
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 3, MARCH 2005 1151

Subspace-Based Blind Channel Estimation:
Generalization and Performance Analysis
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Abstract—In this paper, we present a systematic study of the
subspace-based blind channel estimation method. We first formu-
late a general signal model of multiple simultaneous signals trans-
mitted through vector channels, which can be applied to a mul-
titude of modern digital communication systems. Based on this
model, we then propose a generalized subspace-based channel esti-
mator by minimizing a novel cost function, which incorporates the
set of kernel matrices of the signals sharing the target channel via
a weighted sum of projection errors. We investigate the asymptotic
performance of the proposed estimator, i.e., bias, covariance, mean
square error (MSE), and Cramér–Rao bound, for large numbers
of independent observations. We show that the performance of the
estimator can be optimized by increasing the number of kernel ma-
trices and by using a special set of weights in the cost function. Fi-
nally, we consider the application of the proposed estimator to a
downlink code division multiple access (CDMA) system operating
in a frequency-selective fading channel with negligible intersymbol
interference (ISI). The results of the computer simulations fully
support our analytical developments.

Index Terms—Blind channel estimation, DS-CDMA, perfor-
mance analysis, subspace methods, wireless communications.

I. INTRODUCTION

CHANNEL estimation has become a critical function in
a variety of modern wireless communication systems,

where multiple independent signals are transmitted simulta-
neously though vector channels. In effect, accurate channel
information is important to recover the original transmitted
signals by signal processing techniques, e.g., combining, de-
convolution, detection, etc. [1]. Channel estimation algorithms
can be roughly sorted into two basic categories: training se-
quence/pilot aided algorithms and blind algorithms. Recently,
blind channel estimation algorithms have received consider-
able attention due to their advantages in terms of bandwidth
efficiency [2].

Of particular interest within the family of blind algorithms
are the so-called subspace-based blind channel estimation al-

Manuscript received June 25, 2003; revised February 10, 2004. This work
was supported in part by grants from the Natural Sciences and Engineering Re-
search Council of Canada and by McGill University under the Research and
Development Fund. This paper was presented in part at the Vehicular Tech-
nology Conference, Orlando, FL, October 6–9, 2003. The associate editor co-
ordinating the review of this manuscript and approving it for publication was
Dr. Franz Hlawatsch.

W. Kang was with the Department of Electrical and Computer Engineering,
McGill University, Montreal, QC, H3A 2A7 Canada. He is now with with the
Department of Electrical and Computer Engineering, University of Maryland,
College Park, MD 20742 USA (e-mail: wkang@glue.umd.edu).

B. Champagne is with the Department of Electrical and Computer En-
gineering, McGill University, Montreal, QC, H3A 2A7 Canada (e-mail:
champagne@ece.mcgill.ca).

Digital Object Identifier 10.1109/TSP.2004.842207

gorithms, which derive their properties from the second-order
statistics of the received signals. In these methods, the observa-
tion space is separated into two orthogonal subspaces, namely,
the signal subspace and the noise subspace, by applying eigen-
value decomposition (EVD) on the covariance matrix of the re-
ceived signal. With the help of partial prior information on the
structure of the transmitted signal, the vector channel of interest
can be estimated by exploiting the orthogonal property between
signal and noise subspaces.

During the past decade, subspace-based channel estimation
algorithms have been developed for and applied to various
vector channels, such as single-input multiple-output (SIMO)
channels [3]–[5]; frequency-selective fading channels in direct
sequence-code division multiple access (DS-CDMA) systems
[6]–[8] and multicarrier (MC)-CDMA systems [9], [10]; mul-
tiple receiver antennae [6], [11] and/or multiple transmitter
antennae channels [12], [13] in CDMA systems; and MC chan-
nels [14]. Although these algorithms were developed separately
for certain specific transmission scenarios, the similarities
among them indicate that there must exist some common
features of the underlying system models, which provide for
the feasibility of the subspace channel estimation. However,
thus far, these common features have not been studied in the
literature.

Besides, among the existing subspace-based channel estima-
tion algorithms, a majority of them only utilize a single signal
component to estimate the target channel, e.g., [6], [11], and
[12]. However, in many situations of interest, the target channel
is shared by multiple signal components simultaneously, as in,
e.g., a typical downlink environment in cellular systems [8]
or space-time block-coded channels [12]. Then, the problem
of utilizing multiple signal components to estimate the target
channel arises naturally. A pioneering work on this topic
appeared in [3], which tackles the intersymbol interference
(ISI) channel estimation problem in SIMO systems. Exten-
sion to the ISI channel in CDMA and orthogonal frequency
division multiplexing (OFDM) systems can be found in [4]
and [8], respectively. Thus far, there has not been a study that
quantifies the effects of using multiple signal components in
subspace-based blind channel estimation.

In this paper, motivated by the above considerations, we
present a systematic study of the subspace-based blind channel
estimation method. We first formulate a general signal model
of multiple simultaneous signals transmitted through vector
channels, which is applicable to a multitude of modern com-
munication systems. Based on this model, we then propose a
generalized subspace-based channel estimator by minimizing
a novel cost function, which incorporates the set of kernel
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matrices of the signal components sharing the target channel
via a weighted sum of projection errors. The user-specified
parameters in the proposed algorithms allow a generalization
of previous work. Through study of the identifiability (i.e.,
existence and uniqueness), we find that enlarging the set of
kernel matrices makes it possible to identify longer channel
vectors and/or to increase the number of independent signals.

We investigate the asymptotic performance of the proposed
estimator, i.e., bias, covariance, mean square error (MSE), and
Cramér–Rao bound (CRB) for large numbers of independent
observations. We show that the performance of the estimator can
be optimized by increasing the number of kernel matrices and
by using a special set of weights in the cost function. In partic-
ular, with the optimal weights and utilizing the kernel matrices
of all the signal components sharing the target channel, the pro-
posed estimator achieves both the minimum MSE and the CRB.
Finally, we consider the application of the proposed estimator
to a downlink CDMA system operating in a frequency-selective
fading channel with negligible ISI. The results of the computer
simulations fully support our analysis.

The paper provides a general mathematical framework so that
the various previously developed subspace approaches may be
embedded in a common formalism. However, the main contri-
bution remains the analysis of the performance of the subspace
channel estimation method, which, to the best of our knowledge,
has never been thoroughly studied before from such a general
angle. This analysis provides systematic tools for the design of
optimal subspace estimators in any specific system that fits the
proposed general model.

The paper is organized as follows. The general signal model
under consideration is introduced in Section II. The proposed
generalized subspace-based channel estimator is presented in
Section III. The asymptotic performance properties of the pro-
posed estimator are studied in Section IV. In Section V, we show
the computer experiment results in a downlink CDMA system.
This is followed by a conclusion in Section VI and Appendices
that contain the proofs of theorems.

The following notations are used in this paper: , , ,
, , and Tr , respectively, denote the transpose, com-

plex conjugate, conjugate transpose, inverse, pseudo-inverse,
and trace of matrix . We denote the linear space spanned by the
columns of as Span . Let be an matrix with en-
tries , and let be an matrix. The Kronecker product
of and , which is denoted , is an block matrix
with an th block . vec , where

denotes the th column of . is the identity matrix with
size . denotes the Euclidean norm of vector , and
diag is a diagonal matrix with on its main diagonal.
denotes statistical expectation.

II. PROBLEM FORMULATION

A. General Signal Model

Consider the following general model of an -dimensional
received signal vector in a communication system:

(1)

where is the number of individual symbols that comprise
the received signal vector, is a real-valued received ampli-
tude, which is the product of the transmitted amplitude and the
channel gain, is the th information symbol, is a normal-
ized channel vector (i.e., ) with length , is de-
fined as a kernel matrix with size , and is an ad-
ditive noise vector. We assume that the information symbols ,
for , are independent with zero mean and unit vari-
ance. The additive noise vector is circularly complex Gaussian
with covariance matrix and is independent from the infor-
mation symbols .

We define an data vector , an amplitude matrix
, and an signature waveform matrix , respectively,

as follows:

(2)

diag (3)

(4)

where

(5)

is the effective signature waveform of the th information
symbol, i.e., combined effect of channel and kernel matrix,
as seen by the receiver. Using the above matrix notations, the
signal model (1) can be expressed more compactly as

(6)

where we define .
The system model (6) explicitly contains the random

information symbol vector , which is convenient for sub-
space-based analysis (see Section III-A). However, for the
purpose of deriving a channel estimation algorithm and ana-
lyzing its performance, it is more appropriate to reformulate (1)
in a matrix format that explicitly displays the channel vectors.

In the sequel, we refer to the individual products
in (1) as signal components. We assume that

these signal components experience different channels
. Then, we separate the signal components into

groups, such that the signal components in each group share the
same channel. We denote the number of signal components in
the th group as , so that .
In the th group, we use the superscript to denote group
affiliation, as in the common channel parameter with length

, and we use the superscript to further distinguish among
the signal components, as in , , , and .
Finally, introducing the following quantities:

(7)

(8)

vec (9)

the received signal vector can also be expressed as

(10)
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B. Discussion

The specific physical meaning of the various parameters en-
tering the above model depends on the wireless communication
system being considered. As such, the model is sufficiently gen-
eral to accommodate several situations of interest, as exempli-
fied below for different system features.

Direction of propagation:
• Conventional downlink: All the signals share the same

channel so that there is only one group, as in, e.g., [8].
• Uplink: The signals from the same remote user share

the same channel and the number of groups is equal to
the number of remote users, e.g., [6] and [8].
Nature of information symbols:

• Intersymbol Interference (ISI): The entries of vector
represent consecutive information bits in the data

stream, e.g., [3], [4], and [8].
• Multiple Access Interference (MAI): Vector con-

tains the simultaneous information bits of the different
users, e.g., [6]–[8].

• Space-Time Block Codes (STBCs): Vector contains
the input symbols of an STBC encoder, e.g., [12] and
[13].
Nature of the kernel matrix:

• CDMA: The kernel matrix is a function of the
signature waveform, or spreading code, of the th
user. This is the case for instance in DS-CDMA with
time spreading, e.g., [6], [7], [11], and [12], and in
MC-CDMA with frequency spreading, e.g., [9], [10],
and [13].

• Oversampling in TDMA: This is used in ISI channels
where the kernel matrix
with , e.g., [3]–[5].
Nature of the channel vectors:

• Dispersive Channel: The th multipath channel is
modeled as a tapped-delay-line [15] with tap coeffi-
cient vector e.g., [6]–[8], and [12].

• MIMO Channel: Vector is a concatenation of the
various channel impulse responses (or gains) between
the multiple transmit antennae and multiple receiver
antennae, e.g., [6], and [11]–[13].

The above list is far from exhaustive but, to some degree,
demonstrates the generality of the proposed signal model. The
detailed example in Section V may be helpful to improve the
understanding of the general model considered in this work.
Further examples can be found in [16] as well as in the above
cited references.

C. Blind Channel Estimation

Within the above framework, the goal of blind channel
estimation is to determine one or more target channel vectors

, , using observations of the received signal
vector in (1), say, . In this paper, and without
loss of generality, we only consider the problem of estimating
one target channel vector. As we explain in Section IV, the
problem of estimating multiple target channel vectors can be
uncoupled into multiple independent estimation problems,
without any loss in theoretical achievable performance.

In blind channel estimation, the transmitted information
symbols, as represented by vector (2), are unknown. To
estimate the target channel vector , at least one kernel
matrix in the th group needs to be known by the estimating
algorithm. In practice, the specific available knowledge of
the kernel matrices depends on the particular system under
consideration. In this paper, we also assume that the length of
the target channel vector, i.e., is known or well estimated
(the same as in [6] and [8]). For convenience of notation, we
simply denote this parameter as in the sequel.

Below, we formulate a generalized cost function for sub-
space-based blind channel estimation, which incorporates the
set of kernel matrices of the signal components sharing the
target channel. We then investigate the asymptotic performance
of the estimator when the number of observations is large.

III. GENERALIZED BLIND SUBSPACE CHANNEL ESTIMATION

A. Theoretical Foundation

Let denote the covariance matrix of received signal vector
in (1):

(11)

Blind subspace methods exploit the special structure of to
estimate the channel parameters. Specifically, let us express the
EVD of in the form

(12)

where diag denotes the eigenvalue matrix,
with the eigenvalues in a nonincreasing order, and is a unitary
matrix that contains the corresponding eigenvectors. Since the
rank of matrix (11) is and the rank of matrix is
generically due to the additive white noise component in (1),
it follows that

(13)

Thus, the eigenvalues can be separated into two distinct
groups—the signal eigenvalues and the noise eigenvalues—re-
spectively, represented by matrices

diag (14)

diag (15)

Accordingly, the eigenvectors can be separated into the signal
and noise eigenvectors, as represented by matrices and
with dimensions and , respectively. With
these notations, the EVD in (12) can be expressed in the form

(16)

The columns of span the so-called signal subspace with di-
mension , whereas those of span its orthogonal comple-
ment, i.e., the noise subspace. The signal subspace is indeed
equal to the space spanned by the columns of :

Span Span Span (17)
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To estimate the target channel vector , which is shared by
the signal components in the th group, we select

effective signature waveforms from the th group, say,
without loss of generality, and construct a

matrix . Since the columns of form
a subset of the columns of , it follows that

Span Span Span (18)

Consequently

(19)

Defining

(20)

(21)

(22)

and applying vectorization operation on , we obtain

vec vec (23)

B. Identifiability

The first problem related to the identifiability issue is that
there exists a phase ambiguity in the unit-norm solution of (23),
i.e., the unit-norm solution of (23) is , where is an arbi-
trary phase factor . The phase ambiguity indeed exists in
all kinds of blind channel estimators and can be remedied by in-
troducing extra constraints, e.g., by using differentially encoded
information bits (more details about this problem can be found
in [17]). Thus, we assume that the phase factor is known exactly
in the rest of this paper.

Equation (23) can be interpreted as searching for a unit-norm
vector such that the vector is orthogonal to or,
equivalently, within the subspace Span . Thus, (23) has a
unique unit-norm solution if and only if both of the following
conditions are satisfied.

1) The intersection space of Span and Span have
dimension one (see [6]).

2) Matrix has full column rank, i.e., its rank is equal to
.

Condition 1) depends on the channel vectors be-
cause the subspace Span Span is a function
of . Condition 2) can be satisfied in practice by a ju-
dicious choice of the kernel matrix. To help understanding the
above identifiability conditions, [6] can be consulted for addi-
tional explanation. Moreover, a study of identifiability condition
in SIMO case can be found in [18]. In this work, we assume that
the above two conditions are satisfied.

The dimension of Span is , while under identifiability
condition 2) above, the dimension of Span is . Clearly, the
dimension of Span Span cannot exceed : the number
of rows of matrices and . Thus, the identifiability condition
implies

(24)

From the above inequalities, we conclude that increasing will
make it possible to allow more independent signals in the system
(i.e., a larger ) and/or enable the estimator to identify a longer
channel (i.e., a larger ).

C. Algorithm

In practice, the covariance matrix of the received signal
is usually unknown and must be estimated from the ob-

served data via time averaging. Assuming a locally stationary
environment, one such estimate based on a rectangular window
of samples is given by

(25)

where now denotes the received signal vector at the th time
instant (with similar modifications for other quantities of in-
terest in (6)–(8): , , , and ),
for .

In practice, the EVD is applied to , resulting in

(26)

where , , , and are noisy estimates of , , ,
and , respectively. Consequently, the noisy estimates of
(20) and (21) are, respectively, defined as

(27)

(28)

Ideally, if and the identifiability condition is sat-
isfied, all the eigenvalues of are positive except the
smallest one, which is equal to 0. In this case, the channel vector

can be estimated exactly by solving the (23). However,
in practice, the estimation error in may result in a posi-
tive perturbation in the smallest eigenvalue so that the matrix

is positive definite. In this case, (23) does not have
a (nontrivial) solution. Thus, we conclude that estimating
by solving (23) is not robust to the perturbation of .

In this work, we consider the following optimization criterion
for the blind estimation of channel vector :

(29)

where for are user-specified positive weight
parameters. We define

diag (30)

so that criterion (29) can be expressed in matrix form as

(31)

The choice of kernel matrices included in the proposed
criterion (29) is specified by the user, allowing a generalization
of previous work. For example, the single signal algorithm in
[6] can be obtained as a special case of (29) with

, whereas the multiple signals algorithms in [3] correspond to
. Here, any value of between 1 and can be used.

We point out that the proposed criterion (29) is novel in that
it allows for the introduction of user-specified weights for

in the estimation. This is motivated by the consid-
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TABLE I
GENERALIZED BLIND SUBSPACE CHANNEL ESTIMATION ALGORITHM

eration of performance, which will be discussed in Sections IV
and V in detail.

From an algorithmic viewpoint, the solution of (31) can
be calculated as the eigenvector corresponding to the smallest
eigenvalue of . The resulting estimation algo-
rithm is summarized in Table I; we call it the generalized blind
subspace channel estimation algorithm. Not only is this algo-
rithm based on a general signal model, but it also gives the
freedom to choose the kernel matrices and specify the weight
parameters so as to optimize performance (see below).

IV. ASYMPTOTIC PERFORMANCE ANALYSIS

In this section, we investigate the asymptotic performance
of the proposed generalized blind subspace channel estimation
algorithm (see Table I). We define the estimation error as

(32)

where and , respectively, denote the estimated and true
target channel vector for the th group. The performance cri-
teria of interest are the bias, covariance, and MSE of the pro-
posed estimator, respectively, which are defined as

Bias (33)

Cov

(34)

MSE (35)

We study these performance measures under the assumption that
the number of time samples in (25) is large. According to
weak law of large numbers [20], as

in probability (36)

Accordingly, the algorithm performance shall not depend on
the specific sequence of information symbols being trans-
mitted.

Theorem 1: The proposed generalized estimator is
asymptotically unbiased (i.e., Bias ) with the covariance

Cov (37)

and MSE

MSE

(38)
where diag .

Proof: See Appendix A.
Theorem 1 indicates that the performance of the proposed

estimator depends on the user-specified parameters, i.e., the
weight matrix (30) and the compounded kernel matrix
(22), which is determined by the set of kernel matrices utilized
in the estimator, i.e., .

We next investigate the optimal choice of parameters and
that minimizes the MSE and the covariance of the estimator.

To this end, it is convenient to explicitly indicate the functional
dependence of these measures on and , i.e., MSE
and Cov . We begin with the minimization of MSE ,
which proceeds in two steps. First, we minimize this measure by
adjusting the weight matrix such that for each fixed set , we
can obtain an optimal weight matrix, say, ; second, we
search for a best choice of to minimize MSE , i.e.,
when the optimal weight matrix for this set, as determined in the
first step, is used. Then, the resulting choice of the parameters

and minimizes MSE .
Theorem 2: is the optimal weight matrix mini-

mizing MSE for a fixed set :

MSE MSE

MSE Tr (39)

where is an arbitrary constant, and

(40)

Proof: See Appendix B.
Theorem 2 shows that the optimal weights

are proportional to the corresponding received powers .
Since all the signal components in the th group share the same
channel, the received powers of these components are propor-
tional to their respective transmitted powers. Thus, the optimal
weights are proportional to the transmitted powers as well. The-
orem 2 also shows that introducing off-diagonal terms in the
weight matrix will not improve the performance but will in-
crease the computational complexity of the estimator.

Next, we consider the set of kernel matrices
utilized in the estimator with optimal

weight matrix. We define the universal set of kernel matrices in
the th group as so that .
We also consider an arbitrary partition of into nonempty
subsets as :

(41)

for any (42)
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Theorem 3: For any proper subset of , that is
, we have

MSE MSE (43)

Proof: See Appendix C.
The above theorem implies qualitatively that enlarging the

set of kernel matrices in the estimator will decrease its MSE.
Clearly, increasing the number of kernel matrices will entail
an additional computational cost (see Table I). Thus, there is a
tradeoff between computational complexity and estimation per-
formance.

A direct result of Theorem 3 is that the minimum MSE of the
proposed estimator is achieved when the estimator utilizes the
kernel matrices of all the signal components in this group, i.e.,

:

MSE MSE MSE

Tr (44)

where

(45)

(46)

(47)

diag (48)

The next theorem provides a better indication of the rela-
tionship between the achievable MSE and the individual
MSE for the subsets of kernel matrices forming the parti-
tion in (41) and (42).

Theorem 4: For arbitrary positive integers ,

MSE

MSE

(49)

Proof: See Appendix C.
As a special case of Theorem 4, assume that for ,

, and subset only has one element, i.e., ,
and consequently, . Then, MSE represents the
MSE of the single signal estimator (e.g., [6]) applied on .
Thus, according to Theorem 4

MSE MSE
MSE

(50)

where MSE MSE denotes the average
MSE of single signal estimators over the set . This result pro-
vides an easy way to roughly evaluate the performance gain
of a multiple signal estimator over the single signal estimator
without calculating their MSE.

Based on the above considerations, we suggest the following
principles for minimizing the MSE of the proposed estimator.

1) Choose the weights proportional to the received
powers.

2) Include maximum number of kernel matrices.

We now turn our attention to the optimization of the covari-
ance of the proposed estimator, as defined in (34). Thus far, we
have not been able to extend the results of Theorems 2 to 4 to the
covariance matrix so that they remain valid in the form of ma-
trix inequalities. Fortunately, we can use the Cramér–Rao bound
(CRB) to judge the optimality of the parameter choice obtained
in the case of MSE. That is, if the covariance matrix with the pa-
rameters and achieves the CRB, this parameter
setting is considered the optimal one to minimize the covariance
of the estimator.

As mentioned before, some constraints are usually imposed
on the estimated channel vector, e.g., unit norm and/or known
phase factor. In this case, the traditional CRB (see, e.g., [21]) is
no longer applicable. The CRB for parameter estimation under
constraints was recently given in [22], where a so-called con-
strained CRB is derived that depends on the specific algebraic
constraints imposed on the estimated parameters. In [17], the
concept of minimal constrained CRB is further introduced,
which corresponds to the CRB matrix with the smallest trace
(i.e., MSE) among the various constrained CRB matrices within
the constraint class.

Theorem 5: The minimal constrained CRB of the vector ,
which contains all the channel vectors, is given by

CRB diag (51)

and the minimal constrained CRB for the channel vector of in-
terest is given by

CRB (52)

Proof: See Appendix D.
From the previously derived expression (37) for the covari-

ance matrix of the target channel, we find that the proposed
generalized subspace estimator achieves the minimal con-
strained CRB when and . Therefore, we con-
clude that the choice of parameters and not only
minimizes the MSE but also minimizes the covariance of the es-
timator. Finally, we note that the minimal constrained CRB in
(51) is block diagonal, providing a justification for our earlier
statement that joint multiple channel estimation can be uncou-
pled into several independent single channel estimation prob-
lems, without any loss in theoretical achievable performance.

V. ILLUSTRATIVE APPLICATION WITH

COMPUTER EXPERIMENTS

In this Section, we consider the problem of channel estima-
tion for a downlink DS-CDMA system through a frequency-se-
lective fading channel with negligible ISI, which satisfies the
general model introduced in Section II.

Consider a downlink DS-CDMA connection from a base sta-
tion to remote users. The information bit to the th user is
spread by a unique spreading code , where

is the processing gain. The frequency-selective channel is
modeled as a finite impulse response (FIR) filter of length .
The normalized coefficient vector of the filter is represented by

with size . The kernel matrix of the th user is an
Toeplitz matrix with the first column equal

to and the first row equal to [6].
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Fig. 1. Comparison in (54): 1) MSE(I ; S ). 2) MSE (S ).

Assuming the received amplitude of the th user is and the
signal of all the users are synchronized, the received signal can
be represented as

(53)

where is a white Gaussian noise vector.
The algorithm in Table I was specialized to this situation, re-

sulting in a novel blind channel estimator that utilizes multiple
signal components. Computer experiments were then conducted
to verify the theoretical performance results derived in the last
Section.

In the simulations, the following parameter values are used:
number of active users , processing gain , and
length of the channel vector . The binary spreading codes
were randomly generated and stored for later use. We assume
that some power control technique is applied so that the re-
ceived amplitudes are proportional to ,
respectively. The following sets of kernel matrices were consid-
ered in the evaluation:

. We use the average
value of the square error in independent experiments to ap-
proximate the MSE.

According to the analysis in Section IV, the asymptotic MSE
performance of the proposed estimator has the following prop-
erties. From (39), it follows that

MSE MSE MSE (54)

where diag , and .
From (43), it follows that

MSE MSE MSE MSE (55)

Finally, from (50), we have

MSE MSE (56)

The simulation results are presented in Figs. 1–4. Figs. 1–3,
respectively, show the MSEs in (54)–(56) plotted for both the-
oretical and experimental results as a function of SNR, with a
number of observed samples . Fig. 4 shows the MSEs

Fig. 2. Comparison in (55): 1) MSE (S ). 2) MSE (S ). 3) MSE (S ). 4)
MSE (S ).

Fig. 3. Comparison in (56). 1 ) (1=4 ) MSE (fC g). 2 )MSE (S ).

Fig. 4. Comparison in (55). 1) MSE (S ). 2) MSE (S ). 3) MSE (S ). 4)
MSE (S ).

in (55) plotted for both theoretical and experimental results as
a function of the number of observed samples , with the SNR
set to 10 dB. Clearly, the theoretical performance properties in
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(54)–(56) are verified in our simulations. Generally, we find that
all the experimental results match the theoretical results well,
especially in the case of high SNR and large . The former
is because our theoretical results are derived on the basis of a
first-order perturbation analysis, which is accurate in the case
of small perturbations (i.e., high SNR region); the latter is be-
cause our asymptotic analysis is based on the assumption of a
large number of samples . Our results thus support the perfor-
mance analysis in the general model derived in Section IV.

VI. CONCLUSION

We presented a systematic study of the subspace-based blind
channel estimation method. We first introduced a general signal
model of multiple simultaneous signals transmitted through
vector channels, which can be applied to a multitude of modern
digital communication systems. Based on this model, we
formulated a generalized cost function for the purpose of sub-
space-based blind channel estimation, which incorporates the
set of kernel matrices of the signals sharing the target channel
via a weighted sum of projection errors. We investigated the
asymptotic bias, covariance, MSE, and CRB of the proposed
estimator when the number of observations is large. We showed
that the performance of the estimator can be optimized by using
the maximum number of available kernel matrices and a special
set of weights in the cost function. The results of the computer
simulations fully support our analysis.

APPENDIX A
PROOF OF THEOREM 1

We begin by defining the following variables:

(57)

(58)

(59)

(60)

(61)

(62)

(63)

the th column of the identity matrix (64)

(65)

vec (66)

According to [6, Lemma 1], the first-order perturbation of
is

(67)

and consequently, the perturbations of and are

(68)

(69)

According to [6, eq. (A.4)], the corresponding estimation error
in is

(70)

Since is a zero-mean matrix, the bias of the estimator is

Bias (71)

The covariance of is

Cov
(72)

According to [23], can be expressed as

(73)

To calculate , we need to study and , respec-
tively. First, according to the result in [24] and the asymptotic
property in (36), we have

(74)

where the Kronecker delta function for and 0
otherwise. Second, we derive the following results based on the
definition in (62) and (64):

(75)

where is a matrix with all zero elements, except that
the th element is equal to one.

Based on (74) and (75), we simplify (73) as

(76)

By substituting (76) into (72), we have

Cov

(77)

Finally

MSE Tr Cov

(78)
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APPENDIX B
PROOF OF THEOREM 2

Lemma 1—[25]: If and , then

(79)

where denotes the linear span of the columns of , and
denotes the orthogonal projector onto .

We may express MSE (38) in the following form:

MSE Tr (80)

where , and . According to
Lemma 1, we have

(81)

Here, is full-rank, and referring to (23), is Hermitian and
semi-positive definite. Thus

(82)

(83)

Define

(84)

(85)

Then

(86)

Consequently

Tr

(87)

where two terms in above equation have been cancelled because
of the property . We separately study the two trace
terms left in (87). In the first term

(88)

Then

Tr

Tr (89)

In the second term, since is semi-positive definite, we have

(90)

Finally, we observe that when , i.e.,

Tr (91)

Therefore

MSE MSE Tr (92)

According to Lemma 1

(93)

(94)

Therefore

Tr Tr (95)

and

MSE Tr Tr (96)

APPENDIX C
PROOF OF THEOREMS 3 AND 4

Definition 1: [26] Let and be real
numbers. A vector is said to be majorized by
a vector , in symbols or , if, after
possible reordering of its components so that

and (97)

we have

for (98)

(99)

Lemma 2: [27] If is an Hermitian matrix with di-
agonal elements and eigenvalues , then

(100)

Lemma 3 (Majorization Inequality): [26] ma-
jorizes iff for every convex function

(101)

According to Theorem 2

MSE Tr (102)

MSE Tr (103)
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where

(104)

(105)

Clearly, . Apply EVD on and , respectively

(106)

(107)

where diag , and diag
are the eigenvalue matrices of and , respectively. Using a
well-known property of matrix trace [28], we have

Tr (108)

Tr (109)

For convenience of comparing Tr and Tr , we define

(110)

(111)

where the th element of is denoted as .
On one hand, from (106) and (111) and the property

, it follows that

(112)

and consequently

(113)

Thus

(114)

On the other hand, since in (111) is a unitary matrix,
and have the same eigenvalues, i.e., are the eigenvalue
matrix of . According to Lemma 2

(115)

we know the function is only strictly convex in the in-
terval . To satisfy the condition in Lemma 3, we need
to check if elements of and
are within . From the previous discussion, we know

for and . Since
is semi-positive definite, , . Since

[see (112)], it follows that .
Define as the minimum of and as the
minimum of . According to (98) and (99),

. Since , then . Consequently, we
conclude that . Applying Lemma

3 to and with ,
then

(116)

Based on (114) and (116), we have

Tr Tr (117)

and thus, we conclude that MSE MSE for .
To prove Theorem 4, we consider the following property [26]:

For any finite sequence of positive numbers

(118)

Then, we have

Tr

Tr

(119)

The first two equalities in (119) follow from (108) and (113),
respectively. The inequality on the second line follows from
(118). Here, the sequence consists of the positive num-
bers , where each number is re-
peated times: . The length of this sequence thus
is . The second inequality directly comes from (116).
Therefore

MSE

MSE

(120)

APPENDIX D
PROOF OF THEOREM 5

We define the following variables for convenience:

vec (121)

vec (122)

vec (123)

vec (124)

(125)

(126)

(127)
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Concatenated received signal vector can be expressed as

(128)

The Fisher Information Matrix (FIM) of estimating is derived
as [29]

(129)

Lemma 4 (Constrained CRB): [22] Let be an unbiased es-
timator of a parameter vector satisfying a constraint .
Define , and hence, there exists a ma-
trix whose columns form an orthonormal basis for the null
space of . If is nonsingular, then the constrained
Cramér–Rao bound

CRB (130)

Lemma 5 (Minimal Constrained CRB): [17] If Span
Span and has full column rank, then is nonsin-
gular, and the constrained CRB is

CRB (131)

This is a particular constrained CRB: Among all sets of con-
straints, CRB yields the lowest value for Tr CRB .

Corollary 1: [17] Suppose , and the FIM is

(132)

Assume is singular but that is nonsingular. Then, the
minimal constrained CRB for separately is

CRB (133)

Applying the above corollary in our problem, we have

CRB (134)

Due to the definition in (126) and (127) and the property
, we have

CRB (135)

From (8), so that the CRB (135) turns
into a block matrix, where the th block is

. According to the definition of
in (7) and the asymptotic property in (36), we have

.
(136)

Considering the property
[see (45)], we obtain a closed-form expression for the

minimal constrained CRB as

CRB diag (137)

Consequently

CRB (138)
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