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Correspondence________________________________________________________________________

On the Asymptotic Convergence and Numerical Stability
of the Proteus EVD Trackers

Benoît Champagne

Abstract—In this correspondence, the asymptotic convergence and nu-
merical stability of the recently introduced subspace tracking algorithms
PROTEUS-1 and - 2 are investigated by means of the ODE method. It is
shown that 1) under weak conditions, both algorithms globally converge
with probability one to the desired EVD components of the data covari-
ance matrix, and 2) they have a built-in mechanism that prevents deviation
from orthonormality in the eigenvector estimates over long periods of op-
eration, i.e., numerical stability.

Index Terms—Confergence analysis, EVO tracking, ODE method, sub-
space tracking.

I. INTRODUCTION

Efficient, sequential estimation of various quantities pertaining to
the eigenvalue decomposition (EVD) of a time-varying data covariance
matrix is of paramount importance for adaptive implementation of sub-
space methods in real time. In a recent paper [2], new algorithms with
low computational complexity are presented for tracking the signal-
subspace (i.e., dominant) eigenvalues and orthonormal eigenvectors.
Their derivation, which is based on the interpretation of the rank-one
modification term in the sample covariance matrix update as a small
perturbation, relies on a new type of constrained perturbation approach
in which plane rotations are used to implement the first-order perturba-
tion; therefore, eigenvector orthonormality is maintained during the up-
date. This approach directly leads to a first algorithm (Proteus-1) with a
complexity ofO(Nr2)operations per iteration, whereN andr, respec-
tively, denote the dimensions of the data vector and the dominant sub-
space. A further approximation based on the assumption of widely sep-
arated eigenvalues leads to a second algorithm (Proteus-2) with com-
plexityO(Nr). Extensive computer simulations show that these algo-
rithms converge to the desired EVD components under a wide range
of experimental conditions with an estimation accuracy comparable to
an exact approach. This is so for Proteus-2 even when the underlying
assumption on the eigenvalues is not satisfied. Furthermore, the algo-
rithms appear to be numerically robust, maintaining a level of orthog-
onality in the eigenvector estimates close to machine precision at all
times.

In this correspondence, we investigate the asymptotic convergence
and numerical stability of Proteus-1 and 2 using the ODE method.
Specifically, we show that 1) both algorithms globally converge with
probability one to the desired EVD components of the data covari-
ance matrix, and 2) they have a built-in mechanism that prevents de-
viation from orthonormality in the eigenvector estimates over long pe-
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riods of operation, i.e., numerical stability. In [3], DeGroatet al. use
the ODE method to study the convergence of a related multilevel sub-
space tracker; however, eigenvector convergence is proved under the
assumption of fixed, decreasingly ordered eigenvalue levels so that the
results are not generally applicable to Proteus-1 and –2. In addition,
potential deviation from orthonormality resulting from finite precision
effects, which is a critical issue when considering practical implemen-
tations, is left out as an open problem in [3]. Our analysis, which re-
volves around an alternative ODE system and different Lyapunov func-
tions, overcomes these restrictions and, thus, offers deeper insight into
the operation of Proteus-1 and –2 and other related subspace trackers.

II. PROBLEM FORMULATION

A. Overview of the Proteus Algorithms

Let xxxk 2 C
N , k 2 f1; 2; � � �g denote the time samples of a sto-

chastic vector process with zero-mean and covariance matrixRo
k =

E[xxxkxxx
H
k ]. Assume that signal-related information is contained in a

lower dimensional eigensubspace ofRo
k associated with ther (1 � r <

N ) largest (dominant) eigenvalues, which is known as the signal sub-
space; the orthogonal eigensubspace associated with theN�r smallest
(subdominant) eigenvalues is called the noise subspace. The specific
versions of the Proteus algorithms under consideration here provide
a computationally efficient means for recursively updating estimates
of ther largest eigenvalues and corresponding orthonormalized eigen-
vectors ofRo

k, along with the arithmetic mean of theN � r smallest
eigenvalues, each time a new sample vectorxxxk becomes available.

Specifically, let�i; k anduuui; k (i = 1; � � � ; r) denote the estimates of
the signal-subspace eigenvalues and corresponding eigenvectors, and
let �r+1; k denote the representative noise eigenvalue estimate. In ad-
dition, letUS; k = [uuu1; k; � � � ; uuur; k]. On observation ofxxxk, both Pro-
teus-1 and –2 initially compute

���S; k =UH
S; k�1xxxk

xxxN ; k =xxxk � US; k�1���S; k

���k =
h
���TS; k; kxxxN ; kk2

iT

uuur+1; k�1 =xxxN ; k=kxxxN ; kk2 (1)

where the eigenvectorsuuui; k�1 (i = 1; � � � ; r) have been premultipled
by complex scalars of unit magnitude so that the entries of���S; k are
real. After these computations, the eigenvectors are updated as

US; k = [US; k�1; uuur+1; k�1]Vk [Ir; 0]
T (2)

where the matrixVk , which is different for the two algorithms, repre-
sents a product of plane rotations aimed at approximating an exponen-
tial matrix function as

Vk = exp(
�k) + O(
2) (3)

where
 > 0 is a small gain parameter that controls the memory of
the estimation, and� = [�ij] 2 R

(r+1)�(r+1) is a skew-symmetric
matrix (i.e.,�T = ��) with upper diagonal entries

�ij; k = �i; k�j; k=(�j; k�1 � �i; k�1); 1 � i < j � r + 1: (4)
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In Proteus-1,Vk is expressed as a product ofr(r+1)=2 plane rotations
so that the resulting algorithm complexity isO(Nr2). In the derivation
of Proteus-2, it is assumed that the eigenvalues are widely separated,
i.e.,�i; k�1 � �i+1; k�1 for i = 1; � � � ; r so that(4) reduces to

�ij; k = ��i; k�j; k=�i; k�1; 1 � i < j � r + 1: (5)

By exploiting (5), a much simplified approximationVk in terms of only
2r � 1 plane rotations can be obtained, leading to an algorithm com-
plexity of onlyO(Nr). Note that since (2) is implemented with plane
rotations, the columns ofUS; k remain orthonormal at all time (as-
suming proper initialization and infinite precision arithmetic). In both
algorithms, the eigenvalues are finally updated as

�i; k =

�
(1� 
)�i; k�1 + 
j�i; kj

2; i = 1; � � � ; r

(1� 
)�i; k�1 + 
j�i; kj
2=(N � r); i = r + 1.

(6)

B. Algorithm Linearization

A central assumption in theasymptoticconvergence analysis of a
stochastic recursive algorithm with the ODE method is that of small
gain so that the algorithm may be expressed in the linearized form

�k = �k�1 + 
kH(�k�1; xxxk) + O(
2k) (7)

where
�k sequence of parameter estimates recursively pro-

duced by the algorithm;

k > 0 small, possibly time-varying scalar gain;
H(�k�1; xxxk) function (the so-called vector field) that defines, up

to first-order terms in
k , how the parameter esti-
mates�k�1 are updated by the algorithms;

O(
2k) residual second and higher order terms [1].
The parameter estimates produced by the Proteus algorithms

are the matrix of eigenvector estimatesUS; k = [uuu1; k; � � � ; uuur; k]
and the eigenvalue estimates�1; k; � � � ; �r+1; k; accordingly, we
define �k = fUS; k ; �1; k; � � � ; �r+1; kg. Using a similar nota-
tion, an arbitrary point in the parameter spaceP is represented by
� = fUS ; �1; � � � ; �r+1g, whereUS = [uuu1; � � � ; uuur] 2 C

N�r and
�i 2 R, and the vector fieldH(�; xxxk) is conveniently structured as
H(:) = fHUS (:); H�1(:); � � � ; H�r+1(:)g.

Making use of this notation and setting
 � 
k in (3)–(6), both
Proteus-1 and –2 can be expressed in the form (7), withHUS (:) and
H�i(:) (i = 1; � � � ; r + 1) given by

HUs
(�; xxxk) =

h
USUS ; I � USU

H
S

i �
L 
 xxxkxxx

H
k

�
[US; 0]

H (8)

H�i (�; xxxk) =uuu
H
i xxxkxxx

H
k uuui � �i; i = 1; � � � ; r (9)

and

H�r+1(�; xxxk) =
1

N � r
tr

��
I � USU

H
S

�2
xxxkxxx

H
k

�
� �r+1: (10)

In (8), US is an r � Nr block diagonal matrix obtained from the
columns ofUS , i.e.,US = diag(uuuH1 ; � � � ; uuu

H
r ), 
 is the Kronecker

matrix product, andL = [lij] 2 R
(r+1)�(r+1) is a skew-symmetric

matrix (i.e.,lij = �lji) with algorithm dependent entries, as given
below for i < j

lij =

�
1=(�j � �i); for Proteus-1

�1=�i; for Proteus-2.
(11)

III. A SYMPTOTIC CONVERGENCEANALYSIS

We will model the sequence of input vectorsfxxxkg1k=1 driving (7)
as a stationary, temporally white, complex vector random process with
zero-mean and positive-definite (true) covariance matrixRo, i.e.,Ro =
E[xxxkxxx

H
k ] > 0. This model has the advantage of simplifying the dis-

cussion while preserving the essential aspects of the analysis; a more
general class of models allowing for temporal correlation is described
in [1]. We denote by�o1 � � � � � �oN > 0 the eigenvalues ofRo and by
uuuoi (i = 1; � � � ; N ) a corresponding set of orthonormal eigenvectors;
accordingly, the EVD ofRo is expressed as

Ro = Uo�oUoH ; UoHUo = I (12)

where�o = diag(�o1; � � � ; �
o
N ), andUo = [uuuo1; � � � ; uuu

o
N ]. To sim-

plify the analysis, we assume that the true signal subspace eigenvalues
are distinct, i.e.,�o1 > � � � > �or > �or+1; again, generalizations are
possible.

A. The Algorithm’s ODE

The ODE of a stochastic recursive algorithm expressed in the lin-
earized form(7) is given by

_�(�) = h(�(�)); �(0) = �0 (13)

where
� � 0 continuous-time variable (the fictitious time);
�(�) differentiable function of� whose behavior is related to that

of the recursive algorithm;
�0 initial condition;

where the dot operator denotes time derivative, i.e.,d=d� , and the func-
tion h(�) (mean vector field) is given here by

h(�) = E[H(�; xxxk)]: (14)

The ODE (13) is purely deterministic in nature; its solution�(�) pro-
vides information about the ensemble of stochastic trajectories�k gen-
erated by the recursive algorithm (7). The connection between the dis-
crete-timek and the fictitious time� is achieved via the relation�k =Pk

l=1 
l.
In the present application of the ODE method,

we let �(�) = fUS(�), �1(�); � � � ; �r+1(�)g, and
h(:) = fhUS (:); h�1 (:); � � � ; h�r+1 (:)g so that (13) may be
expressed as

_US(�) =hUS (�(�)) (15)
_�i(�) =h�i(�(�)); i = 1; � � � ; r + 1: (16)

The determination of the ODE now amounts to a computation of the
expected values of the components of the vector fieldH(�; xxxk) in
(8)–(10). Observing thatE[xxxkxxx

H

k ] = Ro, this yields the following
nonlinear system of first-order time-invariant ODE’s (i.e., autonomous
dynamic system):

_US =
h
USUS; IN � USU

H

S

i
(L 
R

o) [US ; 0]
H (17)

_�i =uuu
H

i R
o
uuui � �i; i = 1; � � � ; r (18)

and

_�r+1 =
1

N � r
tr

��
IN � USU

H

S

�2
R
o

�
� �r+1 (19)

where the dependence on the fictitious time� has been omitted to sim-
plify the notation.

B. Equilibrium and Invariant Sets of the ODE

We begin with the definition of the desired parameter setDo. Recall
that the purpose of the Proteus algorithms is to track ther dominant



244 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 1, JANUARY 2000

eigenvalues and corresponding eigenvectors, along with the arithmetic
mean of theN � r subdominant eigenvalues of an underlying data
covariance matrix. Here, a stationary signal model with true covariance
matrixRo (12) is assumed; accordingly, we defineDo as the set of all
points� = fUS ; �1; � � � ; �r+1g 2 P , which is the parameter space,
such that

RoUS =US�S

UHS US = Ir (20)

�i =�o�i (i = 1; � � � ; r)

�r+1 =
1

(N � r)

NX
i=r+1

�oi (21)

where�S = diag(�1; � � � ; �r), and�i is an arbitrary permutation of
the integersf1; � � � ; rg.

Recall that a subsetDE � P is an equilibrium set of ODE (13) if
h(�) = 0 for all � 2 DE . Invoking the existence theorem for dy-
namic systems [5], it follows that�(0) 2 DE implies�(�) = �(0)
for all � � 0, where�(�) is a solution of (13). More generally, anin-
variant setDI of the ODE (13) is characterized by the property that if
a point�o is in DI , then so is any solution�(�) that passes through
�o. The following lemmas identify important equilibrium and invariant
sets of the ODE system (17)–(19); they point to desirable behaviors of
the underlying recursive algorithms. Throughout this correspondence,
�(�) = fUS(�); �1(�); � � � ; �r+1(�)g represents an arbitrary solu-
tion of (17)–(19).

Lemma 1: The desired parameter setDo is an equilibrium set of the
ODE system (17)–(19).

Proof: The right-hand sides of (17)–(19) are identically zero
when� 2 Do. �

Lemma 2: LetM = f� 2 P : UHS US = Irg. If �(0) 2 M, then
�(�) 2 M for all � � 0.

Proof: Using (17), we immediately obtain
d

d�

h
UHS US

i

=
h
UHS USUS ;

�
Ir � UHS US

�
UHS

i
(L
 Ro) [US; 0]

H

+ [US; 0]
�
LT 
 Ro

� h
UHS USUS;

�
Ir � UHS US

�
UHS

iH
:

(22)

Now, if UHS US = Ir, (22) reduces tod=d� [UHS US ] =
[US; 0][(L + LT ) 
 Ro][US; 0]

H = 0, where the last equality
follows from the skew-symmetric property ofL. Thus, the condition
UHS US = Ir defines an equilibrium state of the nonautonomous
system (22), and therefore, invoking the existence theorem for the
dynamic system,UHS US j�=0 = Ir implies UHS US = Ir for all
� � 0. �

Lemma 3: For i = 1; � � � ; r, US(0)Huuuoi 6= 0 (=0) implies
US(�)

Huuuoi 6= 0 (=0) for all � � 0.
Proof: Definevvv = UHS uuu

o
i . Using (17) and(12), straightforward

manipulations yield

_vvv = �[US; 0] (L 
Ro) [US ; 0]
Hvvv +


�
UHS R

oUS � �oi Ir
�
vvv

(23)
where
 = diag(l1; r+1; � � � ; lr; r+1). Clearly,vvv = 0 is an equilib-
rium point of this nonautonomous system (i.e.,vvv = 0 ) _vvv = 0).
Thus,vvv(0) 6= 0 (=0) impliesvvv(�) 6= 0 (=0) for all � � 0. �

Lemma 4: For i = 1; � � � ; r + 1, the initial condition�i(0) > 0
implies�i(�) > 0 for all � � 0.

Proof: The solutions to (18) and (19) can be expressed in the
form �i(�) = e�� [

R �
0
fi(t)e

t dt + �i(0)], wherefi(�) = uuuHi R
ouuui

(i = 1; � � � ; r), andfr+1(�) = (1=(N � r))tr[(IN � USU
H
S )2Ro].

SinceRo > 0, the functionsfi(�) > 0 for all � � 0; accordingly,
�i(0) > 0 implies�i(�) > 0 for all � � 0. �

C. Stability Analysis by Lyapunov’s Method

We note the following.

i) In infinite precision arithmetic, the eigenvector estimates pro-
duced by the Proteus algorithms remain orthonormal at all times
if properly initialized, that is,�0 2M implies�k 2 M for all
k � 0.

ii) According to Lemma 2, the associated ODE system (17)–(19)
propagates orthonormal eigenvectors, i.e.,�(0) 2 M implies
�(�) 2 M for all � � 0.

iii) According to (20), the desired parameter setDo �M.

Based on these observations, we conclude that in the stability analysis
of the equilibrium setDo of the ODE system (17)–(19), we may at
first limit our attention to trajectories that are entirely confined to the
manifoldM, i.e.,�(�) 2 M for all � � 0. Restricting the domain of
definition of (17)–(19) in this manner yields the useful identities

_UHS US + UHS _US = 0; P 2
N = PHN = PN ; PNUS = 0 (24)

wherePN � I � USU
H
S now defines an orthogonal projector on the

(estimated) noise subspace.
Define the distance between an arbitrary point and a subsetD �

P of the parameter space as dist( ; D) = inf o2D k �  okF .
Recall that an equilibrium setDE of the ODE system (17)–(19) is
stable if for every choice of� > 0, there exists� > 0 such that
dist(�(�); DE) < � for all � � 0 whenever dist(�(0); DE) < �.DE
isasymptotically stableif it is stable and if there exists�0 > 0 such that
lim�!1 dist(�(�); DE) = 0 whenever dist(�(0); DE) < �0. The
domain of attractionof DE is then the setDA, such that�(0) 2 DA
implies lim�!1 dist(�(�); DE) = 0.

Theorem 5: Let lij = 1=(�j��i) for i < j in (11)(i.e., Proteus-1),
and assume that�or+1 = � � � = �oN . Then,Do is an asymptotically
stable equilibrium set of the ODE system (17)–(19) over the manifold
M. Its domain of attraction isDA1 = f� 2 M: UH

S uuuoi 6= 0 for
1 � i � rg.

Proof: As a candidate Lyapunov function, consider
V1(�) =

1

2
kR1(�)� R

ok2F ;

R1(�) =US�SU
H
S + �r+1

�
IN � USU

H
S

�
: (25)

First, invoking [4, Th. 7.4.51] in [4], it can be shown that the global
minimum ofV (�) overDA1

is attained onDo: V (�) = 0 for � 2 Do

andV (�) > 0 for � 2 Do \ DA1
. Next, we must study the sign of

the time derivative ofV (�) � V (�(�)) along an arbitrary trajectory
�(�) of the ODE system (17)–(19) subject here to the restriction that
�(�) 2 M. A lengthy derivation making use of (24) yields

_V1(�) = �
rX
i=1

_�2i � (N � r) _�2r+1

� 2
X

1�i<j�r

���uuuHi Ro
uuuj

���
2

� 2kPNR
o
USk

2
F : (26)

Clearly, _V1(�) � 0. Let � 2 DA1
be such that_V1 = 0. Setting

kPNR
oUSkF = 0 yieldsRoUS = UST for some matrixT , i.e.,

the column span ofUS is an invariant subspace ofRo; in DA1
, this

implies that the columns ofUS form an orthonormal basis of the signal
subspace. Under this condition, settingjuuuHi R

ouuujj = 0 for all i <

j implies that the columns ofUS are the individual signal subspace
eigenvectors. Then, setting_�i = 0 (i = 1; � � � ; r + 1) and using
(18) and (19), we conclude that� 2 Do. In summary,_V1(�) = 0 for
� 2 Do, and _V1(�) < 0 for � 2 Do \ DA1

. Finally, we note that
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V (�) ! 1 as� ! 1. Invoking [5, Th. 13.IX] and Lemma 3, we
conclude thatDo is asymptotically stable with its domain of attraction
given byDA1

. �

Invoking basic theoretical results from [1], the convergence of
Proteus-1 to the desired parameter setDo is implied by Theorem 5.
Specifically, for the case of decreasing gain, i.e.,

P1
k=1


�k < 1
for some� > 1 and

P1
k=1 
k = +1, the theory guarantees that

�k converges toDo with probability one under the weak condition
that US; k enters a compact subset ofDA1

infinitely often with
probability one. Note that a similar condition is required for the
convergence of other subspace trackers, e.g., [6]. Here, this condition
may be justified on the basis that for Gaussian input vectorsxxxk
and�or+1 > 0, UH

S; k�1uuu
o
i = 0 for somei 2 f1; � � � ; rg implies

E[kUH
S; kuuu

o
i k

2] � 
2kr(�
o
r+1=�

o
1)
2 > 0. For the case of fixed gain, i.e.,


k = 
, the theory asserts that�k remains within a certain distance of
Do, for all � > 0, lim supk!1 Pr[dist(�k; Do) > �] � C(
; �),
with lim
!0 C(
; �) = 0.

Insight can be gained into the convergence of Proteus-1 from The-
orem 5. According to (25) and (26), the algorithm seeks the global min-
imum of an “error surface,” which is defined as the squared error be-
tween the true covariance matrixRo and a sphericalized estimate of
the latter, i.e.,R1(�). Another interesting aspect is the fact that no spe-
cific ordering of the eigenvalues�i(�) (i = 1; � � � ; r+1) is assumed.
Accordingly, Proteus-1 converges to the desired parameter setDo, re-
gardless of the initial eigenvalue ordering; this has been confirmed ex-
perimentally. Note that in the caseN�r � 2, Theorem 5 assumes that
the noise-subspace eigenvalues are identical; however, at the expense
of more elaborate developments, this constraint may be relaxed to ac-
commodate the case of a colored background noise.1

Theorem 6: Let lij = �1=�i for i < j in (11) (i.e., Proteus-2).
Then,Do is an asymptotically stable equilibrium set of the ODE system
(17)–(19) over the manifoldM. Its domain of attraction isDA2

=
f� 2M: UH

S uuu
o
i 6= 0 for 1 � i � r and�i > 0 for i=1; � � � ; r+1g.

Proof: Stability of the desired eigenvectors is shown as in The-
orem 5 using the Lyapunov functionV2(�) = 1=2kR2(�) � Rok2F ,
whereR2(�) = US diag(�o1; � � � ; �

o
r)U

H
S + �or+1(I � USU

H
S ), for

which

_V2(�) = � 2
X

1�i<j�r

(�oi � �oj )

�i

���uuuHi Rouuuj

���
2

� 2
rX

i=1

(�oi � �or+1)

�i
uuuHi R

oPNR
ouuui: (27)

Stability of the eigenvalues then follows immediately from (18) and
(19). ThatDA2

is a domain of attraction is implied by Lemmas 3 and
4 and the fact thatV2(�)!1 as�!1. �

According to the ODE method, convergence of Proteus-2 toward
the desired parameter setDo follows immediately from Theorem 6.
Note that in the latter, no specific assumption is made on the eigen-
value structure, even though the derivation of Proteus-2 is based on the
assumption that�i; k � �i+1; k (i = 1; � � � ; r). This provides a theo-
retical justification for the robustness of this algorithm to the eigenvalue
separation, as experimentally evidenced in [2].

In a finite-precision implementation of Proteus-1 or -2, the eigen-
vector estimates will invariably deviate from perfect orthonormality
due to quantization effects. For instance, due to a finite representation
capability, the plane rotations used in the update are only approximately
orthogonal. A potentially more serious problem is the accumulation of
round-off/truncation errors in the sequential application of these ap-

1Specifically, the conclusions of Theorem 5 remain valid if, among all pos-
sible combinations ofN � r eigenvalues, the noise subspace eigenvalues are
the most clustered ones in a least squares sense.

Fig. 1. Orthonormality error
p
V3(k) versus time samplek for Proteus 1 and

2 after sudden deviation from orthonormality atk = 100. Solid line: average ofp
V3(k) over four independent experiments. Dashed line: asymptotic behavior

predicted by theory.

proximate rotations over long periods of operations. Indeed, some sub-
space trackers require the use of reorthonormalization mechanisms to
avoid such error accumulations. Yet, as experimentally demonstrated in
[2], the Proteus algorithms show no sign of error buildup; they maintain
a level of orthogonality in the eigenvector estimates close to machine
precision at all time. The following theorem provides an explanation
for this behavior.

Theorem 7: For both Proteus-1 and 2, the manifoldM is an asymp-
totically stable invariant set of the ODE (17) in the vicinity of the de-
sired solution setDo in the parameter spaceP [i.e., �(�) close toDo

but not restricted toM].
Proof: To investigate stability, considerV3(�) = 1=2kUH

S US �
Irk

2
F . Note thatV3(�) � 0 with equality only whenUH

S US = Ir (i.e.,
� 2 M). Using (22), we may obtain

_V3(�) = tr
n�
UH
S US � Ir

� �
UH
S R

oUS
+
UH
S R

oUS
�

�
�
UH
S US � Ir

�o
(28)

where 
 = diag(l1; r+1; � � � ; lr; r+1). In the vicinity of Do,
i.e., dist( ; Do) < � for some small � > 0, we have
UH
S R

oUS = diag(�o�1 ; � � � ; �
o
�r ) + O(�). Furthermore,

li; r+1 � �1=(�oi � �or+1) for Proteus-1 andli; r+1 � �1=�oi
for Proteus-2. Accordingly, we find that_V3(�) � �4(1 + O(�))V3:
Thus, assuming that the trajectory�(�) remains sufficiently close to
Do, _V3(�) � 0 with equality only when� 2M. �

Thus, both Proteus-1 and -2 are numerically stable in the sense that
any small deviation from orthonormality due to finite precision arith-
metic is compensated by an internal reorthonormalization mechanism
that pushes back the parameter vector estimate�k towardM, provided
that�k is in the vicinity of the desired parameter setDo. In practice, this
restriction is of no consequence since deviation from orthonormality
only occurs after a relatively long period of operation that extends much
beyond the initial convergence time.

Fig . 1 illustrates the behavior ofV3(k) � V3(�k) for Proteus-1 and
-2 after a sudden deviation from orthonormality. The simulation sce-
nario is the same as in [2, Fig. 2(b)], but at timek = 100, the matrix
US; k is replaced byUS; k(Ir+�), where the entries of� are indepen-
dent Gaussian variables with zero-mean and standard deviation 10−10.
It can be seen that after the sudden increase atk = 100, V3(k) expo-



246 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 1, JANUARY 2000

nentionally decays to its original value. Furthermore, the rate of decay
is consistent with the above theory, i.e.,V3(k) � V3(ko)e

�4
(k�ko)

for k � ko (which is shown as a dashed line in Fig. 1).

REFERENCES

[1] A. Benveniste, M. Métivier, and P. Priouret,Adaptive Algorithms and
Stochastic Approximations. New York: Springer-Verlag, 1990.

[2] B. Champagne and Q. G. Liu, “Plane rotation-based EVD updating
schemes for efficient subspace tracking,”IEEE Trans. Signal Pro-
cessing, vol. 46, pp. 1886–1900, July 1998.

[3] R. D. DeGroat, E. M. Dowling, H. Ye, and D. A. Linebarger, “Spherical
subspace tracking for efficient, high performance adaptive signal pro-
cessing applications,”Signal Process., vol. 50, pp. 101–121, 1996.

[4] R. A. Horn and C. R. Johnson,Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

[5] J. La Salle and S. Lefschetz,Stability by Lyapunov’s Direct Method with
Applications. New York: Academic, 1961.

[6] B. Yang, “Asymptotic convergence analysis of the projection approx-
imation subspace tracking algorithms,”Signal Process., vol. 50, pp.
123–136, Mar. 1996.

Experimental Performance of Adaptive Beamforming in
a Sonar Environment with a Towed Array and Moving

Interfering Sources

Alex B. Gershman, Etienne Németh, and Johann F. Böhme

Abstract—The performances of adaptive array algorithms are known
to suffer from a strong degradation in scenarios with moving interfering
sources. In this correspondence, basic adaptive beamforming techniques
are compared using shallow sea sonar data recorded in a towed horizontal
array environment with moving interfering sources originated from
shipping noise. Our experimental results show the relationship between
the practical performances of adaptive and conventional beamforming
techniques compared in terms of output SINR or a related measure given
by the noncompensated postbeamforming interference power. These
results demonstrate noticeable performance improvements that can be
achieved using several robust algorithms relative to traditional adaptive
beamforming schemes.

Index Terms—Robust adaptive beamforming, towed array.

I. INTRODUCTION

Adaptive array algorithms [14] are known to degrade in scenarios
with moving interfering sources [4], [5]. As a rule, such a degradation
occurs either due to rapidly moving interfering sources or because of
array motion (e.g., in towed arrays, arrays with moving platforms,
etc.) and is caused by the fact that the interferers move away from

Manuscript received November 20, 1998; revised June 2, 1999. This work
was supported in part by the Grants from the Natural Sciences and Engineering
Research Council (NSERC) of Canada and the German Research Foundation
(DFG). The associate editor coordinating the review of this paper and approving
it for publication was Prof. S. M. Jesus.

A. B. Gershman is with the Communications Research Laboratory, Depart-
ment of Electrical and Computer Engineering, McMaster University, Hamilton,
Ont., Canada L8S 4K1 (e-mail: gershman@ieee.org).

E. Németh and J. F. Böhme are with Signal Theory Group, Department of
Electrical Engineering, Ruhr University, Bochum, Germany.

Publisher Item Identifier S 1053-587X(00)00088-X.

the sharp notches of the adapted pattern and lose their wavefront
coherence if their motion is sufficiently fast. Such a degradation may
be especially strong for large arrays because of relatively sharp notches
of an adapted pattern. Recently, several robust algorithms have been
proposed to overcome this problem via artificial widening of adaptive
pattern nulls [4], [5]. Simulation results in [4] and [5] have shown
drastic performance improvements achieved relative to traditional
(nonrobust) adaptive array techniques. However, no experimental
performance study has been done in the presence of multiple moving
interferences. It is worth noting that the practical performances of
adaptive beamformers in a real sonar environment may be subject to
much stronger degradation than that resulting from simulations and
theoretical study [6], [15]. This stronger degradation may be caused
by wavefront fluctuations and distortions in inhomogeneous media,
imperfect wavefront coherence, modal propagation effects, diffuse
scattering, and reverberation phenomena, as well as receiving antenna
defects [6], [17]. Although the real-data performance evaluation of
adaptive beamforming techniques in sonar environments appears to
be an important today task [9], very few array processing results have
been reported for actual sonar hydrophone array systems [2], [6], [10],
[15].

In this correspondence, the real-data performances of the popular
sample matrix inversion (SMI) [14], loaded SMI (LSMI) [1], and
Hung–Turner (HT) [8] algorithms are compared with that of con-
ventional beamformer [14] and recently developed robust adaptive
beamforming methods [4], [5]. To study the experimental perfor-
mances of these techniques, we employ experimental Baltic Sea array
data recorded by a towed horizontal array of 16 hydrophones.

II. A DAPTIVE BEAMFORMING ALGORITHMS

The complex adaptive beamformer output with the weight vectorwww

at timet can be expressed as

z(t) = www(t)Hyyy(t) (1)
where

yyy(t) = (y1(t); � � � ; yn(t))
T (2)

is then � 1 vector of array observations (hereafter referred to as the
beamforming snapshot), whereas(�)T and(�)H stand for the transpose
and Hermitian transpose, respectively. In this correspondence, it is as-
sumed that the vector (2) contains signal-free observations, i.e., the in-
terference and noise components only. The optimal weight vector max-
imizing the signal-to-interference-plus-noise ratio (SINR) is given by
[14]

wwwopt(t) = �(t)RRR(t)�1
aaaS(t) (3)

whereaaaS(t) is the time-varying (in the general case)n � 1 desired
signal direction vector

RRR(t) = Efyyy(t)yyyH(t)g (4)

is then � n interference-plus-noise covariance matrix, and�(t) is a
normalizing constant [14], which does not affect the output SINR

SINR(t) =
�2
Sjwww(t)

HaaaS(t)j
2

www(t)HRRR(t)www(t)
(5)

of the beamformer(1). Here,�2
S is the signal power in a single sensor.
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