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Blind Recursive Subspace-Based Identification of
Time-Varying Wideband MIMO Channels

Chao-Cheng Tu and Benoît Champagne, Senior Member, IEEE

Abstract—We present a blind recursive algorithm for tracking
rapidly time-varying wireless channels in precoded multiple-
input–multiple-output (MIMO) orthogonal frequency-division
multiplexing (OFDM) systems. Subspace-based tracking is nor-
mally considered for slowly time-varying channels only. Due to
the frequency correlation of the wireless channels, the proposed
scheme can collect data not only from the time but from the
frequency domain as well to speed up the update of the required
second-order statistics. After each such update, the subspace
information is recomputed using the orthogonal iteration, and
then, a new channel estimate is obtained. We also investigate
choices of precoder in terms of the tradeoff between the symbol
recovery capability and the channel estimation performance and
demonstrate the convergence properties of our approach. The pro-
posed algorithm is evaluated in a Third-Generation Partnership
Project (3GPP) Spatial Channel Model suburban macro scenario,
in which a mobile station is allowed to move in any direction with a
speed up to 100 km/h, corresponding to a maximum Doppler shift
of about 230 Hz in this case. Numerical experiments show that the
normalized mean square error of the channel estimates converges
to a level of −30 dB within less than five OFDM symbols when the
signal-to-noise ratio (SNR) (per symbol) is ≥ 20 dB.

Index Terms—Blind, multiple-input–multiple-output (MIMO)-
orthogonal frequency-division multiplexing (OFDM), recursive,
subspace, time-varying.

I. INTRODUCTION

T RACKING time-varying (TV) channels with large
Doppler spreads is a critical task, regardless of whether

a nonblind or a blind approach is used [1]. In general, with a
nonblind approach, training must be applied more frequently,
because the channel estimates become obsolete shortly after
the training period ends. On the contrary, a blind approach
eliminates the need of large amount of training data and,
therefore, is favored if complexity is not the main concern.

TV channels are mainly tracked using the following two
categories of blind approaches: 1) batch processing to estimate
the unknown parameters of an underlying TV channel model
and 2) an adaptive processing algorithm that is sufficiently
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fast to track the channel variations. Among various blind ap-
proaches in the first category, a basis expansion model has been
proposed to convert a TV single-input–single-output (SISO)
channel into a time-invariant (TI) single-input–multiple-output
(SIMO) channel, followed by a standard second-order statistics
(SOS)-based subspace method for blind channel estimation [2].
The idea of basis expansion was further extended for a TV-
SIMO channel [3]–[5], and a generalized orthogonal frequency-
division multiplexing (OFDM) system over a TV-SISO
channel [6]. Similarly, an interpolation model was proposed to
convert a TV-SISO channel into fixed parameters, for applica-
tion to code-division multiple access (CDMA) systems [7].

Recently, there has been much research interest on adap-
tive algorithms in the second category. A zero-padding SISO-
OFDM system using either the recursive least squares (RLS) or
the least mean square (LMS) method for blind adaptive channel
estimation was considered in [8]. It was reported that, for an
inverse fast Fourier transform (IFFT) size of 64 and a padding
length of 16, the relative channel estimation error converges to
−27 dB in 500 symbols when the maximum Doppler shift is
limited to 100 Hz and the signal-to-noise ratio (SNR) is 20 dB.
By properly choosing the so-called repetition index, a cyclic
prefixing (CP) SISO-OFDM system was also proposed in [9],
where it was reported that, for a 64-point IFFT with a CP length
of 16, the bit error rate (BER) can reach a level of 10−2 within
12 received blocks when the maximum Doppler shift is 50 Hz
and the SNR is ≥ 25 dB. Recently, an adaptive filter using
an autoregressive moving average process has been proposed
for the blind deconvolution of multiple-input–multiple-output
(MIMO) channels [10]. Alternative approaches to adaptive
channel estimation based on reduced-rank processing have been
considered in [11]–[13], where the main focus is on CDMA
systems.

Although the aforementioned adaptive approaches offer in-
teresting capabilities in tracking TV channels with high spec-
trum efficiency, they may not be adequate for applications in
emerging and future generations of broadband mobile wireless
systems, in which there is a need to provide high-rate transmis-
sion, such as a real-time video stream, between a user terminal
and an access node whose relative positions rapidly vary over
time. For example, the Third-Generation Partnership Project
Long Term Evolution (3GPP LTE) specifications already call
for high-performance broadband transmission with mobile
speed up to 120 km/h, corresponding to a maximum Doppler
shift of 220 Hz, and additional provision to support much higher
speeds up to 350 km/h for high-speed trains [14]. The require-
ments set forth for International Mobile Telecommunications-
Advanced (IMT-Advanced) are even more exacting.
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Fig. 1. Precoded MIMO-OFDM system model.

Based on these considerations, there is a need to extend the
range of the application of adaptive channel tracking to even
faster TV channels. In addition, achieving this goal should not
result in the loss of bandwidth efficiency or place unwanted
restrictions on the number of transmit or receive antennas. We
note that there currently exist algorithms for channel estimation
in mobile MIMO-OFDM systems with large Doppler shifts
[15]–[19]; however, they all require the use of extensive pream-
bles or training sequences in the time–frequency domain.

In this paper, to avoid the need of training sequence in the
estimation of TV channels, the blind subspace-based estimation
method using frequency correlation in MIMO-OFDM systems,
which was originally proposed for TI channels in [20], [21], is
extended to the case of TV scenarios. Although this approach
in the TI case requires a larger dimension of the ambiguity ma-
trix and high-complexity singular value decomposition, these
limitations are overcome in the TV case by using a precoder at
the transmitter side and a computationally efficient orthogonal
iteration for subspace tracking at the receiver side, respectively.
The resulting approach can track TV MIMO wireless channels
with large Doppler spread, which may change at each OFDM
symbol time. In addition, it offers flexibility in choosing the
number of transmit and receive antennas, enabling enhanced
bandwidth efficiency through spatial processing. For a 256-
point IFFT, the proposed algorithm is evaluated in a 3GPP
Spatial Channel Model (SCM) suburban macro scenario. Our
simulation results show that the normalized mean square error
(NMSE) converges to less than −30 dB within five OFDM
symbols, and the BER can reach a level of 10−2 when the
maximum Doppler shift is about 230 Hz and the symbol SNR
is ≥ 20 dB, which outperforms the approach in [8] and [9] in
terms of estimation performance.

This paper is organized as follows. Section II is devoted to
problem formulation, including a description of the MIMO-
OFDM system model under consideration. The precoded blind
subspace-based approach is introduced in Section III, and its
proposed extension into an adaptive channel tracking algorithm
is developed in Section IV. The precoder design is studied in
Section V, whereas the numerical experiments and discussions

are presented in Section VI. Finally, conclusions are drawn in
the last section.

The following notations are used. X = diag(x) denotes a
diagonal matrix whose main diagonal is constructed from the
entries of vector x. The range of A ∈ C

m×n is defined by

R(A) def= {Ax : x ∈ C
n×1}. ‖x‖p and ‖X‖p represent the

p-norms of a vector x and a matrix X, respectively. Dr(X)
denotes the subspace spanned by the eigenvectors correspond-
ing to the r largest eigenvalues of X. λr(X) represents the
rth largest eigenvalue of the matrix X. In is used to represent
an identity matrix of order n. The symbols ⊗, �, and �
represent the Kronecker product, the element-wise division, and
the Hadamard product, respectively.

II. PROBLEM FORMULATION

Conventional blind subspace-based estimators are generally
not favored when a fast TV channel is considered, because there
may not be sufficient data samples to estimate the required
statistics. The situation is even worse in the context of MIMO-
OFDM systems, where a large dimension of the correlation
matrix (up to thousands) is normally required. In [20] and
[21], we have shown that the TI requirement in blind subspace-
based estimation for MIMO-OFDM systems can significantly
be relaxed by making use of subcarrier grouping to exploit
frequency correlation among adjacent subcarriers. However, the
ensuing reduction in the time averaging period comes at the
price of a higher dimension of the ambiguity matrix. Here, to
overcome this problem, we consider a precoded MIMO-OFDM
system, as described below.

The system under consideration employs NC subcarriers,
NT transmit antennas, and NR receive antennas as per the block
diagram shown in Fig. 1. To exploit the frequency correlation
through the concept of subcarrier grouping, we assume that
the frequency span of P adjacent subcarriers reside in the
coherence bandwidth of the wireless channel, which are defined
as the range of frequencies over which the frequency response
matrix of the MIMO channel does not appreciably change [22].

We partition the subcarrier index set Ω def= {0, 1, . . . , NC−1}



664 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 2, FEBRUARY 2012

Fig. 2. Schematic of the partitioning of the subcarrier index set Ω = {0, 1, . . . , NC − 1} into P disjoint subsets, i.e., Ωp = {ωp,1, ωp,2, . . . , ωp,ζ},
p = 1, 2, . . . , P .

into P disjoint subsets (assuming NC/P = ζ ∈ Z
+), with

the pth subset denoted as Ωp
def= {ωp,1, ωp,2, . . . , ωp,ζ}, where

ωp,i
def= p−1+(i−1)P for i=1, 2, . . . , ζ and p=1, 2, . . . , P

(see Fig. 2). Let xm
p

def= [xm
1,p

T xm
2,p

T · · · xm
NT ,p

T ]T , where

xm
j,p

def=
[
xm

j [ωp,1] xm
j [ωp,2] · · · xm

j [ωp,ζ ]
]T

(1)

with xm
j [k] denoting the signal that was transmitted at the kth

subcarrier, the jth transmit antenna, and mth OFDM sym-

bol. In addition, let ym
p

def= [ym
1,p

T ym
2,p

T · · · ym
NR,p

T ]T and

nm
p

def= [nm
1,p

T nm
2,p

T · · · nm
NR,p

T ]T , where ym
i,p

def= [ym
i [ωp,1]

ym
i [ωp,2] · · · ym

i [ωp,ζ ]]T , nm
i,p

def= [nm
i [ωp,1] nm

i [ωp,2] · · · nm
i

[ωp,ζ ]]T , with ym
i [k] and nm

i [k] denoting the signal and noise
received at the kth subcarrier, the ith received antenna, and
the mth OFDM symbol, respectively. We have the following
assumptions: 1) The length of the CP that was appended to
each OFDM symbol is longer than the maximum excess delay
of the channel, and 2) the average power of the transmit symbol
alphabet is normalized to unity, i.e., E[|xm

j [k]|2] = 1.
Suppose that each input vector xm

j,p in (1) is left-multiplied
by a nonredundant precoding matrix Ψ ∈ C

ζ×ζ (whose choice
is considered in Section V). Then, the input–output relationship
for the pth frequency subset can be written as

ym
p = Hm

p (INT
⊗ Ψ)xm

p + nm
p (2)

with the channel matrix Hm
p defined as

Hm
p =

⎡
⎢⎣

Hm
1,1,p · · · Hm

1,NT ,p

...
. . .

...
Hm

NR,1,p · · · Hm
NR,NT ,p

⎤
⎥⎦ . (3)

In (3), Hm
i,j,p = diag(hm

i,j,p), where hm
i,j,p

def= [hm
i,j [ωp,1],

hm
i,j [ωp,2], . . . , hm

i,j [ωp,ζ ]]T , and hm
i,j [k] denotes the equivalent

frequency response between the ith receive and the jth transmit
antennas over the kth subcarrier and the mth OFDM symbol.

In this paper, because the frequency span of P adjacent
subcarriers is supposed to reside in the coherence bandwidth,
we shall assume that the variations in the channel matrices
Hm

p across these P subcarriers are negligible, although large
changes in the channel responses over a wider bandwidth are
possible [21]. Accordingly, we can define a new representative

channel matrix, Hm def= Hm
1

∼= Hm
2

∼= · · · ∼= Hm
P , and drop

the index p for all channel-related quantities, including Hm
i,j,p

and hm
i,j,p. Note that the aforementioned assumption of near

equality is exploited only to derive our new algorithm; however,
the new algorithm will be tested over realistic channel models
for which equality does not hold. Additional details are given
in Section VI.

In this paper, our first interest lies in the blind estimation
and tracking of rapidly TV-MIMO channels with normalized
Doppler frequencies that may reach significant values, e.g., up
to 2% or more [23], and for which the channel matrix Hm is
allowed to change at each OFDM symbol time. To this end, we
seek to develop a blind subspace-based estimator Ĥm, which
is a function of the observed data up to the current symbol
time m, i.e., {yl

p, p = 1, 2, . . . , P ; l = 1, 2, . . . ,m}, and can
recursively be updated in a computationally efficient manner.
That is, we seek to develop a practical updating algorithm
φ(·) in which the channel estimate at the mth symbol time
can be represented as Ĥm = φ(Ĥm−1, {ym

p }P
p=1). In addition,

because the precoder is placed at the transmitter side without
having any feedback of channel knowledge from the receiver
side, our second interest lies in determining a suitable precoder
scheme to further enhance the estimation performance.

III. PRECODED BLIND SUBSPACE-BASED APPROACH

In this section, we first introduce a subspace-based channel
estimation approach that exploits the frequency correlation
among adjacent subcarriers in the precoded MIMO-OFDM
system. Our presentation initially assumes a block processing
framework; the proposed approach will then be extended to the
recursive estimation and tracking of TV channels in Section IV.
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For simplicity, let us temporarily drop the time index m
from all the channel-related coefficients. Based on (2) and
assuming that channel variations over P adjacent subcarriers
are negligible, the correlation matrix Ry

def= E[y1yH
1 ] ∼= · · · ∼=

E[yP yH
P ], which is of size ζNR × ζNR, can be written as

Ry = H(INT
⊗ ΨΨH)HH + σ2

nIζNR
(4)

where we have assumed that np and xp are uncorrelated,
E[npnH

p ] = σ2
nIζNR

, and E[xpxH
p ] = IζNT

. Similar to [24],
by partitioning Ry into submatrices of size ζ × ζ, we may
express its (u, v)th submatrix as

Ry,uv =
NT∑
j=1

Hu,jΨΨHHH
v,j + δuvσ2

nIζ

=

⎛
⎝NT∑

j=1

hu,jhH
v,j

⎞
⎠ � (ΨΨH) + δuvσ2

nIζ (5)

where u, v ∈ {1, 2, . . . , NR}, δuv = 1 if u = v; otherwise, it is
zero. Let

Wuv
def=

[
Ry,uv − δuvσ2

nIζ

]
� ΨΨH (6)

be the (u, v)th submatrix of a new matrix W. Then, based
on (5), we can arrive at W = HHH , where matrix H ∈
C

(ζNR)×NT is defined in terms of the channel coefficients as

H def=

⎡
⎢⎣ h1,1 · · · h1,NT

...
. . .

...
hNR,1 · · · hNR,NT

⎤
⎥⎦ . (7)

Assuming that H has full column rank, it can be expressed in
the form

H = QA (8)

where the columns of matrix Q ∈ C
(ζNR)×NT are the orthonor-

mal eigenvectors of W associated with its NT largest eigen-
values, and A ∈ C

NT ×NT is an ambiguity matrix. In theory,
the latter is constrained such that AAH = Λ, where Λ is a
diagonal matrix that contains these eigenvalues. As shown in
[24] for a similarly structured subspace problem, the matrix
of interest H is identifiable as long as it is a tall matrix, i.e.,
ζNR > NT . Therefore, this approach, indeed, offers flexibility
in choosing the number of transmit and receive antennas, be-
cause ζ > 1 is normally fulfilled, which means that NT ≥ NR

is also applicable.
In practice, the channel estimate Ĥ can be obtained from

Ĥ = Q̂A, where the columns of matrix Q̂ are the eigenvectors
that correspond to the NT largest eigenvalues of an estimated
matrix Ŵ, with its (u, v)th submatrix denoted as Ŵuv , which
can be obtained as

Ŵuv =
[
R̂y,uv − δuvσ̂2

nIζ

]
� ΨΨH (9)

where R̂y,uv denotes the (u, v)th submatrix of the sampled
correlation matrix R̂y, and σ̂2

n is an estimate of the noise vari-

ance. Therefore, the accuracy of the channel estimates largely
depends on the accuracy of the estimates R̂y and σ̂2

n.
In general, to achieve satisfactory performance in the channel

estimation step, i.e., Ĥ = Q̂A, the time averaging period Tav

needed for the aforementioned estimation of the correlation
matrix R̂y must be no less than ζNR, i.e., Tav ≥ ζNR [21],
[25]. However, by exploiting the concept of frequency averag-
ing within the coherence bandwidth, which is denoted as Bc,
the required averaging period can effectively be reduced by a
factor P , i.e., Tav ≥ ζNR/P . In particular, the estimate of the
correlation matrix Ry can now be obtained as

R̂y =
1

PTav

Tav∑
n=1

P∑
p=1

yn
pynH

p . (10)

The merits of this approach in practical MIMO-OFDM systems
have been demonstrated for the TI case in [21], where the effect
of varying P on the estimation accuracy of frequency-selective
channels is also studied.

In practice, Bc can be related to the root-mean-square (rms)
delay spread σrms through Bc ≥ (arccos(c)/2πσrms) [22],
where c ∈ [0, 1] is the desired coherence level. Therefore, given
the subcarrier spacing Δf for the OFDM system, σrms for
the radio propagation environment, and c = 0.54, we can set
P = (2πσrmsΔf)−1. We note that there exist many definitions
of the coherence bandwidth [26]; therefore, relying on this
formula to accurately calculate P may not be suitable for all
cases. In addition, our algorithm only requires that variations
in channel responses over P adjacent subcarriers remain small
but not necessarily zero. Therefore, we generally find that the
formula provides a useful guideline for initializing P but fur-
ther refinement may be needed to achieve the desired tradeoff
between smoothing and modeling errors in (10).

Note that, without employing the precoders Ψ’s at the trans-
mitter side, the dimension of the ambiguity matrix in [20]
is ζNT × NT , with ζ > 1. Here, in contrast, the use of the
precoder matrix Ψ makes reducing this dimension to NT × NT

possible.

IV. RECURSIVE CHANNEL TRACKING

We now consider a TV scenario in which the wireless chan-
nels could change at each OFDM symbol time. Accordingly,
we shall reintroduce the time index m for all the channel-
related quantities, including the quantities associated with the
aforementioned block-based subspace estimation. Clearly, the
matrix Qm, i.e., Q in (8) at the mth symbol time, needs to
be updated as new data samples become available to properly
reflect changes in the unknown channel. Instead of applying an
eigenvalue decomposition (EVD) on Wm at each time step, we
can recursively update the EVD through an efficient subspace
tracking algorithm to reduce the computational load. We notice
that most fast subspace trackers with low complexity assume
a rank-1 update [27], [28] and, hence, are not applicable here.
Based on (8), we propose a new algorithm that combines the
well-known orthogonal iteration with a joint time–frequency
averaging to track the wideband TV MIMO channels, without
repeatedly incurring EVD operations.
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A. Recursive Approach Based on Orthogonal Iteration

Under the current model assumption, an estimate of the TV
correlation matrix Rm

y at the mth OFDM symbol time can be
obtained by combining traditional window-based time averag-
ing with frequency averaging over the P frequency subsets Ωp

for p ∈ {1, . . . , P}. This approach results in

R̂m
y =

m∑
n=m−l+1

P∑
p=1

βm−nyn
pynH

p

=βR̂m−1
y +

P∑
p=1

ym
p ymH

p −
P∑

p=1

βlym−l
p ym−lH

p (11)

where l ∈ N, and 0 ≤ β ≤ 1 denotes the window length and
the forgetting factor, respectively. The main challenge still lies
in whether we can estimate the required second-order statistics
within a sufficiently short processing window.

Considering a scenario in which no windowing is applied,
i.e., l = 1, we can still collect {ym

p : p = 1, 2, . . . , P} at the
mth OFDM symbol time without referring to the OFDM sym-
bols of the previous time instances, i.e., yn

p for n < m. Hence,
we can conclude that it is possible to track TV channels that
change at each OFDM symbol time, provided that P > ζNR.
In practice, this condition is not stringent; for example, the
choices (P, ζNR) = (32, 24) and (64, 12) were reported in
[21], where both the Worldwide Interoperability for Microwave
Access (WiMAX) specification and the 3GPP SCM are consid-
ered. Of course, by using l > 1 in combination with a suitable
choice of β, the effective window length can be increased if
the aforementioned condition is not met or if it is desired to
obtain better smoothing of the channel estimates in the case of
mobile terminals with low speed. Clearly, the effective window
length cannot significantly exceed the channel coherence time.
The choice of the parameters l and β is further discussed in
Section VI.

Let Ŵm be an estimate of the matrix Wm, with its (u, v)th
submatrix given as

Ŵm
uv

def=
[
R̂m

y,uv − δuvσ̂2
nIζ

]
� ΨΨH (12)

where R̂m
y is now obtained through (11). In this paper, to

track the TV channel Hm with low complexity, we propose
to recursively update the principal eigenvectors of Ŵm, which
is represented by matrix Q̂m, and use them to estimate the
unknown channel coefficient matrix Hm according to (8).

Several techniques are available to efficiently compute or
update the dominant subspace of a matrix. Among these tech-
niques, orthogonal iteration and its variants have been consid-
ered for adaptive estimation to a great extent (see [8], [29],
and references therein). When applied to a constant matrix,
this method is known to exponentially converge to the desired
invariant subspace as the number of iterations increases [30]. It
can be initialized with any matrix with orthonormal columns; in
addition, it is well structured and suitable for real-time process-
ing. The application of orthogonal iteration to the problem at
hand is now described.

In particular, given a tall column orthonormal matrix
Q̂m

0 ∈ C
ζNR×NT at the mth OFDM symbol time, the method

of orthogonal iteration generates a sequence of matrices Q̂m
μ ,

whose column span is assumed to approximate the span of the
NT -D dominant subspace of the matrix Ŵm ∈ C

ζNR×ζNR ,
according to the following recurrence [31], [32]:

Ẑm
μ =ŴmQ̂m

μ−1, μ = 1, 2, · · · , nd (13)

Q̂m
μ R̂m

μ = Ẑm
μ (QR decomposition) (14)

where Q̂m
μ , with an orthonormal column, and R̂m

μ , upper trian-
gular, are the factors of a skinny QR decomposition of the inter-
mediate matrix product Ẑm

μ . Note that, in practice, we choose

Q̂m
0 = Q̂m−1

nd
, except when m = 0 (the initial condition). The

final accuracy depends on the chosen value of nd; usually, only
a few iterations are necessary, as will be shown in Section VI.

Finally, the desired TV channel estimate is obtained by

Ĥm = Q̂m
nd

Am. (15)

In (15), the columns of Q̂m
nd

are the approximate principal

eigenvectors of Ŵm that result from the application of the ndth
orthogonal iterations at the mth OFDM symbol time, and Am

represents the corresponding ambiguity matrix.
Based on orthogonal iteration, we also notice that estimating

the dominant subspace of a slowly TV correlation matrix was
considered in [33]; here, we extend the use of orthogonal
iteration by allowing nd ≥ 1 to track a TV MIMO channel.

B. Convergence Properties

To motivate the use of the proposed recursive method in a TV
wireless environment, we investigate its convergence properties
as follows. Let us first assume that

ÛmHŴmÛm = Λ̂
m

= diag
(
Λ̂m

i

)
(16)

is an EVD of Ŵm, where λ̂m
1 ≥ λ̂m

2 ≥ · · · ≥ λ̂m
ζNR

≥ 0, and
let an EVD of Wm be similarly defined. Considering the
partitions Λ̂

m
= diag(Λ̂

m

1 Λ̂
m

2 ) and Ûm = [Ûm
1 Ûm

2 ], where
Ûm

1 ∈ C
ζNR×NT , Ûm

2 ∈ C
ζNR×(ζNR−NT ), Λ̂

m

1 ∈ C
NT ×NT ,

and Λ̂
m

2 ∈ C
(ζNR−NT )×(ζNR−NT ), we can define the distance

between the two subspaces DNT
(Ŵm) and R(Q̂m

μ ) by [30]

dist
(
DNT

(Ŵm),R(Q̂m
μ )

)
=

∥∥∥∥(
Ûm

2

)H

Q̂m
μ

∥∥∥∥
2

(17)

where ‖.‖2 denotes the spectral norm. Let the angle θm ∈
[0, π/2] be defined to provide a measure of the closeness of
the two subspaces DNT

(Ŵm) and R(Q̂m
0 ) through

cos(θm) def= min
u∈DNT

(Ŵm),v∈R(Q̂m
0 )

|uHv|
‖u‖2‖v‖2

. (18)

Then, according to [34], we can arrive at

dist
(
DNT

(Ŵm),R
(
Q̂m

μ

))
≤ tan(θm)

(
λm

NT +1

λm
NT

)μ

(19)
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Fig. 3. Demonstration on the rate of convergence in subspace estimation by
using orthogonal iteration.

for μ = 1, 2, . . . , nd. According to (19), as long as the ratio
(λm

NT +1/λm
NT

) < 1, the iterated subspace R(Q̂m
μ ) exponen-

tially converges to DNT
(Ŵm) with an arbitrary initial condi-

tion Q̂m
0 = Q̂m−1

nd
. The convergence behavior of the orthogonal

iteration scheme (13) and (14) as a function of μ is well
predicted by (19) in the current application. To illustrate this
point, Fig. 3 shows a plot of the subspace distance (17) as a
function of μ when (13) and (14) is used to approximate the
2-D dominant subspace of a particular matrix Ŵm, appearing
at a given symbol time m in one of our simulations. We also
show a plot of (λ3(Ŵm)/λ2(Ŵm))μ for reference.

Although the tracking performance can be improved by
increasing nd in a general sense, the iterated subspace con-
verges to DNT

(Ŵm) instead of DNT
(Wm). Therefore, the

performance largely depends on whether we can obtain a good
estimate of Wm at each OFDM symbol time. Although the use
of additional frequency-domain samples as shown in (11) helps
improve the quality of this estimation in a TV environment,
some errors are inevitable. To investigate this effect, let us
define the residual estimation error at time mth as

Res(m) def= dist
(
DNT

(Wm),R
(
Q̂m

nd

))
=

∥∥∥(Um
2 )H Q̂m

nd

∥∥∥
2
. (20)

For a sufficiently large nd and invoking the exponential conver-
gence properties of orthogonal iteration, (20) can be expressed as

Res(m) ∼=
∥∥∥(Um

2 )H Ûm
1

∥∥∥
2

(21)

where Ûm
1 =Um

1 +ΔUm
1 , with ΔUm

1 =Um
2 (Um

2 )HΔWmUm
1

(Λm
1 )−1 representing the first-order perturbed signal subspace

due to estimation error ΔWm = Ŵm − Wm [35]. By invok-
ing the orthogonality between Um

1 and Um
2 , we can obtain∥∥∥(Um

2 )H Ûm
1

∥∥∥
2

=
∥∥∥(Um

2 )H ΔWmUm
1 (Λm

1 )−1
∥∥∥

2

≤‖ΔWm‖2

∥∥∥(Λm
1 )−1

∥∥∥
2
. (22)

Fig. 4. Demonstration of dist(D2(Wm), R(Q̂m
nd

)) and E[Res (m)] =

8σwE[λm
1 /λm

2 ] based on (26) for σ2
w = 10−3 and 10−4. Note that

E[λm
1 /λm

2 ] is obtained by time averaging over 2000 iterations. (a) σ2
w =

10−3. (b) σ2
w = 10−4.

Consider a particular application of the orthogonal iteration
scheme (13) and (14) in which a random estimation error
ΔWm is added to Wm at the mth OFDM symbol time. In
particular, let [ΔWm]i,j ∼ N (0, σ2

w), ∀i, j, be independent
and identically distributed (i.i.d.) random variables. Then, con-
sidering that E‖ΔW‖2 < 2σw

√
ζNR according to [36] and

‖(Λm
1 )−1‖2 = 1/λm

NT
, where λm

i denotes the ith eigenvalue of
Wm, we can arrive at

E [Res (m)] ∼= 2σw

√
ζNR/λm

NT
. (23)

To illustrate the accuracy of this formula, we consider a particu-
lar realization of Wm ∈ C

16×16 with a 2-D dominant subspace
(i.e., NT = 2), with the additive estimation error ΔWm mod-
eled as aforementioned. In Fig. 4(a) and (b), we plot Res (m)
(20) versus time m for σ2

w = 10−3 and 10−4, respectively,
along with the expected value computed from (23). For small
values of σ2

w, we find that (23) accurately predicts the observed



668 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 2, FEBRUARY 2012

mean level of Res (m), whereas it becomes less accurate for
larger σ2

w, mainly due to the effect of higher order terms in
the perturbed signal subspace, i.e., ΔUm

1 . In practice, σ2
w is

related to the estimation error of Ry, resulting from additive
white Gaussian channel noise, insufficient time averaging, and
improper choice of P .

Based on (23), we can conclude that, to reduce the bias of the
estimation, we should keep the dimension of Wm, i.e., ζNR, as
small as possible. This condition coincides with our design goal
to reduce the time averaging period by exploiting the frequency
correlation, which, in effect, amounts to reducing the size of
R̂m

y and Wm.

C. Proposed Blind Recursive Estimation Algorithm

We summarize our precoded subspace-based tracking algo-
rithm and its corresponding complexity in Algorithm 1. The
total computational complexity (flops) of the proposed algo-
rithm for each iteration is O(ζ4) + O(ζ2N2

RNT ). For moderate
choices of the number of transmit and receive antennas (i.e.,
ζ2 > N2

RNT ), this figure can be approximated as O(ζ4) and,
thus, is generally much smaller than the competing algorithms
in [8] and [9]. In practice, the ambiguity matrix Am can
be acquired by employing a small number of pilot symbols,
resulting in the so-called semiblind approach. In this case, it
is of interest to compare the number of pilot symbols required
for estimating Am with the number required for estimating
the full channel matrix Hm through a conventional pilot-based
approach. In particular, the estimation of Hm requires ζNRNT

complex symbols, whereas the estimation of Am (taking the
constraint Am(Am)H = Λm into account) requires (1/2)N2

T

complex symbols. Consequently, the semiblind version of the
proposed algorithm will result in a reduction in the number of
required pilots by a factor of � = 2ζNR/NT > 1.

In theory, the proposed method can be applied to OFDM
systems with arbitrary bandwidth NcΔf . However, under a
constraint of fixed coherence bandwidth, i.e., fixed P , special
care needs to be taken in the case of extremely large system
bandwidth. The first issue relates to the computational com-
plexity of the proposed approach, which scales with the fourth
power of ζ = Nc/P . Second, to have sufficient samples from
the frequency domain for estimating the correlation matrix in
(11), we need P > ζNR. Thus, increasing Nc without bound
while keeping P fixed will eventually result in a problematic
situation. In this case, one practical way of applying our pro-
posed approach to wider system bandwidths is to break down
the frequency band of interest into smaller contiguous subbands
and use the algorithm with a reduced value of Nc in each
subband. This approach avoids the aforementioned issues and
achieves estimation accuracy similar to the estimation accuracy
obtained for a smaller system bandwidth, as we have verified.

Algorithm 1: Blind recursive subspace-based identification
of TV-MIMO channels

Initialization: Q̂l−1
nd

= I(:, 1 : NT ), R̂0
y = 0, R̃0

y = 0
for m = 1, 2, . . . do

Input vector: ym
1 , . . . ,ym

P

R̃m
y =

∑P
p=1 ym

p ym
p

H

if m < l then
R̂m

y = βR̂m−1
y + R̃m

y

else
R̂m

y = βR̂m−1
y + R̃m

y − βlR̃m−l
y O(ζ2N2

R)
Ŵm

uv = [R̂m
y,uv − δuvσ̂2

nI] � ΨΨH O(ζ4)
Q̂m

0 = Q̂m−1
nd

for μ = 1, 2, . . . , nd do
Ẑm

μ = ŴmQ̂m
μ−1 O(ζ2N2

RNT )
Q̂m

μ R̂m
μ = Ẑm

μ (QR factorization on Ẑm
μ )

O(ζ2N2
RNT )

end for
Ĥm = Q̂m

nd
Am O(ζNRN2

T )
end if

end for

V. PRECODER DESIGN

Various precoding techniques have been proposed in the
context of OFDM systems. For example, a Vandermonde-
matrix-based precoder was proposed to maximize diversity and
coding gains when channel knowledge is available [37]. A
block triangular precoding matrix was applied for every pair
of OFDM symbols to assist blind channel estimation in [38].
However, none of these techniques can suit our special needs.

To simplify the notation for the following discussions, let us

define Γ def= ΨΨH . Let ψi,j and γi,j denote the (i, j)th entry of
matrices Ψ and Γ, respectively. According to (12), the choice
of Ψ does not appear to be restricted, except for the trivial con-
straint that the entries of Γ cannot be zeros, i.e., γi,j �= 0,∀ i, j.
Therefore, we can judiciously choose the precoder matrix to
simplify the channel estimator and optimize its performance.

First, we note that, if the diagonal entries of Γ are iden-
tical, i.e., γi,i is a constant for i = 1, 2, . . . , ζ, the additional
estimation of the noise variance in (12) can be avoided. To be
more specific, let us define a new matrix T̂m, with its (u, v)th
submatrix given as

T̂m
uv

def= R̂m
y,uv � Γ, u, v ∈ {1, 2, · · · , NR}. (24)

Then, we can arrive at T̂m = Ŵm + ρ I (for some ρ ∈ R).
Because T̂m has the same invariant subspaces as Ŵm, we can
simply apply T̂m instead of Ŵm in Algorithm 1 to eliminate
the noise variance estimation.

Second, letting ΔRm
y denote the difference between the

estimated and the true correlation matrices, i.e., R̂m
y = Rm

y +
ΔRm

y , we may express T̂m
uv as follows:

T̂m
uv = Rm

y,uv � Γ︸ ︷︷ ︸
def
= Tm

uv

+ ΔRm
y,uv � Γ︸ ︷︷ ︸

def
= ΔTm

uv

. (25)

Then, it becomes clear that the choice of the precoder should fo-
cus on eliminating the error term ΔTm

uv . Matrix ΔRm
y,uv in (25)

has a random nature, which results from the effects of the TV
channels, additive noise, and insufficient number of data sam-

ples. Let J(Ψ) def=
∑

u,v E‖ΔTm
uv‖2

F =
∑

u,v E‖ΔRm
y,uv �
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ΨΨH‖2
F . Given that � is an element-wise division, minimizing

J(Ψ) is equivalent to maximizing (in a weighted sense) the
entries of Γ = ΨΨH . Nevertheless, the choice of a precoder is
subject to a fixed transmit power and, thus, cannot arbitrarily be
large; the entries of Γ should therefore be maximized based on
the statistics of ΔRm

y and subject to an adequate normalization.
In summary, the choice of the precoder can be optimized

through the objective function, i.e.,

min
Ψ

J(Ψ) (26)

subject to the following two constraints.
(C1) To guarantee that the element-wise division in (12) and

(24) is feasible, the precoder must fulfill the condition:
|γi,j | > δ, ∀i, j, for some small δ > 0;

(C2) To normalize the average transmit power, we require that∑
j |ψi,j |2 = 1, ∀i.

Constraint C2 has interesting ramifications. First, it implies
that the diagonal entries of Γ are identical, i.e.,: γi,i = 1,∀ i.
Hence, there is no need for noise variance estimation, as ex-
plained. Second, it follows from the relation Γ = ΨΨH and
the Cauchy–Schwartz inequality that

|γi,j |2 ≤ γi,iγj,j = 1. (27)

Therefore, the off-diagonal entries of Γ cannot be made arbi-
trarily large. Thus, the optimization problem (26) cannot be
replaced by a simplified optimization over Γ with constraint
γi,i = 1.

Note that the seminal precoding matrices in [37] and [38] do
not fulfill C1 and, hence, are not applicable here. In particular,
the optimized precoder in [38] is constructed for the case of
asymptotic performance (i.e., SNR → ∞) and does not provide
clear insights for scenarios when the OFDM system is operated
at low to moderate SNRs. In the following sections, we propose
two precoders that fulfill the aforementioned constraints, and
we resort to numerical experiments in Section VI to demon-
strate the choices of precoders in various practical applications.

A. Design 1

In the absence of a more specific model, we consider a worst
case situation and assume that the entries of ΔRm

y are i.i.d. ran-
dom variables with zero mean and equal variance; this choice is
further supported by our numerical observations. Based on this
assumption, the objective function in (26) becomes a standard
optimization problem and can be solved using a Lagrange
multiplier. Accordingly, the optimal precoder, assuming γi,j ∈
R

+, is obtained as Ψ0 = (1/
√

ζ)1ζ×ζB, where 1ζ×ζ denotes
a ζ × ζ matrix of all ones, and B is an arbitrary ζ × ζ unitary
matrix.1 In turn, this choice yields Γ0 = Ψ0ΨH

0 = 1ζ×ζ . This
result coincides with the optimal choice of the precoder in
terms of estimation performance, obtained from the numerical
considerations in [39].

Nevertheless, the aforementioned precoder Ψ0 has rank 1
(condition number = ∞) and, thus, is not a good choice from

1It can be verified that this solution corresponds to a stationary point of
the Lagrangian function; furthermore, because it leads to equality in (27), it
achieves the global maximum.

the perspective of symbol recovery. To make Ψ0 nonsingular
while keeping the estimation performance close to the opti-
mum, we can perturb the entries of Ψ0 in the following man-
ner: Ψ0 → Ψ, where the diagonal entries of Ψ now slightly
exceed the off-diagonal entries. This approach is motivated
by the following property: rank(Ψ) ≥

∑ζ
i=1 |ψi,i|/bi, where

bi
def=

∑ζ
j=1 |ψi,j | [40]. This property suggests that, under C2,

we can increase rank(Ψ) from 1 by boosting the ratios |ψi,i|/bi.
Here, we propose to use a simple Toeplitz matrix to accomplish
this goal. That is, we define

Ψ = Ψ(ν) def=
1√

1 + (ζ − 1)ν2

⎡
⎣ 1 · · · ν

...
. . .

...
ν · · · 1

⎤
⎦

ζ×ζ

(28)

where ν is shown as the common perturbed value of the off-
diagonal entries of Ψ0. We note that a structure similar to (28)
was employed for block-based channel estimation in [24].

Intuitively, there exists an optimal tradeoff in terms of ν be-
tween the symbol recovery and channel estimation performance
for a given SNR. Although the analysis for determining an
optimal value of ν for this combined objective appears difficult,
some insight can be obtained as follows. Using (28), it can be
verified that Γ will contain ones on its diagonal and

φ(ν) = 1 − (ν − 1)2

1 + (ζ − 1)ν2
≤ 1 (29)

on its off-diagonal. We can also express the condition number
of Γ in terms of ν as

κΓ(ν) =
ζ

(
1 + (ζ − 1)ν2

)
(1 − ν)2

− (ζ − 1). (30)

On the one hand, to minimize channel estimation errors, we
seek to maximize φ(ν), which is achieved when ν = 1. On the
other hand, to improve symbol recovery, we seek to minimize
κΓ(ν). To explain the behavior of our algorithm around ν =
1, consider ν = 1 ± ε, where 0 < ε � 1. It can be shown that
φ(1 ± ε) ∼= 1 − ε2/ζ, whereas κΓ(1 + ε) � κΓ(1 − ε). Thus,
for a given ε, the choice ν = 1 − ε < 1 is advantageous. In fact,
we have confirmed through simulations that ν > 1 invariably
leads to inferior performance. In practice, we can impose some
constraint κΓ(ν) ≤ κ∗ for some finite κ∗ and use (29) and (30)
to find the corresponding ν ∈ (0, 1) that maximizes φ(ν).2

B. Design 2

We propose another precoder that is shown as a general-
ization of the previous precoder. To be more specific, Γ is a
convex combination of the identity and all-one matrices that
fulfill constraints C1 and C2 and is defined as follows:

Γ = aIζ + (1 − a)1ζ×ζ , a ∈ [0, ζ/(ζ − 1)] (31)

2We note, based on (1) and (2), that the precoder outputs are allocated
to OFDM subchannels that are PΔf apart. Here, this separation is chosen
to roughly correspond to the coherence bandwidth of the MIMO channel;
therefore, the seemingly correlated precoder outputs will decorrelate as they
go through the wideband channel. Therefore, except for the rank-deficient case
ν ∼= 1, the spectral efficiency will not significantly be affected.
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where the limits on a follow from (27) and the semidefinite
positive property of Γ. In particular, a = 0 represents the sce-
nario where optimal channel estimation is achieved, whereas
a = 1 corresponds to the optimal symbol recovery. Note that,
for Ψ(ν) in (28), the product Γ = Ψ(ν)ΨH(ν) is a special case
of (31), with a = 1 − φ(ν).

We can also represent (31) as circulant, i.e., Γ = circ (1, 1 −
a, . . . , 1 − a), and thus, the corresponding precoder matrix
can conveniently be expressed as Ψ = SP1/2, where S is the
unitary DFT matrix with entries [S]k,l = (1/

√
ζ)e−j2πkl/ζ and

P = diag[p0 · · · pζ−1] with diagonal entries p0 = (1 − a)ζ + a
and pi = a for i �= 0 obtained as the DFT of the first column of
Γ. Now, let χ, χ′ ∈ C

ζ×1 be realizations of xm
j,p and χi, and

χ′
i ∈ A be their ith entries, respectively. The distance between

the corresponding precoder outputs can be written as

D(a;χ,χ′) def= ‖Ψ(χ − χ′)‖2
2

= (1 − a)ζ |χ0 − χ′
0|

2 + a

ζ−1∑
i=1

|χi − χ′
i|

2 ≥ 0.

Thus, the precoder that achieves the best tradeoff between sym-
bol recovery and channel estimation can be found by optimizing
the following combined objective function:

max
a

(
−εa2 + min

χ�=χ′
D(a;χ,χ′)

)
(32)

where the choice of weighting factor ε ≥ 0 controls
the final optimal tradeoff. Because the closed form of
minχ�=χ′ D(a;χ,χ′) is intractable, we resort to computer
search for solving (32). An example for quaternary phase-shift
keying (QPSK) modulation (i.e., A = (1/

√
2){±1 ± j}, with

|A| = 4) and ζ = 4 will be demonstrated in the next section.

VI. NUMERICAL EXPERIMENTS

The MIMO system under consideration consists of NT = 2
transmit and NR = 3 receive antennas. The number of OFDM
subcarriers NC is set to 256, with a CP length of 32. For each
time epoch, the incoming data streams are i.i.d. QPSK symbols.
The OFDM useful symbol duration is 91.4 μs (11.4 μs for
the CP), resulting in a subcarrier spacing of Δf = 10.94 kHz
and a total system bandwidth of 2.8 MHz. Modeling of the
TV MIMO channel is based on the 3GPP-SCM setup [41].
We consider a suburban macro scenario with carrier frequency
fc = 2.5 GHz and E[σrms] = 0.17 μs. The mobile station (MS)
is allowed to roam in a random direction at a constant speed
of 100 km/h. Hence, the maximum Doppler shift is 231.5 Hz,
and the normalized Doppler frequency is 0.02. For this given
scenario, we find Bc

∼= 1/(2πσrms) = 936.2 kHz = 85.6 Δf ;
experimentally, we have found that a suitable value of P is 64.
In the following discussion, we present the BER and NMSE of
the proposed algorithm, where the ambiguity matrix is obtained
from Am = (Q̂m

nd
)†Hm

�P/2�. For the BER calculations, symbol
recovery is implemented in the frequency domain. The NMSE
for the mth channel estimate is defined as

∑
i,j,k E[|ĥm

i,j [k] −
hm

i,j [k]|2]/(
∑

i,j,k E[|hm
i,j [k]|2]), where the sum over k runs

Fig. 5. NMSE versus precoder coefficient ν when the MS speed is 100 km/h
(Eb/N0 = 14 dB).

Fig. 6. NMSE versus forgetting factor β when the MS speed is 100 km/h
(ν = 1 and Eb/N0 = 14 dB).

from 0 to Nc − 1, and the ensemble average is taken over 200
independent runs.3

Considering a rectangular window (i.e., β = 1) of length
l = 1 and 5, we first investigate the choice of the precoder de-
sign 1 coefficient ν from the perspective of channel estimation
performance. Fig. 5 shows the NMSE of the channel estimates
versus ν after 100 iterations when the SNR per bit Eb/N0 =
14 dB, where Eb and N0 denote the energy per bit and the
one-sided noise power spectral density, respectively. Choosing
l = 1 gives the best performance, because the wireless channel
very rapidly changes in this case. In particular, we observe
that the NMSE reaches its minimum, i.e., 2.5 × 10−4 when
ν = 1, which coincides with our analysis in Section V. In
Fig. 6, we investigate the choice of the forgetting factor β

3Although frequency-domain interpolation was not applied in this paper, it
could be employed as a postprocessing step to smooth out the estimated channel
responses and further reduce the NMSE.
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Fig. 7. NMSE versus the number of OFDM symbols when the MS speed is
100 km/h (nd = 2).

when an exponential window of infinite length is considered
under the same condition. We can see that the NMSE reaches
a minimum, a value comparable with the rectangular window
with l = 1, i.e., around NMSE = 2 × 10−4 when β ∈ [0, 0.1],
which means that previous data samples are of little use for
the estimation of the current channel statistics. Thus, in this
TV channel, employing an exponential window cannot gain
additional estimation accuracy. We also notice that there is no
significant improvement in the estimation performance when
nd is increased from 2 to 5 in both figures. Hence, we simply
assign nd = 2 and employ a rectangular window of length l = 1
in the following experiments.

Fig. 7 presents the NMSE of the channel estimates ver-
sus OFDM symbol time when ν ∈ {1, 0.7} and Eb/N0 ∈
{14, 34} dB. We can see that the proposed algorithm can track
the TV channel in less than five OFDM symbols in all cases and
maintain its performance over time, despite the rapid variations
in the channel coefficients. This case shows that reducing ν
from 1 to a smaller value to achieve a compromise between
estimation performance and symbol recovery will not affect
the convergence rate. We notice that, for ν = 1 at Eb/N0 =
34 dB, the proposed blind estimator reaches the Cramer–Rao
bound,4 as computed for a TI channel observed over five OFDM
symbols at the same SNR per bit [21].

In Fig. 8, we show the BER versus the precoder coefficient
ν for various Eb/N0’s. We consider both the least squares (LS)
and the total least squares (TLS) [42] estimation for symbol
recovery. We observe that the higher the Eb/N0, the larger
the optimal choice of ν, and hence, the lower the BER. This
case can be explained as follows. For a less noisy scenario,
a shorter distance between any pair of the precoder outputs
is allowed, and thus, we can increase the value of ν to gain
better estimation performance and, by doing so, achieve a lower
BER. We also observe in Fig. 8 that, for a given Eb/N0,

4To make the comparison relevant, the CRB is calculated basis on the
approximate staircase channel model with reduced dimensionality, i.e., Hm

1 =
· · · = Hm

P .

Fig. 8. BER versus precoder parameter ν when the MS speed is 100 km/h
(nd = 2).

Fig. 9. BER versus Eb/N0 when the MS speed is 100 km/h (nd = 2).

the TLS estimation (solid lines) generally outperforms the LS
estimation (dashed–dotted lines) estimation, because the TLS
estimation takes the channel estimation errors into account
while performing the symbol recovery.

Fig. 9 demonstrates the BER versus Eb/N0 for various
ν’s, considering both the LS and TLS estimation for sym-
bol recovery. We can see that, when ν = 0.4, the proposed
algorithm performs best in the low Eb/N0 region due to its
largest distance between any pair of precoder outputs; however,
it performs the worst in the high Eb/N0 region, because less
accurate channel information is used. The case ν = 0.9 yields
the worst performance for almost all Eb/N0 values, although
the best estimation performance is achieved. A good choice of
ν should fall between 0.6 and 0.7 when the Eb/N0 is moderate
to high, and a gain of 1–2 dB can be achieved by using the TLS
instead of the LS estimation at the Eb/N0 = 19 dB. Because we
consider QPSK modulation with ζ = 4, we can verify that the
joint objective function (32) for design 2 reaches its maximum
when a = 1/ε. Fig. 10 demonstrates the BER versus Eb/N0
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Fig. 10. BER versus Eb/N0 when the MS speed is 100 km/h (nd = 2).

Fig. 11. BER versus ν for cases of perfect CSI and a higher normalized
Doppler frequency.

for various ε’s, considering both the LS and TLS estimation for
symbol recovery. For the given scenario, we can see that a good
choice of ε should fall between 4 and 20. Here, the advantages
of using the TLS instead of the LS are not significant.

One important measure of performance for OFDM systems
is the so-called peak-to-average power ratio (PAPR) [22]. Com-
paring Figs. 9 and 10, we notice that, for a specific Eb/N0,
the achievable performance of the two proposed precoders are
similar. However, precoder design 2 induces about 1.5 dB lower
PAPR than design I, mainly due to the additional phase terms
introduced by the Fourier matrix. This reduction is important,
because an OFDM system with a lower PAPR can generally
achieve a better BER and higher capacity.

In Fig. 11, we study the tradeoff between symbol recov-
ery and estimation performance from additional angles, with
Eb/N0 set to 14 dB. The top part shows BER versus ν for the
proposed method compared to recovery with perfect channel-
state information (CSI). We can see that, for ν ≤ 0.4, the

Fig. 12. Performance comparison of the pilot-based and the proposed blind
channel estimation when the MS speed is 100 km/h.

BER with perfect CSI improves because the performance is no
longer limited by the estimation error. However, when ν ≥ 0.5,
the BER is restricted by the symbol recovery rather than the
channel estimation accuracy, and in this case, the performance
gap between the proposed algorithm and perfect CSI becomes
negligible. The bottom part illustrates the effect of increasing
the normalized Doppler frequency fd from 0.02 to 0.05 (i.e.,
MS speed of 250 km/h). Here, the proposed algorithm only
suffers modest performance degradation for both LS and TLS
estimation approaches.

To demonstrate that the bandwidth efficiency can be in-
creased by the proposed method, we provide a performance
benchmark based on pilot-based channel estimation. For every
dT OFDM symbols in the time domain, a comb of pilot symbols
is inserted in the frequency domain, with a regular spacing
of 16 subcarriers. At the receiver side, the channel transfer
function is first extracted at times and frequencies at which
pilot symbols have been inserted. Then, the missing values of
the transfer function between the pilot symbols are interpolated
through filtering [43]. In this case, the performance of pilot-
based channel estimation solely depends on the parameter dT ,
and thus, we can observe how frequent the pilot symbols
should be inserted to track the channel variations and meet the
performance of the proposed blind approach.

In Fig. 12, we can see that, for Eb/N0 = −6 dB with
dT ≤ 16 and for Eb/N0 = 4 dB with dT ≤ 14, the pilot-
based method outperforms the proposed method by a small
margin. However, when Eb/N0 is increased to 14 dB, the
pilot-based method must employ dT ≤ 4 and therefore sac-
rifice bandwidth efficiency to achieve a similar performance
as in the proposed blind method. In particular, 1.56% of the
bandwidth is then consumed by pilots with the pilot-based
method compared to 0.39% with the proposed method when
implemented in semiblind form. Frequency correction tech-
niques, often used with pilot-based approaches to improve
estimation accuracy, could also be applied to the proposed blind
approach, although we did not explicitly consider this aspect.
With regard to the implementation of these methods, we have
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found that the computational complexity of the proposed blind
algorithm is generally comparable to an efficient pilot-based
algorithm that incorporates a low-pass filter and spline cubic
interpolation.

VII. CONCLUSION

To estimate wideband TV channels with large Doppler
spreads, we typically resort to pilot placements at consecutive
OFDM symbol times over specific subcarriers, followed by
different interpolation schemes. Traditionally, blind channel
estimation has not been applied in such situation, because it nor-
mally requires a long observation interval and tends to exhibit a
slow convergence rate. The main contribution of this paper has
been in developing a new scheme to blindly track a wideband
TV MIMO wireless channel that may change at each OFDM
symbol time, without using extensive preambles or training
sequences. Our approach offers flexibility in choosing the
number of transmit and receive antennas and can achieve high
bandwidth efficiency with low computational complexity. In
particular, compared with a pilot-based approach, the semiblind
version of our proposed algorithm consumes significantly less
bandwidth to achieve a given BER at moderate to high SNR.
Many avenues remain open for future work, including the use of
spectral windows in the frequency averaging step, the applica-
tion of frequency correction techniques, and the development of
online schemes for adjusting the algorithm parameters based on
available knowledge of channel delay spread and user mobility.
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