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Multidimensional STSA Estimators for Speech
Enhancement With Correlated Spectral Components
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Abstract—Speech enhancement algorithms are used to remove
background noise in a speech signal. In Bayesian short-time
spectral amplitude (STSA) estimation for single-channel speech
enhancement, the spectral components are traditionally assumed
uncorrelated. However, this assumption is inexact since some
correlation is present in practice. In this paper, we investigate
a multidimensional Bayesian STSA estimator that assumes cor-
related spectral components. Since the closed-form solution of
this optimum estimator is not readily available, we alternatively
derive closed-form expressions for an upper and a lower bound
on the desired estimator. Using these bounds, we propose a new
family of speech enhancement estimators that are characterized
by a scalar parameter � �, with � � corresponding to
the lower bound and � � to the upper bound. An appropriate
estimator for the correlation matrix of the clean speech is further
derived. Evaluation results from both objective and subjective
speech quality measures show that at moderate to high SNR
values, where spectral correlation of speech is most noticeable, the
proposed estimators can achieve significant improvements over
the traditional STSA and Wiener filter estimators.

Index Terms—Bayesian estimators, correlated spectral com-
ponents, noise reduction, short-time spectral amplitude, speech
enhancement.

I. INTRODUCTION

S PEECH enhancement algorithms are used to remove back-
ground noise from speech signal acquired under imperfect

conditions [1], [2]. They are present in many common devices
such as cell phones and hearing aids. Among the various ex-
isting approaches for single channel speech enhancement, the
ones based on frequency-domain processing are usually favored
in applications for several reasons: low computational com-
plexity via the use of Fast Fourier transform (FFT) algorithms,
natural resemblance to the auditory processes taking place
within the inner ear and especially the tonotopic mapping along
the basilar membrane, and existence of efficient windowing
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techniques for the time-domain synthesis of the spectrally
modified speech via overlap-add. Within the frequency-domain
class, the Bayesian approach is particularly attractive due to
its superior performance [3]. In this approach, an estimator
of the clean speech is derived by minimizing the statistical
expectation of a cost function that penalizes errors in the clean
speech estimate.

The spectral amplitude has been found to be more per-
ceptually relevant than the phase [4] in speech enhance-
ment. Several Bayesian estimators of the short-time spectral
amplitude (STSA), instead of the short-time Fourier trans-
form (STFT) complex coefficients, have thus been proposed.
These include the minimum mean-square error (MMSE) es-
timator of the STSA, known as MMSE STSA [5], as well as
other related techniques such as e.g., [6]–[11]. Estimators of
the STSA have shown some advantages over estimators of the
STFT such as the well-known Wiener filter [3]. In fact, one
desirable feature of Bayesian STSA estimators is to produce
a residual background noise that is whiter than the residual
musical noise produced by the Wiener estimator [12].

In Bayesian STSA estimation approaches, it is always as-
sumed that the different spectral components of the noisy speech
STFT are uncorrelated so that they can be processed indepen-
dently. This assumption is however inexact as there are some
well-known sources of correlation between the spectral compo-
nents of speech signals in practice [13], [14]. Firstly, the funda-
mental frequency of voiced speech has harmonics that are inher-
ently correlated. This correlation, which results from the peri-
odic impulsive nature of the excitation source of voiced speech,
is not resolved by short-time processing [13] and is most notice-
able at higher SNR. Secondly, the finite temporal extension of
the analysis window used in short-time processing introduces
some correlation between adjacent frequencies [15].

Based on these considerations, a multidimensional MMSE
estimator of the complex STFT coefficients that assumes cor-
related spectral components has been studied in [13], where the
focus is on obtaining an accurate estimation of the nondiagonal
clean speech correlation matrix which is required in the solu-
tion of the underlying MMSE estimation problem. The resulting
estimator is shown to be advantageous, particularly at higher
SNR values, over several existing estimators including a Wiener
filter that assumes uncorrelated spectral components. Additional
work that considers spectral correlation in speech enhancement
using different frameworks can also be found in [16] and [17].

On the one hand, speech enhancement algorithms derived
from Bayesian estimators of the clean speech STSA have been
found to outperform algorithms based on complex STFT esti-
mation. On the other hand, STFT estimators considering corre-
lated spectral components yield better enhancement results than
estimators not considering such correlation. Therefore, it ap-
pears that the consideration of correlated spectral components
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in Bayesian STSA estimation might lead to even superior per-
formance. However, this avenue has apparently not been previ-
ously considered in the speech and audio literature.

In this paper, we first investigate a multidimensional Bayesian
STSA estimator that considers the spectral components to be
correlated. Since a closed-form solution for such an estimator
is not readily available, we alternatively develop closed-form
expressions for a lower and an upper bound on the desired es-
timator. Based on those bounds, we propose a family of speech
enhancement estimators being characterized by a scalar param-
eter , with corresponding to the lower bound
and to the upper bound. We also show that the pro-
posed bounds are tight at high SNR, confirming that the pro-
posed scheme is optimal under this condition. Knowledge of the
clean speech and noise correlation matrices is needed to imple-
ment the new estimators. Since speech is mostly correlated in
voiced parts, we also modify the clean speech correlation ma-
trix to give it a full structure in voiced sections and a diagonal
structure in unvoiced sections.

We compare the proposed estimators with conventional
Wiener and MMSE STSA, i.e., which both consider uncorre-
lated spectral components, as well as with an MMSE estimator
of the complex STFT coefficients that assumes correlated
spectral components. Both objective [wideband perceptual
evaluation of speech quality (PESQ), log-likelihood ratio
(LLR)] and subjective [multi-stimulus test with hidden refer-
ence and anchor (MUSHRA)] measures show that the proposed
estimators achieve better performance than the benchmark esti-
mators at moderate to high SNRs especially for colored noises.
The proposed approach for STSA estimation, that considers
correlated spectral components, opens new avenues for further
developments since many improvements that have been made
over the years for the uncorrelated spectral components case
can be extended to the newly proposed formalism. Parts of this
work have been previously reported in conferences [18], [19].
The present paper constitutes a substantial extension of these
publications.

The paper is organized as follows. In Section II, we briefly
review existing Bayesian estimators and discuss the limitations
of the current modeling assumptions. Section III formulates
the multidimensional STSA estimation problem, develops the
above mentioned lower and upper bounds, and presents the
proposed family of estimators. Section IV studies the prox-
imity between the upper and lower bounds, and Section V
addresses the estimation of the associated correlation matrices.
Section VI presents the experimental results and discussion and
Section VII concludes the work.

The following notation is used in this paper. For any vector
and any positive real , we define

; for any vector , we define ; for any
matrix we define as the column vector
containing the diagonal elements of matrix ; is the
identity matrix.

II. BACKGROUND

A. Traditional Approaches to Bayesian STSA Estimation

Let frame of an observed noisy speech signal be

(1)

where is the discrete-time index, is the clean speech,
is the additive noise and is the frame length. Let

(2)

denote the STFT coefficient of the noisy speech for
the th frame, where is the analysis window and

is the frequency index. With
and denoting the STFT of the clean speech and noise
respectively, (1) thus becomes

(3)

To simplify the notation, we will often omit the subscript .
In traditional Bayesian estimation for speech enhancement,

the STFT coefficients are assumed to be uncorrelated and each
frequency is processed independently. Let

(4)

where is the STSA and is the associated
phase. Since the spectral amplitude has been found to be
more perceptually relevant than the phase [4], researchers
have sought estimators of instead of . In the Bayesian
STSA estimation approach, the goal is then to obtain the esti-
mator1 , as a function of the noisy observation , which
minimizes the expectation of a given cost function :

(5)

where denotes statistical expectation. This estimator is then
combined with the phase of the noisy speech, , to yield the
estimator of the complex spectrum of the clean speech:

(6)

The corresponding time domain estimate of the clean speech,
i.e., , is obtained by performing an inverse Fourier trans-
form of for each frame, which are then combined using the
overlap-add method [20].

Choosing the cost function as

(7)

along with a Gaussian statistical model for the clean speech
and noise that assumes uncorrelated spectral components, yields
the well-known MMSE STSA estimator which is proposed and
studied in [5]. Similar estimators, but using other forms of cost
functions, along with the Gaussian statistical model, have also
been proposed. For example, a cost function considering the log-
arithms of the estimated and clean speech STSA is proposed in
[21]. In [6], the MMSE STSA cost function is weighted by the
STSA of the clean speech to obtain a more perceptually signif-
icant estimator while, in [7], power laws are applied to the esti-
mated and actual clean speech STSA. Generalizations of these
approaches are presented in [10] and [11].

1We use the superscript �� to distinguish the traditional estimator which does
not assume correlated spectral components from the estimators proposed later.
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B. Model Limitations

In recent years, the above modeling assumptions of uncor-
related Gaussian STFT coefficients have been challenged on
different fronts, leading to new opportunities in speech signal
processing.

A first set of issues revolve around the very use of a Gaussian
model. Indeed, early studies demonstrate that speech signal
samples in the time-domain are better modeled by Laplace or
gamma distributions [22]. The use of a Gaussian statistical
model in the above estimators is often motivated on the basis
of the central limit theorem, since each Fourier expansion
coefficient can be seen as a weighted sum of a large number
of random variables resulting from the observed samples [5].
However, this assumption may not be fully justified in prac-
tice due to the relatively short integration windows used in
the calculation of the STFT coefficients [23]. Experimental
results from different sources [24]–[26] suggest that a better fit
with the observed STFT data can be obtained with so-called
super-Gaussian distributions, which include the Laplace and
gamma distributions as special cases. Accordingly, many al-
ternative distributions have been investigated for the real and
imaginary parts of the STFT coefficients [24], [26], the STSA
coefficients [25]–[28] and the complex STFT coefficients [29],
[30], and for each of these, different estimators were developed
that can lead to better enhancement performance under certain
conditions.

Yet, a number of questions remain surrounding the use of
super-Gaussian distributions. The process of fitting a parametric
distribution to empirical speech STFT data is subject to interpre-
tation as it is done under different SNR conditions. Also due to
variability among studies in the experimental approaches and re-
sults, it is not yet firmly established which of these non-Gaussian
distributions is susceptible to offer the best performance in a
given enhancement task. For instance, some of the proposed
non-Gaussian models, which assume independence of the real
and imaginary STFT components, lead to noncircularly sym-
metric distribution in the polar domain (i.e., nonuniform phase),
which seems to contradict experimental observations. More im-
portantly from the perspective of this work, the super-Gaussian
distributions are much less mathematically tractable, and there-
fore basic estimation approaches that are amenable to closed-
form solutions under the Gaussian assumption often do not have
an analytical counterpart when using other distributions [2].

A second set of issues, and which constitute the main mo-
tivation for this work, relate to the assumption of uncorrelated
frequency components. In practice, and in contrast with the tra-
ditional assumptions used in the development of the estimators
presented in Section II-A, there is evidence of correlation be-
tween the STFT coefficients of a speech signal corresponding
to different frequencies [31]. This correlation is due to different
factors, including [14]:

Use of window in frame-based processing: Indeed, the use of
a finite window function in the computation of the STFT in
(2) introduces some correlation between adjacent spectral com-
ponents. This is due to the spectral smearing phenomenon which
is a known effect of the windowing process [20].

Harmonic structure of voiced speech: Voiced speech is char-
acterized by the vibration of the vocal chords at a fundamental
frequency F0 and has several harmonics at multiples of F0 [32].
This harmonic structure, which results from the periodic im-
pulsive nature of the excitation source of voiced speech, in-
troduces inherent correlation between STFT components corre-
sponding to different multiple of F0. This correlation is not re-
solved by short-time processing and is most noticeable at higher
SNR [13]. Therefore, correlations between adjacent frequencies
result mainly from the windowing process while correlations be-
tween nonadjacent frequencies are mainly due to voiced speech.

In this work, our main interest lies in exploiting the cor-
relation that exists between STFT coefficients at different
frequencies, and especially the correlation in amplitude be-
tween different STSAs, to develop multidimensional MMSE
STSA estimators with improved performance. To make our task
tractable, and considering the above mentioned difficulties with
the super-Gaussian distributions, we shall focus our analysis on
the well-established Gaussian model. Through mathematical
analysis, this will enable us to derive new multidimensional
MMSE STSA estimators that exhibit a superior noise en-
hancement performance when compared to the traditional
MMSE STSA estimator (i.e., assuming uncorrelated Gaussian
frequency components), and to obtain fundamental insight into
the desired structural attributes of multidimensional STSA
estimators.

III. MULTIDIMENSIONAL STSA ESTIMATORS

In this section, we proceed to obtain a multidimensional clean
speech STSA estimator that assumes correlated spectral com-
ponents. Defining , it follows from (3)
that

(8)

where and
are respectively the clean speech vector

and the noise vector of the corresponding STFT coefficients.
As in (4), we let and we also define the
STSA vector and the phase vector

. We assume that and are
independent, zero-mean circularly symmetric Gaussian random
vectors with probability density functions:

(9)

(10)

In these expressions, and
are the correlation matrices of the clean speech

and of the noise respectively and the superscript indicates
the conjugate transpose. We assume that these matrices are
positive definite , so that the inverse
matrices are well-defined. In practice, each spectral component
of random vectors and has nonzero energy, although the
eigenvalue spread of and may be large (e.g., voice
sound). Traditional Bayesian STSA estimation approaches
(e.g., [5]) assume that and are diagonal matrices, i.e.,
the spectral components are uncorrelated. In this work, we do
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not enforce such diagonality constraint: Our model considers
possible frequency correlations in the clean speech and noise.

We want to evaluate the MMSE estimator of :

(11)

where the minimum is over all possible functions of
the observation vector . We note that the cost function in (11),
i.e., , considers all the STSA spectral
components jointly. Using matrix calculus, we can show that
(11) leads to

(12)

i.e., the -dimensional conditional expectation of given the
complete vector of observations . This estimator can then
be combined with the phase of the noisy speech, for each fre-
quency, to yield the estimator of :

(13)

In contrast to the scalar case under Gaussian assumptions [6],
[7], a closed-form expression for (12) is not readily available.
However, since the are positive real quantities, the Gaussian
assumptions allow us to approach the problem of finding a re-
alizable approximation to (12) by first obtaining tractable upper
and lower bounds, and respectively, such that

. Based on the obtained bounds, we will then pro-
pose a parameterized family of estimators.

A. Lower Bound

Using the triangle inequality for integration [33], we can
show that:

(14)

As a lower bound on the desired estimator (12), we therefore
propose or equivalently (using the notation
introduced in the last paragraph of Section I for the absolute
value of a matrix):

(15)

Under the Gaussian statistical model for the clean speech and
noise presented previously, the term is the MMSE
estimator of , which is known to be equal to [13]

(16)

where the MMSE gain matrix is

(17)

For future reference, it is also convenient to express in
the following form, which can be obtained by application of the
matrix inversion lemma [34]

(18)

A lower bound on the desired estimator is therefore

(19)

Note that in the special case of uncorrelated spectral compo-
nents (i.e., the traditional framework), and in (17) are
diagonal matrices. Then, combining (19) with the phase of the
noisy speech yields

(20)

where and
. The processing of each frequency is therefore de-

coupled and the corresponding operation amounts to a standard
Wiener filter.

B. Upper Bound

Using Jensen’s inequality [35], we have for a real convex
function

(21)

If we set , we obtain and

(22)

which is also a special case of Lyapunov’s inequality [36]. As an
upper bound on the desired estimator (12), we therefore propose

or equivalently

(23)

We next derive a closed-form expression for .
Using a Bayesian formalism, we have

(24)

We observe from (8) that

(25)

Using (9), (10), and (25) in (24), we obtain (26), shown at the
bottom of the page.

(26)
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To evaluate (26), we need to transform the multiple integrals
into products of single integrals. To do so, we make use of the
following eigenvalue decomposition:

(27)

where is the unitary matrix of eigenvectors, i.e.,
, and is the diagonal matrix containing the corresponding

eigenvalues. Furthermore, we perform the following change of
variables: . Since is unitary, the associated Jaco-
bian is equal to 1 and (26) thus becomes

(28)
where we define as the row of and

(29)

The product (a scalar) can be expressed as

(30)

where is the entry of matrix and is the
entry of vector . Using (30), we can now write (28) in a form
comprising only scalars:

(31)
where we define the positive real scalar function

for compactness and is the
diagonal element of matrix .

Using (6.631.1), (8.411.1) and (9.212.1) from [37], we can
evaluate the integrals in (31) and obtain (see Appendix A):

(32)

This last equation can also be written as

(33)

which, in turn, using the notation introduced previously, can be
expressed in a more compact form as

(34)

Using (27) and (29) along with the fact that
for any , we have

(35)

In light of (18), we notice that the entries of the first term in (35)
are equal to the squared magnitudes of the entries of
in (16) and that the second term is simply .
Finally, using (23), the desired upper bound is obtained as the
following simple expression:

(36)

Since the upper bound includes the lower bound (19) and an
additional positive term, it will obviously be greater than the
lower bound.

It is interesting to note that in the special case of uncorre-
lated spectral components (i.e., the traditional framework), the
estimator in (23) is the so-called -order MMSE STSA esti-
mator [7] with its parameter having a value of . In fact,
by considering diagonal and in (36) and the fact that

, where is the confluent hyper-
geometric function, one obtains the expression for the -order
MMSE STSA estimator with as given in [7].

C. Proposed Family of Estimators

The desired estimator satisfies .
Based on the expressions of the derived bounds in (19)
and in (36) we therefore propose the following family of
estimators:

(37)

where . We have that with the
limit cases:

if
if .

(38)

In the special case of uncorrelated spectral components, in
light of the comments made at the end of Section III-A and
Section III-B, the proposed estimator (38) will thus be equiv-
alent to the Wiener filter for a value of and to the -Order
MMSE STSA estimator with for . Moreover, the
proposed estimator will then correspond for some intermediate

values to the MMSE STSA estimator, which is equivalent to
the -Order MMSE STSA estimator with , and also to
the Log-MMSE STSA estimator [21], which is equivalent to the

-Order MMSE STSA estimator with [10].
As in (13), the spectral amplitude estimators , and

are combined with the phase of the noisy speech to obtain the
complex spectrum estimators , and respectively.

IV. UPPER AND LOWER BOUND PROXIMITY ANALYSIS

In this section, in order to provide further mathematical
justification for the multidimensional STSA estimators pro-
posed in Section III-C, we study the proximity between
the lower bound in (19) and upper bound

in (36). Since
and are both positive and , we consider

the vector

(39)
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as a proximity indicator where denotes an element-wise di-
vision. Each element of vector is therefore a difference
of squared values normalized by . From (17),
(19), and (36), we have

(40)

(41)

Therefore, the second term in (36) dictates how tight the bounds
are. Interestingly, this term does not depend on (however, in
practice, the estimation of does).

1) Uncorrelated Frequencies: To gain some insight into the
behavior of the proximity vector , let us first consider uncor-
related spectral components. In that case, the entry of
reduces to:

(42)

where . For a high , we have ,
while for a low , . Since the proximity indicator
is normalized by , a value of close to 1 will thus
indicate a distance between the bounds close to while a
value of 0 will indicate that the bounds are identical. Therefore,
the bounds will be tighter as the gets higher. However,
since will be small compared to for a low , the
distance between the bounds will also be small in that case but
with respect to the noise level.

2) Correlated Frequencies: We next consider the case of cor-
related spectral components. can be written in a form appar-
ented to that of (42):

(43)

Let , , and denote the minimum and
maximum eigenvalues of and , respectively. On the
one hand, it can be verified that if (i.e., high SNR),
then which is equivalent to

. For a large SNR, will thus be small
indicating a small difference between the bounds. In fact, the
lower and upper bounds will get asymptotically tighter (and
thus converge to the desired estimator) in the limit of large
SNR. On the other hand, if (low SNR), then ,
showing that the proximity remains bounded.

V. ESTIMATING AND

To compute (37), and therefore also (19) and
(36), one needs an estimation of matrices and . We shall
denote the estimates of , and for the frame by

, and respectively.
In this work, we use a decision-directed type of approach

to estimate similar to the one used in [5]. Since
and for uncorrelated and ,

we have for frame :

(44)

where is given by (13) for frame , is a
forgetting factor and is a thresholding function of its matrix

argument. We note that the diagonal entries of should be
positive. For an matrix , we therefore define the
element of as

if
else.

(45)

The operator is therefore applied only on the main di-
agonal of matrix in (44). This approach may re-
sult, in practice, in a nonnegative definite . A more formal
approach based on eigenvalue decomposition, where the eigen-
values are forced to be positive, was also experimented to en-
force a nonnegative definite constraint. However, it was ob-
served that this latter approach gives similar results to the pro-
posed simplified approach (44)–(45), yet at a much higher com-
putational cost. Equation (44) will be used in the experimental
results of Section VI to estimate .

In addition to (44), we also use a modified structure of the
estimator in Section VI to take into account the nature of
the current frame, i.e., voiced versus unvoiced. Indeed, since the
correlation due to the harmonics of the fundamental frequency
is only present in the voiced parts of speech, it is appropriate
to consider a diagonal in unvoiced parts and a full (i.e.,
unconstrained) in voiced parts. A similar approach was
adopted in [13] where a hard threshold was used to distinguish
between voiced and unvoiced speech sections. Here, we propose
a soft threshold approach in which the constrained estimator of

, denoted , is computed as

(46)

where is given by (44) and is a soft threshold
parameter accounting for voiced or unvoiced frames. In this
work, we employ the zero-crossing rate (ZCR) in the noisy
time-domain speech samples to distinguish between
voiced and unvoiced parts of speech. This approach, which
is justified on the basis that voiced parts have prominently
low frequencies while unvoiced parts have a broader spectral
content [32], is used mainly to validate the proposed mul-
tidimensional approach for STSA estimation. Clearly, more
elaborate classifiers which may be less sensitive to SNR could
be implemented instead, such as those in [38]–[40].

A ZCR voiced threshold is used, below which the frame is
judged to be voiced and is set to 1. A ZCR unvoiced threshold

is also used, above which the frame is judged to be
unvoiced and is set to 0. For ZCR between and , inter-
mediate values of are used. Specifically, the value of is
computed as follows:

.
(47)

The clean speech estimators using (46) to estimate
is denoted by the additional superscript , i.e., , otherwise,
the estimators use (44) and are denoted as and

. We refer to as the soft threshold structured estimator
as opposed to the unstructured . We note that the estima-
tors that do not consider correlated spectral components, such
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as the MMSE STSA or Wiener estimators, use a traditional de-
cision directed approach which always considers diagonal
therefore corresponding to the case in (46).

To compute (37), we also need to estimate . To do
so, we first obtain a time-domain correlation matrix,

where is a matrix whose columns are shifted
versions of the time-domain noise data vector of the frame
(see (8.20) of [41]). Using the Fourier transform matrix

, we then obtain

(48)

is estimated similarly.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed estimators and
compare them to the traditional (i.e., one-dimensional) MMSE
STSA [5] and Wiener (20) estimators, denoted respectively
by and , as well as to the multidimensional
MMSE STFT estimator, (16), using both objective
(wideband PESQ, LLR) and subjective (MUSHRA) speech
quality measures.

A. Methodology

Four types of noises from the Noisex database [42] were used
in the experiments: white, pink, f16 and buccaneer-2 noises. We
chose not to use babble noise and other highly nonstationary
noises since the performance of the speech enhancement algo-
rithms would then highly rely on the estimation of the time-
varying noise statistics, which is not the main topic of this paper.
Noisy speech signals were created according to ITU-T standard
P.56 [43]. Since spectral correlations are mostly noticeable at
moderate to high SNRs, we considered SNRs ranging from 5 to
20 dB. Thirty sentences (15 from three different female speakers
and 15 from three different male speakers) were used in the eval-
uations. Zeros were padded at the beginning and end of each
sentence to simulate silence periods of 0.75 s; the total sentences
lengths were approximately 4 s. All speech signals were sam-
pled at 16 kHz and a raised-cosine window [44] was employed
( 512 samples, 32 ms) in the STSA computation. A 75%
overlap was used in the overlap-add synthesis method as in [5];
however, experiments performed with 50% overlap (results not
shown) led to the same conclusions as the ones presented below.

Following informal listening experiments, we found that a
value of offered the best compromise between the
amount of residual background noise, which increases as ,
and the degree to which this background noise was musical,2

which increases as . The estimator used the struc-
tured (soft threshold) clean speech correlation matrix estima-
tion, (46), while and used the unstructured
estimator (44). The and estimators both
used the standard decision-directed approach of [5]. For the sake
of simplicity, was estimated from the first five frames of
the noisy speech signal, which did not contain any speech, and
its value was kept constant for all subsequent frames. This ap-
proach is adequate here since the noises used are stationary and

2By musical noise is meant sinusoidal components with random frequencies
that come and go in each short-time frame [12].

thus their statistics do not change over time. Other approaches,
e.g., the minimum statistics approach [45], could be used for
more complex noises.

We identified through experimentation the following ZCR
thresholds to be used in (47): crossings/s and

crossings/s. These values of and provide effective
voiced/unvoiced signal classification over the SNR range under
consideration in this study, except possibly for the lower SNR
values where the ZCR is affected by noise. To avoid misclassi-
fying voiced and unvoiced frames, (46) was only used if
the power of the current frame was at least 1.5 times the esti-
mated power of the noise, otherwise we used (44) which
does not take into account voiced and unvoiced frames. We also
set the forgetting factor in (44) to .

B. Objective Measures

Many objective measures can be used to assess speech en-
hancement algorithms. They are more or less correlated with
subjective measures such as the mean opinion score (MOS).
A study of the correlation between MOS and objective mea-
sures was presented in [46]. Two of the objective measures that
were found to have the best correlation with MOS were the
PESQ and LLR measures with correlation coefficients of 0.89
and 0.85 respectively.3 While PESQ was found to be well corre-
lated with both signal and background distortions, the LLR was
much more correlated with the signal distortion than with the
background distortion. The widely used segmental SNR mea-
sure was found to have only a correlation of 0.36. We will use
the PESQ and LLR measures in the following.

The PESQ measure was not originally intended to assess
speech enhancement algorithms [47], however, it has been used
in the past years in several speech enhancement studies, see
e.g., [7], [48], [49]. PESQ generally attempts to predict MOS
scores and yields a result from 1 to 4.5, the higher score being
the best result. Here we will use the PESQ extension for 16
kHz sampled signals, termed wideband PESQ [50]. The clean
speech files will be used as references in the PESQ evaluations.

The LLR measure for a particular frame is defined as
[51]–[53]

(49)

where is the linear predictive coding (LPC) vector of the orig-
inal clean speech signal frame, is the LPC vector of the en-
hanced speech frame, and is the autocorrelation matrix of
the original clean speech signal. The mean for all frames
is evaluated from the different . To remove unrealistically
high distortion levels, the frames with greater than five
times the standard deviation of all are ignored in the aver-
aging process [54] (typically less than 1% of the frames). A low

value can be interpreted as a close agreement between the
spectral magnitudes of the original and enhanced speech signals.
In particular, indicates that the spectral magnitudes
are identical while a large implies that they are signifi-
cantly different [55]. A lower LLR score thus indicates a better
performance.

3It is to be noted that the correlation results in [46] were obtained for a sam-
pling rate of 8 kHz while we use a sampling rate of 16 kHz in the following
experiments.
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TABLE I
WIDEBAND PESQ VALUES FOR WHITE, PINK, F16 AND BUCCANEER-2 NOISES

AT SEVERAL SNRS (5, 10, 15, AND 20 dB)

Table I presents wideband PESQ results for , ,
and the proposed estimators. As can be observed, the

proposed estimators always give the best results at moderate
to high SNRs 5 dB . The improvements over are
quite impressive for that SNR range, with an average improve-
ment of 0.3. The advantages over are also quite sig-
nificant at 15 and 20 dB, with an excess PESQ averaging 0.2
for the eight cases considered here. Considering that both the
proposed and have similar computational complexity,
there is a net advantage in opting for one of the newly pro-
posed methods. Furthermore, at low SNR, is al-
ways better than while the inverse is true at high
SNR; being a good compromise across the SNR range
considered here. Moreover, the algorithm that used , i.e.,

, mostly gave better results than the one using the un-
structured , i.e., .

Fig. 1 presents LLR results for representative estimators iden-
tified from Table I, i.e., , , , and
for the white, pink, f16, and buccaneer-2 noises. As noted be-
fore, the LLR measure is mostly correlated with the speech dis-
tortion and not the background noise, therefore, Fig. 1 mainly
compares the estimators in terms of the speech distortion they
produce. For white and buccaneer-2 noises, the proposed esti-
mators produce less speech distortion than and
at higher SNR values, while at lower SNR, the situation is re-
versed. For the pink and f16 noises, has less speech
distortions than both and over the entire SNR
range considered here.

C. Subjective Measure

As a subjective measure, we used the MUSHRA (ITU-R Rec-
ommendation BS.1534–1) [56] test as implemented in [57]. In
MUSHRA, the subjects are provided with the test utterances
plus one reference and one hidden anchor and are asked to rate
the different signals on a scale of 0 to 100, 100 being the best
score. As the hidden anchor, which serves as a baseline for the
evaluation of the enhanced sentences, we used a signal having
an SNR of 5 dB less than the noisy signal to be enhanced. The
clean speech signal was used as the reference. The listeners were
allowed to listen to each sentence several times and always had
access to the clean signal reference.

In order to limit the length of the listening test, we chose to
use two noises from the four used in the previous objective eval-
uation: the white noise along with one of the colored noises, the
f16 noise. The sentences were corrupted by the noises with an
SNR of 15 dB. Furthermore, five estimators were included in the
test: , , , and . The
estimator was not included since, in fact, only the phase differs
from the estimator and, in practice, the two sound ex-
tremely similar. A total of 14 listeners (10 males and 4 females
with a background in either speech processing or telecommuni-
cations) were involved in the test. Each participant had to rate,
for each of the two noise types, two different utterances (one by
a male speaker, one by a female speaker) for the 5 estimators,
1 reference and 1 anchor thus totaling 28 sentences per listener.
The same sentences were used for all subjects. Tests were per-
formed in an isolated acoustic room using beyerdynamic DT880
headphones.

Fig. 2 shows the results of the MUSHRA test, Overall indi-
cating the mean of the two noises tested. As can be observed, the
proposed estimators and were judged to have
a similar performance but to be superior to ,
and . In particular, for the white noise, the advantage of
the proposed estimators over the compared ones was found
to be quite significant. For the colored f16 noise, and

were found to be much better than and
and slightly superior to . Overall, the difference between
each of , , and both and
were all found to be statistically significant (pairwise t-test,

).
The noisy speech enhanced by sounded a little bit

muffled. By allowing a better model for the unvoiced speech
parts, the estimator better preserved the fricatives than
the estimator and sounded clearer. Nevertheless, this
aspect was not judged to have a strong impact by the participants
since both and were rated similarly.

There was significantly more background noise in
than in any of the other estimators tested which greatly ex-
plains its poor rating. Moreover, had strong musical
residual noise which most participant did not appreciate. The

and were thus preferred since they had much
less background noise than and much less musical noise
than or which also exhibited significant musical
noise.
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Fig. 1. LLR values versus SNR for (a) white, (b) pink, (c) f16, and (d) buccaneer-2 noises.

Fig. 2. Comparative subjective results (MUSHRA) for white and f16 noises as
well as overall mean results (15 dB).

D. Discussion

Firstly, as mentioned previously, only the phase differs be-
tween and . While has an optimal
phase in the sense of the MMSE estimator of , uses the
phase of the noisy speech, which was found to be an optimal es-
timator of the clean speech phase for the uncorrelated spectral
components case [5]. We computed for several utterances the
differences between the phase of and the clean speech
phase and also between the phase of (which is the phase
of the noisy speech) and the clean speech phase. We found that
on average the phase of the noisy speech is closer to the phase

of the clean speech than the phase of . This was found
to be true for the entire SNR range considered in this study.

Secondly, the proposed estimators showed much more advan-
tage at higher SNR values than at lower SNRs as can be ob-
served from the different objective results presented in this sec-
tion. This could be due to the fact that at lower SNR values, the
spectral correlations become masked by the noise and their in-
clusion in the estimation framework has less advantage.

Thirdly, while our discussion of the correlation between
different spectral components of speech in Sections I and II
was focused on the clean speech STFTs, some correlation may
also exist between the noise STFTs. Of the four types of noises
used in our experiments, white noise is not correlated, however
the pink, f16 and buccaneer-2 noises exhibit some correlations,
specifically: between adjacent frequencies for pink noise and
between specific components for f16 and buccaneer-2 noises.
The consideration of the speech correlations in the proposed
algorithms does yield some improvements as observed for
the white noise case. However, the consideration of noise
correlations seems to further add some more improvements. In
fact, results are found to be better when speech is corrupted by
spectrally correlated noises, such as pink, f16 and buccaneer-2
noises, than when it is corrupted by white noise. This difference
between the performance in white and colored noises could be
due to the fact that the correlation present in the colored noises
are considered in the noise correlation matrices of the proposed
estimators but not in traditional approaches such as and

.
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Finally, only the case of fixed gamma values, i.e., ,
and , was considered in this work. One interesting

avenue for future work would be to choose adaptively for each
frame, e.g., based on SNR considerations, to obtain an estimator
closer to the desired one as given by (12). It may also be possible
to identify optimal values for different types of noises.

VII. CONCLUSION

In this paper we considered a multidimensional Bayesian
STSA estimator for speech enhancement that assumes corre-
lated spectral components. Since its closed-form solution is
not readily available, we approached the problem of finding
approximations to that estimator from a bounding perspective.
We obtained convenient upper and lower bounds and proposed
a new family of estimators based on these bounds. An analysis
of the proximity between the bounds as a function of the speech
signal’s SNR was performed. Furthermore, an appropriate
estimator for the correlation matrix of the clean speech, ,
was derived. Results of objective (wideband PESQ, LLR)
and subjective (MUSHRA) measures demonstrate noticeable
advantages of the proposed estimators over existing ones
especially for colored noises and at moderate to high SNR
values. In particular, and offer a good com-
promise between speech quality and background noise level
and whiteness. Also of importance, the derivation of Bayesian
STSA estimators considering correlation between spectral
components can lead the way to many further developments
such as those that have been proposed over the years for the
traditional estimators, including extensions to various weighted
cost functions and super-Gaussian distributions.

APPENDIX

In this appendix, we evaluate (31) and show that it yields (32).
We start by solving for the numerator of (31), which we denote
by . The latter is written as a product and sum of single inte-
grals in (50) at the bottom of the page. We need to evaluate four
different integrals in (50). In order to integrate on real variables
instead of complex ones, we will perform the following change
of variables : . The Jacobian associated with that
change of variable is . Let us evaluate the first integral in
(50):

(51)

where , is a Bessel function of the first
kind, is the confluent hypergeometric function [37]
and (6.631.1) of [37] was used in the last line of (51). The second
integral can be evaluated similarly as

(52)

The third integral is the complex conjugate of (52) and can be
similarly shown to be

(53)

The first integral of the second summation in (50) is already
given by (51) while the second integral of the second summation
can be evaluated as

(54)

We can therefore replace (51)–(54) in (50) to obtain (55), shown
at the top of the following page. Using (9.212.1) from [37], i.e.,

(56)

(50)
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(55)

(57)

(58)

and the fact that , we get (57) at the top of the

page. Now using the fact that in
(57) yields (58), shown at the top of the page.

Next let us evaluate the denominator in (31). We notice that
the integral in the latter is identical to (51), therefore

(59)

Combining (58) and (59) in (31), we obtain the following:

which is (32).
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