in barks
will then be given by

(28)

where is the sampling rate and is given by (9).
This perceptual information is mapped to the eigendomain

using (18) which is implemented as follows:

(29)

where and the ’s hereafter referred to as
the “masking energies.”

V. HANDLING THE COLORED NOISE CASE

One problem with the signal subspace approach described
in Section II is that it is based on the white noise assumption.
In [1], prewhitening is proposed as a remedy to this problem.
Accordingly, the overall enhancing filter becomes

(30)

where is the square root of the colored noise covari-
ance matrix. We shall refer to this modified method as SSA with
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Prewhitening (or PWSS). In [3] prewhitening is accomplished
using a filter designed from the coefficients of an autoregressive
model of the noise whereas in [7], prewhitening is an integral
part of a quotient singular value decomposition based algorithm.

The eigenfilter in (30) is now the solution of the optimiza-
tion problem (6) after applying the prewhitening matrix to the
input speech vector. Consequently, the noise shaping achieved
is obtained according to a modified speech spectrum [2]. So the
filter in (30) may not be the best choice to handle the colored
noise case.

In this paper, we propose a solution similar to the one sug-
gested in [2] and [4] and which was reported to outperform the
PWSS. This solution consists of replacing the noise variance
in (8) with the noise energies in the directions of the eigenvec-
tors of the speech covariance matrix. This is achieved by calcu-
lating , the Raleigh quotient associated with and for

. Namely,

(31)

Now using the notation of Section IV, (31) can be written in a
similar way to (18) as follows:

(32)

where is a PSD estimate of . On matrix notation we
have

(33)

Computing the ’s in this way requires less arithmetic opera-
tions than (31) because the matrixis already available from
the masking threshold computation.

VI. I MPLEMENTATION OF THE PROPOSEDMETHOD

In this section, we describe in detail the steps required to im-
plement the proposed method.

Although the signal subspace approach outperforms the spec-
tral subtraction methods [1], its major drawback remains the
large computational load required to calculate the covariance
matrix and especially its eigenvalue decomposition. To reduce
this computational burden, we propose to calculate the signal
subspace using a modified version of the method used in [1].

We divide the speech signal into overlapping frames of length
with a 50% overlap. The samples are used to calculate

the first coefficients of the biased autocorrelation function,
efficiently implemented using the Fast Fourier Transform.
From these coefficients, the Toeplitz covariance matrix is
formed. An eigenfilter is designed using the eigenvalue decom-
position of this covariance matrix. Every frame is divided into

smaller -dimensional overlapping vectors2 with
a 50% overlap.

Every such vector is then enhanced using the same eigenfilter
of the current frame. The vectors are then multiplied by a Han-
ning window and synthesized using the overlap-add method to
obtain one enhanced frame. Finally every frame is multiplied by

2N is chosen to be a multiple ofP

Fig. 2. Block diagram of the proposed method.

a second Hanning window and the total enhanced speech signal
is recovered using the overlap-add synthesis technique.

With this method, we need to calculate a new eigenfilter less
frequently hence reducing the computational load. For example
for and , a new filter is designed every 17 vec-
tors instead of every vector. Obviously, this technique assumes
the speech signal to be stationary within one frame of length.
This assumption is reasonable in practice since it is also used
in other speech enhancement methods such as the spectral sub-
traction method [11].

The steps required to calculate the perceptual eigenfilter are
shown in the block diagram of Fig. 2 and are explained next.

1) Noise Statistics:During nonspeech activity periods, the
biased autocorrelation function estimate of the noise, , is
obtained. This estimate is both used to calculate the power spec-
trum using the Blackman-Tukey estimator and to form
the Toeplitz covariance matrix of the noise.

Several methods for voice activity detection (VAD) have been
proposed in literature [25]. These methods, such as the energy
based methods, can be used to complement our proposed ap-
proach. However, since VAD is beyond the scope of this paper,
voice activity periods had been manually labeled in the experi-
mental results reported here.

2) Calculating the Signal Subspace:Let denote
the noisy covariance matrix estimated as explained above.
Since the noise and the speech signal are assumed to be
uncorrelated, the clean speech signal covariance matrix is
estimated as Next perform the eigenvalue
decomposition on the matrix and obtain the eigenvalue
vector , the eigenvector matrix and the
corresponding matrix as discussed in Section IV-C. is
not guaranteed to be positive definite hence the rankof
is chosen to be the number of strictly positive eigenvalues of

[2].
3) Masking Threshold:Use the IFET, (27), and the FET,

(29), to get the vector of masking energiesfrom according
to the masking threshold as explained in Section IV-C.

Authorized licensed use limited to: McGill University. Downloaded on June 2, 2009 at 16:46 from IEEE Xplore.  Restrictions apply.



JABLOUN AND CHAMPAGNE: SIGNAL SUBSPACE APPROACH FOR SPEECH ENHANCEMENT 705

4) Colored Noise Case:To handle the colored noise case,
the IFET is used to calculate the noise energies,’s, in every
spectral direction as explained in Section V.

5) KLT: The signal coefficients in the signal subspace are
obtained by multiplying the signal vector by the KLT matrix

.
6) Gain Matrix: The signal coefficients are multiplied by

the diagonal gain matrix . The entries of the matrix are calcu-
lated as follows:

(34)

Usually , so by replacing with in the gain func-
tion, becomes smaller and hence more noise suppression is
achieved. However since the gain is now obtained via percep-
tual criteria, the control parametercan be reduced in order to
obtain less signal distortion without making the residual noise
more audible. Nonetheless, during weak energy frames, such as
unvoiced fricatives, the spectrum is rarely characterized in terms
of formants because low frequencies are not excited and the ex-
cited upper resonances have broad bandwidths [24]. In this case,
the masking threshold estimate is not accurate and it can happen
that be smaller than with the result that, if is used, not
enough noise reduction is achieved, due to estimation errors. In
particular, at transitions from silence to speech activity periods,
the residual noise has a non smooth character which may be un-
comfortable to some listeners. Our informal listening tests show
that the use of the minimum operation in (34) helps to improve
the performance.

7) IKLT: The enhanced signal vector is finally recovered in
the signal subspace using the inverse KLT matrix.

The method described above is called the perceptual SS
method (PSS). Now, in order to evaluate the merit of using
masking, a second method has also been tested. It is exactly
similar to PSS but without the masking threshold block. The
gain function in this case becomes simply

(35)

and the ’s are now calculated directly using (31). Since (31)
involves the use of the Raleigh Quotient, this method will be
referred to as the Raleigh Quotient Signal Subspace (RQSS)
method.

VII. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method, lis-
tening experiments were carried out using different speech sig-
nals and background noises, where all recordings had a 8 KHz
sampling rate. The following parameters were used:
and . Several values for the gain function con-
trol parameter were tested. However, to achieve an accept-
able noise reduction level without seriously degrading the de-
sired speech intelligibility, the values (for RQSS and
PWSS) and (for PSS) were preferred. For comparison
purposes, this choice also aimed to maintain the same level of
distortion across the three tested methods while keeping some
audible residual noise.

During informal listening tests, it was concluded that the pro-
posed method outperformed the PWSS and RQSS in several

Fig. 3. Spectrograms of the clean (top) and noisy (bottom) female sentence
when corrupted with a freezer motor noise.

background noise types and levels and with different sentences.
Particularly, the benefit of PSS was more evident at low SNR
conditions [26].

These results have been confirmed by formal subjective lis-
tening tests. In these tests, two sentences and four noise types
have been selected from those investigated during informal lis-
tening tests. The sentences were a 2.2-s long female sentence
(Cats and dogs each hate the other) and a 3-s long male sen-
tence (Post no bills on this office wall). The noises were those of
a Volvo car (VLV), a Leopard military vehicle (LEO), an F16 jet
cockpit (JET) and a freezer motor (FRZ). The noises were added
to the clean speech signals at a 0 dB segmental SNR except for
VLV where the SNR was dB. This was due to the lowpass
nature of the Volvo car noise making it relatively difficult for
the subjects to discriminate between the different methods’ per-
formances at a higher SNR.

In total 18 persons took part of the tests among which three
worked in the speech processing area but were unfamiliar with
the sentences. The majority of the subjects were in their late
twenties.

Fig. 3 shows the spectrogram of the Female sentence used
in the tests. Shown are the clean signal and the FRZ corrupted
signal. Fig. 4 shows the spectrograms of the same signal en-
hanced with PWSS and PSS. It can be seen that PSS results in
a less noisy signal while maintaining the same level of signal
distortion.

A. The A-B Test Results

In this test, the subjects were asked to evaluate the perfor-
mance of PSS against that of RQSS and PWSS. In total, 8 pairs
of recordings per tests were presented to the subjects where
each pair consisted of a speech signal enhanced using PSS and
a second enhanced with a competing method. A separate test
has been conducted for every sentence. For each pair, they were
asked to vote for the signal they preferred (A, B, or X if they
had no preference) according to three different criteria. Intelli-
gibility: “ which signal is easier to understand ?” quality “which
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Fig. 4. Spectrograms of the signal in Fig. 3 enhanced with PWSS (top) and
PSS (bottom).

TABLE I
A-B TEST PREFERENCERESULTS FOR THEFEMALE SENTENCE

signal is less noisy?” and overall: “putting the previous two cri-
teria together, which signal is preferred?”

Some initial results showed that including the noisy signal
in the test and making the subjects explicitly aware of the signal
distortion (due to the test design), lead to biased answers. There-
fore, we have decided to remove the noisy signals from the test.
The benefit of using PWSS and PSS over the original noisy
signal has been reported in [1] and [27] respectively.

Tables I and II show the results of this test for the female
and male sentences respectively. It can be seen that the PSS
method outperforms the other two methods especially for the
female sentence. In general, the subjects found that the three
methods provided a relatively similar amount of distortion to
the enhanced signals, with the exception on the Female-LEO
and Male-VLV cases where the use of PSS resulted also in a
less distorted signal than PWSS. Overall, the merit of PSS is
in that it succeeds to maintain an acceptable level of distortion

TABLE II
A-B TEST PREFERENCERESULTS FOR THEMALE SENTENCE

while offering a better noise reduction (masking) performance.
PSS had a considerable success over RQSS and PWSS in the
case of LEO, VLV, and to a less extent FRZ. Note that when
the subjectsdid notvote for PSS, that was mostly because they
were unable to perceive any difference rather than because PSS
had a poorer performance.

In the JET case, the improvement achieved over the two com-
peting methods was not as obvious as it is with the other noises.
The test results revealed that relatively many subjects found that
PSS had the same performance as PWSS and RQSS. The ex-
planation for this is that the spectral characteristics of the JET
noise (lowpass with an additional peak at 2.8 KHz) has affected
the estimated masking threshold. This estimate was not accu-
rate enough resulting in an increased signal distortion, while
still maintaining a high noise reduction performance. PWSS and
RQSS, on the other hand, failed to completely suppress that high
frequency peak. For this reason, the number of subjects who
could not decide whether they prefer a low residual noise or a
low signal distortion, was high for this particular noise type.

B. Residual Noise Shaping Score

During informal listening tests, we have observed that signals
enhanced with PSS have a residual noise characteristics which
are relatively similar, regardless of the original corrupting noise.
This result supports our claim that PSS yields improved noise
shaping and hence better masking. To confirm this result, we
have set up a new subjective test which provides a “residual
noise shaping score” which serves to compare the performances
of the different methods according to the above mentioned cri-
terion.

The subjects were presented with a pair of signals enhanced
by thesamemethod but corresponding to different noises. Then
they were asked toconcentratejust on the background noise and
to compare its characteristics in the two recordings. The com-
parison is based on how similar or different these characteris-
tics are in the two signals, regardless of the loudness. The sub-
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TABLE III
RATING SCHEME FOR THERESIDUAL NOISESHAPING SCORETEST

TABLE IV
RESIDUAL NOISE SHAPING SCORES FOR THEFEMALE (F) AND

MALE (M) SENTENCES

jects had to score their decision according to a five-level rating
scheme shown in Table III. Again we have used the same four
noises resulting in six pairs for every method. In total, for the
three methods, 18 pairs per test were presented to the subjects.
Two tests, one for every sentence, had been designed.

The detailed scores for the different noise pairs for the two
sentences are given in Table IV. It can be seen that PSS got a
higher score on average than RQSS and PWSS which shows
that it achieves a relatively better noise shaping than the other
two competing methods.

VIII. C ONCLUSION

In this paper, we presented a perceptual spectral domain con-
strained signal subspace approach for noise reduction. The pro-
posed method uses the masking properties of the human ear
within the eigenfilter design. This method is capable of en-
hancing signals corrupted with colored noise. Listening tests
show that our method outperforms other existing signal sub-
space methods and, unlike these methods, the residual noise
characteristics of the proposed PSS method are relatively sim-
ilar regardless of the original corrupting noise.

APPENDIX

In this Appendix, we prove the FET relationships (18) and
(21). To prove (18), we proceed as follows.

Proof: By definition the eigenvalue can be written

Using the relationship between the autocorrelation function es-
timate and the periodogram

(36)

we have

(37)

Recalling the definition of (19) we get

(38)

The proof of (21) is as follows.
Proof: Consider the Blackman-Tukey estimate (20), as-

suming a triangular window, i.e., for
we have

(39)

The above summation overis readily expressible as a double
summation as

(40)

From the eigenvalue decomposition formula ,
we note that

(41)

Substituting (41) into (40) and recalling the definition of
(19), we finally obtain

(42)

where the limit of the summation is changed fromto be-
cause for .
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