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Recursive Least Squares Constant Modulus Algorithm for
Blind Adaptive Array

Yuxin Chen, Tho Le-Ngoc, Benoit Champagne, and Changjiang Xu

Abstract—We consider the problem of blind adaptive signal separation
with an antenna array, based on the constant modulus (CM) criterion. An
approximation to the CM cost function is proposed, which allows the use of
the recursive least squares (RLS) optimization technique. A novel RLS con-
stant modulus algorithm (RLS-CMA) is derived, where the modulus power
of the array output can take on arbitrary positive real values (i.e., fractional
values allowed). Simulations are performed to compare the performance of
the proposed RLS-CMA to other well-known algorithms for blind adaptive
beamforming. Results indicate that the RLS-CMA has a significantly faster
convergence rate and better tracking ability.

Index Terms—Blind adaptive beamforming, blind adaptive signal sepa-
ration, constant-modulus algorithm (CMA), recursive least-squares (RLS),
wireless communications.

I. INTRODUCTION

The problem of detecting and extracting communications signals
from dense interference environments is particularly important in the
design of modern wireless communications systems. Adaptive beam-
forming techniques, used in connection with antenna arrays, provide a
potential solution to this problem by forming high-gain beams in the
directions of arrival (DOA) of the signals of interest and, ideally, di-
recting nulls in the DOAs of the interferences. Adaptive beamforming
techniques often make use of a known training sequence. However, this
consumes a large amount of the available spectrum, especially when the
users move rapidly or the channel variation is severe.

To overcome this limitation, blind beamforming techniques based
on the so-called constant modulus (CM) approach [1]-[7] have been
widely used. Constant modulus algorithms (CMAs) for beamforming
exploit the low modulus fluctuation exhibited by most communications
signals to extract them from the array output. They are typically based
on minimizing the mean gth power error between the array output, after
a modulus nonlinearity, and a fixed real number. For our purpose, we
find it convenient to present the CM cost function in the form

J(p.q) = E[(ly(m)]” = 1)7] )

where y(n) denotes the array output, | - | denotes the modulus func-
tion, E[-] denotes statistical expectation, and p and ¢ are non-negative
parameters. In this correspondence, we will focus on the special case
q = 2.
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Fig. 1. Adaptive beamforming structure.

A CMA-based beamformer requires no special array geometry,
knowledge of the array manifold, or the noise covariance matrix
to adapt the array weights. In general, the CM cost function (1) is
nonquadratic in the unknown array weights and is optimized iteratively
over time via a stochastic gradient descent (SGD) approach. It is well
known that SGD methods are quite sensitive to the selected step size
and have a slow convergence rate. To overcome this limitation, Agee
[3] proposed a least squares constant modulus algorithm (LS-CMA)
for the J(1,2) case, which is implemented by using a block-update
iterative algorithm. Biedka et al. [4] analyzed the convergence
behavior of the LS-CMA in interference cancellation applications and
pointed out that the block size should be chosen carefully. Another
important CM adaptive algorithm is the so-called orthogonalized
CMA (O-CMA) [1], which is based on a Gauss—Newton iterative
approach.

In this correspondence, we introduce an approximation into the CM
cost function J(p, 2) that enables the use of the rapidly converging re-
cursive least squares (RLS) algorithm for the array weight adaptation
for any non-negative value of p. Simulations are performed to com-
pare the performance of the RLS-CMA, SGD-CMA, LS-CMA, and
0O-CMA in the application of blind adaptive beamforming of commu-
nications signals. Results indicate that the RLS-CMA has the fastest
convergence rate. It is of interest to note that the Furukawa et al. method
[5] corresponds to a special case of our proposed algorithm (i.e. with
p = 1), although they did not provide any specific interpretation. Here,
we establish through simulations that among the above algorithms, the
proposed RLS-CMA with p = 2 offers the best convergence property.

II. DATA MODEL AND CMA ARRAY

A CMA array, with adjustable element weights, is shown in Fig. 1.
Consider d independent sources, transmitting complex-valued signals
si(t), 1 < i < d with constant modulus waveforms (|s;(t)] = 1) ina
wireless scenario. The signals are received by an array of L antennas,
demodulated to baseband and sampled, resulting in the discrete-time
signals #/(n),1 <1 < L. Thereceived discrete-time signals from each
antenna elements are scaled by a complex weight w;(n),1 <1 < L,
and summed to form the array output y(n). Referring to Fig. 1, an
expression for the array output is given by

L

y(n) = wiw(n) 2

=1
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where superscript * denotes complex conjugate. Using vector format to
denote the beamformer weights and the signals induced on the antenna
elements, i.e.,

W = [wi,we, -, 'lUL]T 3)

x(n) :[m1('n),,r~2(n),---,mr,(n)]T “)

where superscript 1" stands for transpose, the output of the beamformer
becomes

y(n) = WHx(n) 5)

where H denotes the complex conjugate transpose.

The purpose of the adaptive array is to extract the desired signal, say
s1(t), by finding a suitable weight vector. In practical radio environ-
ments, multipath fading and interference can cause amplitude fluctua-
tions in the received signals. The objective of the CMA is therefore to
restore the array output to a constant envelope signal on average. This
is accomplished by adjusting the weight vector w to minimize the cost
function .J(p, q), as defined by (1).

For the sake of simplification, a stochastic gradient descent (SGD)
algorithm is generally employed to minimize the cost function J(p, ¢).
Using complex matrix calculus and replacing the statistical expectation
in (1) with an instantaneous estimation, the recursive update equation
of the SGD-CMA for the special case when p is an even integer and
q = 2 is obtained as follows:

wn+1) = w(n)—p (12_’) ly)I” = 1] ly(n) =2 5" (n)x(n) (6)

where ¢ is a positive step size parameter. The SGD-CMA (6) is used
as a benchmark in the simulations reported in Section IV.

III. RLS-CMA ALGORITHM

In the above SGD-CMA (6), the step size y should be carefully se-
lected. A small step size will lead to slow convergence rate, whereas
a large step size will result in the adapted weight oscillation. It is well
known that adaptation algorithms based on the RLS technique gen-
erally have faster convergence rate than SGD algorithms. However,
the cost function .J(p, ¢) (1) is nonquadratic in the array weights and
cannot be solved by the standard RLS algorithm. Below, we introduce
an approximation to .J(p, 2), leading to a modified CM cost function,
which in turns enables the use of the RLS algorithm.

Replacing the statistical expectation operator in (1) with an expo-
nentially weighted time average sum and setting ¢ = 2 yields

_ ek H NS
J_l;k (‘W (n)x(k)‘ 1) )

where A is the forgetting factor, and 0 < A < 1. Due to the presence of
the modulus nonlinearity in (7), we immediately note that the cost func-
tion of interest here is nonquadratic in the array weight vector w(n),
which prevents the application of the well-known recursive least-square
optimization techniques. To overcome this limitation, we first rewrite
(7) as

J= i A (w”(n)x(k)x”(k)w(n)(x”(k)w(n) ("—2 - 1)

k=1
®)
Next, we note that for stationary or slowly varying signal environments,
the difference between x”’ (k)w(n) and x™ (k)w(k — 1) is usually
small when £ is close to n, whereas larger differences for more dis-
tant values of » and % will be attenuated by the memory factor A» ¥,
Accordingly, it appears justified to consider the following approxima-
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TABLE 1
RLS-CMA ALGORITHM

w(0)=[1.01 )",
C(O)%B‘IIL «1.» 0= small positive constant

2(n) = x()x" () (0= D3 () (o -1)

h(n) =27 (n)C(n-1)

Initialization

Approximation and
RLS update
(For each iteration

n=l2..) g(n) = C(n = Dz(m /(A +h(n)z(n))

C(n) = (C(n—1)—g(mh(n)) /2
e(n) = wH(n - lﬁ(n)f 1

w(n)=wn-1)+ g(n)e*(n)

tion scheme, that is, replacing x* (k)w(n) by x™ (k)w(k — 1) in (8).
Doing so, we obtain the modified cost function:

n

J=3 Ak ‘WH(n) (x(kz)xH(k)w(k - 1))
k=1

X ‘x“(k)w(k DY ©)

.

The main advantage of (9) over (8) is that at a given time n, the
former is now quadratic in the unknown array weights w(n); the other
weight vectors w(k — 1) (k= 1,...,n) entering (9) are indeed avail-
able from previous iterations as they can be computed for 1 < k& <
n at the time instant . When optimizing .J' in (9) with respect to
unknown weight vector w(n), these other weight vectors are treated
as known, constant terms; it is therefore legitimate to view (9) as a
quadratic function of w(n) during the optimization process at a given
time n. We have been able to confirm the validity of the approxima-
tion x* (k)w(n) ~ x (k)w(k — 1) via computer experiments (see
also Section IV). The above approximation is conceptually similar to
the ones used by Yang in the derivation of the projection approxima-
tion subspace tracking (PAST) algorithm [8] and by Chen ef al. in the
blind beamforming algorithm for cyclostationary signals [9], although
the underlying applications in these works bear no direct connection
with the present CM approach to signal separation.

Defining z(k) = (x(k)x (B)yw(k — 1))z (k)w(k — 1)|P~2,(9)
can be rewritten more compactly as

T = iv—’“ W' (myah) ~ 1 ’

k=1

(10)

The above modified cost function .J', which is an approximation of
the original cost function .J in (7), can now be solved iteratively for the
optimum weight vector w(n ) by using one of the many RLS algorithms
available for such purpose in the literature (e.g., [10]).

Here, we solve (10) by using the standard RLS algorithm and call the
resulting algorithm RLS-CMA. The complete set of equations neces-
sary for the algorithm is described in Table I. Because the cost function
J' (10) is quadratic in the unknown array weights and has the stan-
dard least-squares form, other RLS algorithms could be specialized
just as well to the present application. For example, the QR-decom-
position-based recursive algorithm, which is known to be numerically
stable and robust, could be applied here.

The initial weight vector w(0) is set to [1,0,x.—1)]", i.e., the ra-
diation pattern is omni-directional. The choice of 6 is guided by sim-
ilar considerations, as in the application of the standard RLS algo-
rithm. Typically, ¢ is a small positive constant whose specific value
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is adjusted empirically. The computational complexity of RLS-CMA
is (3L? + 6L 4+ P — 2) complex multiplies per iteration.

It may be argued that the term |x (k)w(k — 1)[? 2 in (9), which
results from the quadratic approximation of .J', induces additional
memory into the time evolution of the RLS-CMA when the modulus
power p # 2. Hence, the convergence rate of RLS-CMA in the case
p = 2 should be faster than that of the case p # 2. The simulation
results in Section IV support that observation.

In [11], a robust CM array based on fractional lower order statistics
(FLOS) was proposed to mitigate impulsive noise at the receiver and,
at the same time, to restore the constant modulus character of the trans-
mitted communication signals. The main advantage of this method is
its robustness in various noise environments. The parameter p in the
FLOS criterion is possibly fractional, and it is therefore easy to imple-
ment the latter recursively by using our proposed RLS-CMA technique.

Using Ljung’s ordinary differential equation (ODE) framework [12],
we have been able to show that the proposed RLS-CMA converges with
probability 1 to the same local minimal point as the original CM cost
function for the case p = 2. Due to lack of space, the results will be
presented separately.

IV. ILLUSTRATIVE SIMULATION RESULTS

A ten-element uniform linear array is employed. The interelement
distance is set to half of the carrier wavelength of the desired signals.
The performance of the adaptive beamformer is measured by the output
signal-to-interference-plus-noise ratio (SINR), which is defined as

H H
wairs;s,a; W

SINR; = (11)

wHR;w

where 7,5, is the true power of the ith source, a; is the associated
transmission vector, and R is the true autocorrelation matrix of the
interference (noise and other signals) in the environment.

Example 1: In this example, we compare the initial convergence
rate and tracking ability of the proposed RLS-CMA and the SGD-CMA
in the case p = 2, ¢ = 2. To study tracking, we abruptly change
the number of sources following the initial convergence period. In all
simulations, we assume that all the sources have unit power, and the
noise power is o2 = 0.1. The phase v;(n), i < d of each source
si(n) = ¢’¥i(" is independently and uniformly distributed over [—,
7], where d is the number of sources. In the first 5000 iterations, there
are two sources with DOAs §; = 10° and #; = —30°; in the sub-
sequent 5000 iterations, there are two additional sources with DOAs
fs = —45° and 64 = 25°.

In Fig. 2, the forgetting factor of the RLS-CMA is chosen as A =
0.99, and the step size of the SGD-CMA is set to ¢ = 0.005 and
i = 0.009. In the initial convergence phase, the RLS-CMA has a
much faster convergence rate than the SGD-CMA. The latter exhibits
a two-stage convergence behavior: During the first stage, it quickly ap-
proaches a certain error level; however, in the second stage, it takes a
much longer time to converge to the minimum MSE. By increasing the
step size of the SGD-CMA, the first stage gets shorter, but the misdjust-
ment becomes larger. After a sudden change (i.e., two sources added at
iteration 5000), both the RLS-CMA and SGD-CMA can quickly track
the change. However, the SGD-CMA has a lower steady-state SINR
than the proposed RLS-CMA. This lower SINR becomes more pro-
nounced as the SGD step size increases due to the corresponding in-
crease in misadjustment. Fig. (3a) and (3b) shows the beam patterns of
the proposed RLS-CMA and SGD-CMA (i = 5 x 10™?) at iterations
5000 and 10000, respectively. The results indicate that the proposed
RLS-CMA provides significantly deeper nulls in the directions of the
other interfering sources.
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Fig. 2. SINR versus number of iterations for RLS-CMA and SGD-CMA in
Example 1.
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Example 1. (a) Beam pattern at iteration 5000. (b) Beam pattern at iteration
10000.
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Fig. 4. SINR versus number of iterations for RLS-CMA in Example 2.
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Example 2: In this example, we illustrate the effect of using dif-
ferent values of the modulus power p in the RLS-CMA and SGD-CMA.
There are two sources with DOAs §; = —10° and §» = 5°; the other
simulation parameters are identical to those in Example 1. Results in
this example are averaged over 100 independent runs. In Fig. 4, we
compare the learning curves of the RLS-CMA with different p. The
forgetting factor X is set to 0.99, except when p = 1, where A = 0.98.
This ensures that the steady-state SINR for the cases p = 1 and p = 2
are identical so that a meaningful comparison of convergence rate can
be made. As we discussed in Section III, the approximation made to
the CM cost function in the case p # 2 adds additional memory to
our RLS-CMA, as compared with the case p = 2. Hence, as shown in
Fig. 4, the convergence rate of our algorithm degrades when p # 2.

For the SGD-CMA, the convergence rate is determined by the step
size. Under the constraint of a fixed step size, increasing the modulus
power p will lead to faster convergence, but the fluctuation in SINR will
be larger when the algorithm reaches the steady state. For comparison
purposes, different values of the step size were used in our experiments
for the different choices of p so that similar convergence rates were
observed. Fig. 5 shows the result so obtained. Again, the SGD-CMA is
characterized by a two-stage convergence behavior. We also find that
there is no significant difference between the learning curves of the
SGD-CMA with different p. Once again, we note that the proposed
RLS-CMA has a much faster convergence rate than the SGD-CMA.

Example 3: In this example, we make further comparisons of the
RLS-CMA with the dynamic LS-CMA and the O-CMA, as shown in
Fig. 6. The simulation conditions are the same as in Example 2. The
parameter p is set to 2. In the dynamic LS-CMA, two different choices
of block size are used, i.e., 30 and 60. In the O-CMA, two values of
the step size, namely 3.5 x 1072 and 4.5 x 1073, are simulated.
SGD-CMA with step size of 1072 is also included for the purpose of
comparison. We note that the dynamic LS-CMA with small value of the
block size (i.e., 30) has a relatively fast convergence rate. However, the
fluctuations in SINR after convergence are significantly larger than with
RLS-CMA. With the O-CMA, step-size values larger than 4.5 x 107
lead to divergence of the algorithm. The proposed RLS-CMA with
parameter p set to 2 has the best convergence performance among all
the algorithms tested.

V. CONCLUSIONS

An approximation to the CM cost function was proposed that enabled
the derivation of a novel RLS-CMA for blind adaptive beamforming.
Comparative simulation experiments were conducted to investigate
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Fig. 6. Comparison of SINR versus number of iterations for RLS-CMA,
dynamic LS-CMA, O-CMA and SGD-CMA in Example 3.

the convergence behavior and tracking ability of the new RLS-CMA.
The performance of RLS-CMA was shown to be superior to that of
SGD-CMA, both in terms of initial convergence rate and tracking
ability under sudden change in the signal environment. The RLS-CMA
also achieved the fastest convergence rate when compared with the
well-known dynamic LS-CMA and O-CMA. Because the approximated
cost function introduced in this work is quadratic in the unknown array
weights, other types of RLS algorithms can also be utilized to improve
the robustness of the method or to reduce the computational load.
Finally, because of the simplified nature of the CM cost function in (1),
we note that existing algorithms such as the SGD-CMA, LS-CMA,
and O-CMA do not have the ability to lock on a particular source when
multiple constant modulus signals are present. Clearly, this observation
extends to the proposed RLS-CMA. Generally, this problem can be
solved by using multistage methods [7].
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Comments on ‘“Numerical Evaluation of the Lambert W
Function and Application to Generation of Generalized
Gaussian Noise with Exponent 1/2”

D. A. Barry, L. Li, and D.-S. Jeng

Abstract—The Lambert W function appears in a wide variety of cir-
cumstances, including the recent application to signal processing referred
to in the paper under discussion. Besides applications, a sizable body of
mathematical analysis has been reported. The original paper presented a
numerical algorithm for computation of W_,. An existing, similar algo-
rithm is presented. Iterative improvement of the W_; estimates is also dis-
cussed, and issues concerning computational efficiency and possible sources
of rounding error in fixed precision computational environments are iden-
tified. Existing, public-domain software takes into account all the identified
numerical issues and produces estimates of W to near the precision avail-
able on the host machine.

Index Terms—Algorithms, approximation methods, error estimation, fi-
nite word length effects, iterative methods, round-off errors.

I. INTRODUCTION

The Lambert W function arises in a wide variety of mathematical,
physical, chemical, and engineering contexts [1]. A recent summary
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W(z)

Fig. 1. Branches of the Lambert W function. The lower branch W_ is given
by the thick line; the upper branch W is given by the thin line.

of these is available [2]. In [3], a new use of the lower real
branch of the Lambert W function W_; is described; it arises
in the inverse distribution function of generalized Gaussian noise
with power 1/2. The main contributions of [3] were, first, to
identify the relationship between W_; and a particular case of
the generalized Gaussian noise distribution and, second, to provide
a numerical algorithm for computation of W_;. Here, our focus
is on the second contribution.

Given the widespread applications of the Lambert W function
referred to above, further utilization of it in signal processing is a
reasonable prospect. It is thus timely to mention the significant body of
research pertaining to the W function in the mathematical literature,
including numerical algorithms for its calculation. Specifically, this
comment is intended first to extend and clarify some material
presented in [3] regarding the W function and its approximations
and, second, to alert readers that well-tested, arbitrary-precision
numerical software is available for computation of both real branches
of the Lambert W function, i.e., W_y(z), —exp(—1) < z < 0 with
W_1(z) < —1, and the principal branch Wy(z), —exp(—1) < z
with Wy(z) > —1 (see Fig. 1 for a plot of these branches). The
available software has been thoroughly tested and, as such, is not
prone to numerical problems such as rounding error that could
occasionally result from the naive application of the algorithm
presented in [3].

II. DETAILED REMARKS

A. Available Software

We wish to make three remarks regarding existing software and al-
gorithms used therein.

1) Software to compute real values of the Lambert W
function is available in the public domain mathematical
library Netlib as Algorithm 743 of the TOMS database
(www.netlib.org/toms/743). The software, which is written
in FORTRAN (both single and double precision versions),
computes both real branches of the Lambert W function to
whatever precision is available on the computing platform
used. This algorithm and details of its application were
described in [4] and [5]. A FORTRAN-to-C converter such
as f2c (www.netlib.org/f2c) could be employed to help
derive C or C++ versions of the TOMS software.

2) The approximation in [4], which is simpler than that pre-
sented in [3], produces “one-shot” estimates of W_; with
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