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Correspondence

On the Asymptotic Convergence and Numerical Stability riods of operation, i.e., numerical stability. In [3], DeGretal. use

of the Proteus EVD Trackers the ODE method to study the convergence of a related multilevel sub-
space tracker; however, eigenvector convergence is proved under the
Benoit Champagne assumption of fixed, decreasingly ordered eigenvalue levels so that the

results are not generally applicable to Proteus-1 and —2. In addition,

] ) potential deviation from orthonormality resulting from finite precision
Abstract—n this correspondence, the asymptotic convergence and Nu- etacts which is a critical issue when considering practical implemen-
merical stability of the recently introduced subspace tracking algorithms

PROTEUS-1 and - 2 are investigated by means of the ODE method. It is [&tions, is left out as an open problem in [3]. Our analysis, which re-
shown that 1) under weak conditions, both algorithms globally converge Volves around an alternative ODE system and different Lyapunov func-

with probability one to the desired EVD components of the data covari- tions, overcomes these restrictions and, thus, offers deeper insight into

ance matrix, and 2) they have a built-in mechanism that prevents deviation {he operation of Proteus-1 and —2 and other related subspace trackers.
from orthonormality in the eigenvector estimates over long periods of op-

eration, i.e., numerical stability.

. . Il. PROBLEM FORMULATION
Index Terms—Confergence analysis, EVO tracking, ODE method, sub-

space tracking. A. Overview of the Proteus Algorithms

Letzx € CY,k € {1, 2, ---} denote the time samples of a sto-
. INTRODUCTION chastic vector process with zero-mean and covariance maffix=
. ) L i . . Flzizf]. Assume that signal-related information is contained in a
Efficient, sequential estimation of various quantities pertaining 9 . dimensional eigensubspaceRffassociated with the(1 < r <
the eigenvalue decomposition (EVD) of a time-varying data covarianﬁ% largest (dominant) eigenvalues, which is known as the_signal sub-
matrix is of paramount importance for adaptive implementati(_)n of sug- ace: the orthogonal eigensubspace associated with-thesmallest
space metths in real tlme._ln arecent paper [2], new algorlthm_s Wt bdominant) eigenvalues is called the noise subspace. The specific
low comput_at|onal c_ompIeX|_ty are presented for tracking t_he signglarsions of the Proteus algorithms under consideration here provide
sub_space_ ("_G" dom_lnapt) eigenvalues and orthor_lormal elgenVeCtgréomputationally efficient means for recursively updating estimates
Their dertvation, which is based on the interpretation of the rank-o%?ther largest eigenvalues and corresponding orthonormalized eigen-

modification term in the sample covariance matrix update as a S”\?élctors ofR?, along with the arithmetic mean of thé — r smallest
perturbation, relies on a new type of constrained perturbation appro%‘f&envalues, each time a new sample vegjobecomes available.
in which plane rotations are used to implement the first-order pert”rba'Specifically let\i » andu: 1 (i = 1, - - -, r) denote the estimates of

tion; therefore, eigenvector orthonormality is maintained during the URie signal-subspace eigenvalues and corresponding eigenvectors, and
date. This approach directly leadsto afirst algorithm (Proteus-1) Wiﬂ?& Ar41, & denote the representative noise eigenvalue estimate. In ad-
complexity ofO( N ?) operations per iteration, wheié andr, respec- dition, |étUs & = [u1,&, -+, ur, x]. On Observation of ., both Pro-

tively, denote the dimensions of the data vector and the dominant sy:c 1 and —2 initiallgl (’:omp’)utey

space. A further approximation based on the assumption of widely sep-
arated eigenvalues leads to a second algorithm (Proteus-2) with com-
plexity O( Nr). Extensive computer simulations show that these algo-
rithms converge to the desired EVD components under a wide range
of experimental conditions with an estimation accuracy comparable to
an exact approach. This is so for Proteus-2 even when the underlying
assumption on the eigenvalues is not satisfied. Furthermore, the algo- wrt1, k=1 =TNk/ |20 k|2 @)
rithms appear to be numerically robust, maintaining a level of orthog-

onality in the eigenvector estimates close to machine precision at ﬁere the eigenvectots, k—1 (i= _1’ -+, 7) have been p_remulﬂpled
times by complex scalars of unit magnitude so that the entriegsof are

In this correspondence, we investigate the asymptotic convergeﬁ%gl' After these computations, the eigenvectors are updated as

and numerical stability of Proteus-1 and 2 using the ODE method.
Specifically, we show that 1) both algorithms globally converge with
probability one to the desired EVD components of the data covary e the matrisi, which is different for the two algorithms, repre-

ance matrix, and 2) they have a built-in mechanism that prevents de- . . O
L - - . sénts a product of plane rotations aimed at approximating an exponen-
viation from orthonormality in the eigenvector estimates over long p

fial matrix function as

H
€5,k =Us k—1%k

TNk =Tk — Us h-1€s ;

- T
.= €5k llzar, k]2

Us,k = [Us, k=1, rt1, k—1]Vi[lr, 01" )
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In Proteus-1V} is expressed as a productof +1)/2 plane rotations IIl. A SYMPTOTIC CONVERGENCEANALYSIS
so that the resulting algorithm complexity@% N +2). In the derivation

o . . e will model the sequence of input vectdrsy } ;= driving (7
of Proteus-2, it is assumed that the eigenvalues are widely separategv . g . P ois iz g (7) .
. . as a stationary, temporally white, complex vector random process with
i., X, k=1 > Aig1,k—1 fOre =1, -- -, r so that(4) reduces to

zero-mean and positive-definite (true) covariance mdtfixi.e.,R° =
Elzxz¥] > 0. This model has the advantage of simplifying the dis-
cussion while preserving the essential aspects of the analysis; a more

By exploiting (5), a much simplified approximatiaf, in terms of only general class of models allowing for temporal correlation is described
2r — 1 plane rotations can be obtained, leading to an algorithm cor'trl'a[l]'we denote by > --- > )‘é_v >0 thefelginvalues ldt_ and by ]
plexity of only O(Nr). Note that since (2) is implemented with plane®: @ =1, N)a corr((;:s_pon Ing set of orthonormal eigenvectors;
rotations, the columns df s, remain orthonormal at all time (as- accordingly, the EVD of2” is expressed as

suming proper initialization and infinite precision arithmetic). In both R =U°AU", UeRue =1 12)
algorithms, the eigenvalues are finally updated as whereA® = diag Ay, -, A%), andU/®

Oij, k = —& k&5 kN k-1, 1<i<y<r+1. (5)

= [u?, -+, u%]. To sim-

(1= )\ ¥yl al? i=1 .y plify the analysis, we assume that the true signal subspace eigenvalues

Xijg = {( V)A”k_l 7|£”k|2’/(N | v ’ (6) aredistinct, i.e.AT > --- > A7 > A74q; again, generalizations are
L= )i k-1 + [k —r), 1=r+1 possible.

A. The Algorithm’s ODE

The ODE of a stochastic recursive algorithm expressed in the lin-
ﬁrized form(7) is given by

B. Algorithm Linearization

A central assumption in thasymptoticconvergence analysis of a
stochastic recursive algorithm with the ODE method is that of smal

gain so that the algorithm may be expressed in the linearized form o(r) =h(g(r)),  ¢(0)=do (13)
5 where
Ok = dr—1 4+ vH (dr-1, k) + O(vk) @) r >0 continuous-time variable (the fictitious time);
#(r)  differentiable function of whose behavior is related to that
where _ _ of the recursive algorithm;
bk sequence of parameter estimates recursively pro- initial condition:
duced by the algorithm; _ where the dot operator denotes time derivative d &7, and the func-
vk >0 small, possibly time-varying scalar gain; tion k(¢) (mean vector field) is given here by
H(¢r—1, =) function (the so-called vector field) that defines, up
to first-order terms inyx, how the parameter esti- h(¢) = ELH (9, z1)]. (14)
matesp—1 are updated by the algorithms; The ODE (13) is purely deterministic in nature; its solutig(r) pro-
O(~}) residual second and higher order terms [1]. vides information about the ensemble of stochastic trajectogieen-
The parameter estimates produced by the Proteus algorithsrated by the recursive algorithm (7). The connection between the dis-
are the matrix of eigenvector estimat€s » = [u1,, - -, #r,x] crete-timek and the fictitious time- is achieved via the relation, =
and the eigenvalue estimateés,, ---, Ar41,x; accordingly, we 7% ;.
define ¢x = {Us,k, A1,k, --, Arg1,8}. Using a similar nota- In  the present application of the ODE method,
tion, an arbitrary point in the parameter spa@es represented by we let ¢(r) = {Us(7), Ai(7), -+, Ary1(r)}, and
¢ = {Us, A1, -+, Ary1}, whereUs = [u1, -+, w,] € C¥*"and k() = {hug(), hr, (), -, ha,4, ()} so that (13) may be
A: € R, and the vector fieldd (¢, zx) is conveniently structured as expressed as
H() = {Hus(), Hy (), -+, Ha () N
E\A)aking usse( c))f this (nz)tation and+ls(et)ting = ~4 in (3)=(6), both Us(r) =hus(6(7) , (15)
Proteus-1 and —2 can be expressed in the form (7), #ith (.) and Ai(r) =ha,(o(7)), 1=1 -, r+1L (16)
Hy, () (@ =1,---, 7 +1)given by The determination of the ODE now amounts to a computation of the

expected values of the components of the vector figl@, zx) in
Hu. (6, 5) = |UsUs, I — UsUéf] (L @sz) [Us, 017 (8) (8)—(10). Observing thak[zxz] = R°, this yields the following
nonlinear system of first-order time-invariant ODE’s (i.e., autonomous
dynamic system):

Hi, (¢, zx) —ulzeu — A, i=1 -, 7 9) ]

Us = [Usus, Iy — UsUéf] (L®R%)[Us, 01" (17)
and : H o .

Ai =ui R7us — A, 1=1,---,r (18)

1 2
H (6, 30) = {(1— USU§) zsz} ~ Ar41. (10) @nd

N 1 H 2 o:|

Arg1 = tr | (In — UsU R — A 19
In (8), Us is anr x Nr block diagonal matrix obtained from the TN [( v s S) * (19)
columns ofUs, i.e.,Us = diagui’, ---, ul’), @ is the Kronecker - . ) .
matrix product, and, = [1i,] € ROHDX(+1) i 5 skew-symmetric where the dependence on the fictitious timleas been omitted to sim-

matrix (i.e.,l;; = —l;;) with algorithm dependent entries, as givenoIncy the notation.

below fori < j B. Equilibrium and Invariant Sets of the ODE

. { 1/(A; = A:), for Proteus-1 (1) We begin with the definition of the desired parametei3&tRecall
] —

—1/ X, for Proteus-2. that the purpose of the Proteus algorithms is to track-tdeminant
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eigenvalues and corresponding eigenvectors, along with the arithm@&ioce R° > 0, the functionsf:(r) > 0 for all = > 0; accordingly,
mean of theV — r subdominant eigenvalues of an underlying data;(0) > 0 impliesA;(r) > 0 forall = > 0. |
covariance matrix. Here, a stationary signal model with true covariance

matrix R° (12) is assumed; accordingly, we defife as the setof all ¢ stapility Analysis by Lyapunov’s Method

pointsg = {Us, A1, -+, Ar41} € P, which is the parameter space, .
such that We note the following.
R°Us =UsAs i) In infinite precision arithmetic, the eigenvector estimates pro-
UHe — ] (20) duced by the Proteus algorithms remain orthonormal at all times
sEs =i if properly initialized, that isgo € M implies¢r € M for all
)‘i:)\gr, (i:1,~~~,T) k > 0.
1 N . i) According to Lemma 2, the associated ODE system (17)—(19)
Arg1 = ) > X (21) propagates orthonormal eigenvectors, i€()) € M implies
i=rtl é(r) € Mforall + > 0.
whereAs = diag A1, - -+, Ar), andr; is an arbitrary permutation of i) According to (20), the desired parameter $&t C M.
the integerg1, - -+, r}.

) o . Based on these observations, we conclude that in the stability analysis
Recall that a subsd?z C P is an equmbrlum set of ODE (13) if ¢ the equilibrium seD° of the ODE system (17)—(19), we may at

h(¢) = 0 forall 6 € Dg. Invoking the existence theorem for dy-firs |imit our attention to trajectories that are entirely confined to the

namic systems [5], it follows that(0) € Dy implies¢(r) = ¢(0)  manifold M, i.e.,¢(7) € M forall 7 > 0. Restricting the domain of

forall 7 > 0, whereg(r) is a solution of (13). More generally, -  yefinition of (17)~(19) in this manner yields the useful identities
variant setD; of the ODE (13) is characterized by the property that if DU+ Ul Ts =0, Py=PE =Py, PylUs=0 (24)

a pointg, is in Dy, then so is any solutios(7) that passes through

6. The following lemmas identify important equilibrium and invariantvherePx = I — UsU & now defines an orthogonal projector on the
sets of the ODE system (17)—(19); they point to desirable behaviors(ggtimated) noise subspace.

the underlying recursive algorithms. Throughout this correspondenceDefine the distance between an arbitrary peirand a subsep C

é(r) = {Us(r), A1(7), -+, Arg1(r)} represents an arbitrary solu-P of the parameter space as (istD) = infy,ep [|¥ — ¥ol[r.
tion of (17)—(19). Recall that an equilibrium sePr of the ODE system (17)—(19) is
Lemma 1: The desired parameter £t is an equilibrium set of the Stableif for every choice ofe > 0, there exists$y > 0 such that
ODE system (17)—(19). dist¢(r), D) < eforall 7 > 0 whenever dig(0), Dz) < §.Dg

Proof: The right-hand sides of (17)-(19) are identically zerdsasymptotically stabléitis stable and if there exist&s > 0 such that
when¢ € D°. 0 limr—c dis{é(r), Pr) = 0 whenever dig(0), Ds) < §'. The
Lemma 2: Let M = {¢ € P:UZUs = I,}.1f $(0) € M, then domain of attractiorof D is then the seD 4, such tha(0) € Da
#(r) € Mforallr > 0. implieslim; o dis{(¢(r), Dp) =0. _
Proof: Using (17), we immediately obtain Theorem5: Letl;; = 1/(X;—;) fori < jin(11)(i.e., Proteus-1),
d uEy and assume that;;; = --- = A%. Then,D? is an asymptotically
dr [ S S] stable equilibrium set of the ODE system (17)—(19) over the manifold
_ [[]gUsUs (I _ U?Us) U?] (L ® R%) [Us O]H M. Its domain of attraction i94, = {¢ € M: UHu? +£ 0 for
P ’ 1<i<r).
4 [Us, 0] (LT ® Ro) {U?Usus, (Ir _ U?Us) U?] " Proof: As a candidate Lyapunov function, consider
Vi(6) = 31l R1(6) = R|I%,
(22) o o
Now, if UHUs = I, (22) reduces tod/dr[U&Us] = Ri(6) =UsAsUS' + Avga (v = UsUS) . (29)

[Us, O](L + IT) @ R°)[Us, 0]7 = 0, where the last equality First, invoking [4, Th. 7.4.51] in [4], it can be shown that the global
follows from the skew-symmetric property éf Thus, the condition minimum ofV (¢) overD 4, is attained orD°: V(4) = 0 for ¢ € D°
U#Us = I, defines an equilibrium state of the nonautonomouandV (¢) > 0 for ¢ € D° N D4,. Next, we must study the sign of
system (22), and therefore, invoking the existence theorem for ttre time derivative o¥' () = V(¢(r)) along an arbitrary trajectory
dynamic system{/&Us|,=o = I, impliesU¥Us = I, for all #(7) of the ODE system (17)—(19) subject here to the restriction that

T > 0. O  ¢(r) € M. Alengthy derivation making use of (24) yields
Lemma 3:For: = 1,---,r, Us(0)u? # 0 (=0) implies ) L o
Us(r)"u? # 0 (=0) forall = > 0. Vi(r) = — Z Ar = (N =r)Arps
Proof: Definev = U u?. Using (17) and12), straightforward =1 )
manipulations yield -2 3 ulHRouj‘ —2||PNvRUs|| 3. (26)
o = —[Us, 0] (L @ R°) [Us, 0] v + © (U?ROUS _ A;’Ir) v 1<

(23) Clearly,Vi(r) < 0. Leté € Da, be such thati = 0. Setting

whereQ = diag i1, r41, -+, Ir,+41). Clearly,v = 0 is an equilib- || PyR°Us| 0 yields R°Us = UsT for some matrix7, i.e.,
rium point of this nonautonomous system (i#.= 0 = » = 0). the column span of s is an invariant subspace &°; in D 4,, this
Thus,»(0) # 0 (=0) impliesv(r) # 0 (=0) forall = > 0. O implies that the columns df s form an orthonormal basis of the signal
Lemma 4: Fori = 1, ---, r + 1, the initial conditionX;(0) > 0  subspace. Under this condition, setting’ R°u;| = 0 for all i <
impliesA;(7) > 0 forall = > 0. J implies that the columns df s are the individual signal subspace
Proof: The solutions to (18) and (19) can be expressed in tleégenvectors. Then, settinﬁg =0@=1,---,r+ 1) and using

form Ai(r) = e‘T[fOT fi(Det dt + X;(0)], wherefi(r) = w'R°uw; (18) and (19), we conclude thate D°. In summaryV:(r) = 0 for
(@G=1, -, r),andfrp1(r) = A/(N — rNtr[(In — UsUE)’R?). ¢ € D°, andVi(r) < 0 for ¢ € D° N Da,. Finally, we note that
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V(¢) — oo as¢ — oo. Invoking [5, Th. 13.IX] and Lemma 3, we ' T T T T T T j ' "
conclude thaD? is asymptotically stable with its domain of attraction ol
given byDa, . | -

Invoking basic theoretical results from [1], the convergence 0%t
Proteus-1 to the desired parameter BStis implied by Theorem 5.
Specifically, for the case of decreasing gain, i)g,,~, v¢ < oo w0
for somea > 1 and) ;. , v« = +oo, the theory guarantees that o
#x converges taD° with probability one under the weak condition © s 100 1% 200 280 300 350 400 450 500
that Us, » enters a compact subset &4, infinitely often with
probability one. Note that a similar condition is required for the 1* T T T T T T T T v
convergence of other subspace trackers, e.g., [6]. Here, this conditi
may be justified on the basis that for Gaussian input veciors
andA?y; > 0, UF,_,u? = 0 for somei € {1,---, r} implies 'g‘o-u_
E[|UE xu?||?] > vir(A741/A7)° > 0. For the case of fixed gain, i.e.,

v, = 7, the theory asserts that, remains within a certain distance of 1™
De forall § > 0,limsup,_ ., Pr[dist¢r, D°) > §] < C(~, §),
with lim~_o C(v, §) = 0.

Insight can be gained into the convergence of Proteus-1 from The-
orem 5. According to (25) and (26), the algorithm seeks the global mifiy. 1. Orthonormality error/V; (k) versus time sample for Proteus 1 and
imum of an “error surface,” which is defined as the squared error b2after sudden deviation from orthonormalitykat= 100. Solid line: average of
tween the true covariance matri and a sphericalized estimate ofv/Vs(k) over four independent experiments. Dashed line: asymptotic behavior
the latter, i.e.R1(¢). Another interesting aspect is the fact that no spd¥edicted by theory.
cific ordering of the eigenvalues(r) ( = 1, -- -, r + 1) is assumed.

Accordingly, Proteus-1 converges to the desired parametd@%ee- Proximate rotations over long periods of operations. Indeed, some sub-
gardless of the initial eigenvalue ordering; this has been confirmed &ace trackers require the use of reorthonormalization mechanisms to
perimentally. Note that in the casé— r > 2, Theorem 5 assumes that@void such error accumulations. Yet, as experimentally demonstrated in
the noise-subspace eigenvalues are identical; however, at the expédlséhe Proteus algorithms show no sign of error buildup; they maintain
of more elaborate developments, this constraint may be relaxed to adevel of orthogonality in the eigenvector estimates close to machine
commodate the case of a colored background rioise. precision at all time. The following theorem provides an explanation

Theorem 6: Letl;; = —1/X; fori < j in (11) (i.e., Proteus-2). for this behavior.

Then,D? is an asymptotically stable equilibrium set of the ODE system Theorem 7: For both Proteus-1 and 2, the manifold is an asymp-
(17)-(19) over the manifold\. Its domain of attraction ig 4, = totically stable invariant set of the ODE (17) in the vicinity of the de-
{p e M:U8u?£0forl <i<rand\; >0fori=1, -, r+1}. sired solution seD” in the parameter spad? [i.e., ¢(7) close toD*
Proof: Stability of the desired eigenvectors is shown as in Thdt not restricted to\].

orem 5 using the Lyapunov functidrs(¢) = 1/2||R2(¢) — R°||%, Proof: To investigate stability, considég (¢) = 1/2||UFUs —
whereRs(¢) = Usdiag XS, -+, AYUH + X0y, (I — UsUL), for T+]|%. Note thati’s(¢) > 0 with equality only whe/ ¥ /s = 1. (i.e.,
which ¢ € M). Using (22), we may obtain

S A=A | 1o ‘2 Va(r)=trd (UVEUs - 1) (VERUsQ + QUERU

Vo(r)= — 2 u; R°u 3 suUs r s S s S

M= ¥ 05 : {( ’ ) ( )
<i<s (vdus-1,)} (28)

(A7 = A7 0 0
-2 Z %UFR Py R7us. (27) where @ = diagli,r41, <<, Ir,74+1). In the vicinity of D°,
=1

- ) . ) i.e., disty, D°) < 6 for some small§ > 0, we have
Stability of the eigenvalues then follows immediately from (18) angh Z pey; - diag A2 ., X2} + O(6). Furthermore,

= TR

(19). ThatD 4, is a domain of attraction is implied by Lemmas 3 ang, rp1 & —1/(A7 — A\2yq) for Proteus-1 and; .41 ~ —1/A7

4 and the fact that2(¢) — oc as¢ — oo. U for Proteus-2. Accordingly, we find that () < —4(1 + O(6))Va.
According to the ODE method, convergence of Proteus-2 towafghys, assuming that the trajectosyr) remains sufficiently close to
the desired parameter sBt follows immediately from Theorem 6. po Va(r) < 0 with equality only when € M. O
Note that in the latter, no specific assumption is made on the eigenThys, both Proteus-1 and -2 are numerically stable in the sense that
value structure, even though the derivation of Proteus-2 is based onglg small deviation from orthonormality due to finite precision arith-
assumption thak; x > Ait1,x (1 =1, - -, 7). This provides atheo- metic is compensated by an internal reorthonormalization mechanism
retical justification for the robustness of this algorithm to the eigenvalygy¢ pushes back the parameter vector estimateward.M , provided
separation, as experimentally evidenced in [2]. _ thatgy isinthe vicinity of the desired parameter #t. In practice, this
In a finite-precision implementation of Proteus-1 or -2, the €igeRastriction is of no consequence since deviation from orthonormality
vector estimates will invariably deviate from perfect orthonormalityny occurs after a relatively long period of operation that extends much
due to quantization effects. For instance, due to a finite representatiglyond the initial convergence time.
capability, the plane r_otations used_ inthe update_are only approxir_nately;ig . Lillustrates the behavior & (k) = Vs(¢) for Proteus-1 and
orthogonal. A potentially more serious problem is the accumulation of after a sudden deviation from orthonormality. The simulation sce-
round-off/truncation errors in the sequential application of these agsyig is the same as in [2, Fig. 2(b)], but at tifne= 100, the matrix

Igpecifically, the conclusions of Theorem 5 remain valid if, among all pogsv k1S repl{iced by_US’ k(ITfFA)’ where the entries ai are Ineren-
sible combinations oV — r eigenvalues, the noise subspace eigenvalues €Nt Gaussian variables with zero-mean and standard deviatié 10

the most clustered ones in a least squares sense. It can be seen that after the sudden increage-at100, Vz(k) expo-

PROTEUS-1 b

107t PROTEUS-2 -

time k
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nentionally decays to its original value. Furthermore, the rate of decthye sharp notches of the adapted pattern and lose their wavefront
is consistent with the above theory, i.8:(k) ~ Va(ko)e "*¥*~%¢)  coherence if their motion is sufficiently fast. Such a degradation may

for k > ko (which is shown as a dashed line in Fig. 1). be especially strong for large arrays because of relatively sharp notches
of an adapted pattern. Recently, several robust algorithms have been
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been reported for actual sonar hydrophone array systems [2], [6], [10],
[15].
In this correspondence, the real-data performances of the popular
sample matrix inversion (SMI) [14], loaded SMI (LSMI) [1], and
Experimental Performance of Adaptive Beamforming in ~ Hung-Turner (HT) [8] algorithms are compared with that of con-
a Sonar Environment with a Towed Array and Moving ventional beamformer [14] and recently developed robust adaptive
Interfering Sources beamforming methods [4], [5]. To study the experimental perfor-
mances of these techniques, we employ experimental Baltic Sea array
Alex B. Gershman, Etienne Németh, and Johann F. Bohme data recorded by a towed horizontal array of 16 hydrophones.

Abstract—The performances of adaptive array algorithms are known Il. ADAPTIVE BEAMFORMING ALGORITHMS

to suffer from a strong degradation in scenarios with moving interfering . . .
sources. In this correspondence, basic adaptive beamforming technigues The complex adaptive beamformer output with the weight vestor

are compared using shallow sea sonar data recorded in a towed horizontal at timet can be expressed as

array environment with moving interfering sources originated from 2(1) _w(t)H (t) 1)
shipping noise. Our experimental results show the relationship between - y

the practical performances of adaptive and conventional beamforming Where

techniques compared in terms of output SINR or a related measure given

by the noncompensated postbeamforming interference power. These T

y P P 9 P y(1) = (wa(t), -, yn(t)) @

results demonstrate noticeable performance improvements that can be
achieved using several robust algorithms relative to traditional adaptive )
beamforming schemes. is then x 1 vector of array observations (hereafter referred to as the

beamforming snapshot), wherdas’ and(-)* stand for the transpose

and Hermitian transpose, respectively. In this correspondence, it is as-

sumed that the vector (2) contains signal-free observations, i.e., the in-

terference and noise components only. The optimal weight vector max-
Adaptive array algorithms [14] are known to degrade in scenarigmizing the signal-to-interference-plus-noise ratio (SINR) is given by

with moving interfering sources [4], [5]. As a rule, such a degradatidi4]

occurs either due to rapidly moving interfering sources or because of

array motion (e.g., in towed arrays, arrays with moving platforms, wopt(t) = a(t) R(t)‘l as(t) 3)

etc.) and is caused by the fact that the interferers move away from

Index Terms—Robust adaptive beamforming, towed array.
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whereas(t) is the time-varying (in the general case)x 1 desired

. . ) _signal direction vector
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