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Abstract—This paper investigates the joint design of multiple
non-regenerative multiple-input multiple-output (MIMO) re-
laying matrices, with the purpose of minimizing the mean square
error (MSE) between the transmitted signals from the source and
the received signals at the destination. Two types of constraints
on the transmit power of the relays are considered separately:
1) a weighted sum power constraint, and 2) per-relay power
constraints. As opposed to using general-purpose interior-point
methods, we exploit the inherent structure of the problems to
develop more efficient algorithms. Under the weighted sum power
constraint, the optimal solution is expressed as a function of a
Lagrangian parameter. By introducing a complex scaling factor
at the destination, we derive a closed-form expression for this pa-
rameter, thereby avoiding the need to solve an implicit nonlinear
equation numerically. Under the per-relay power constraints, the
optimal solution is the same as that under the weighted sum power
constraint if particular weights are chosen. We then propose an
iterative power balancing algorithm to compute these weights. In
addition, under both types of constraints, we investigate the joint
design of a MIMO equalizer at the destination and the relaying
matrices, using block coordinate descent or steepest descent. The
bit-error rate (BER) simulation results demonstrate that all the
proposed designs, under either type of constraints, with or without
the equalizer, perform much better than previous methods.

Index Terms—Distributed array gain, MIMO, MMSE, non-re-
generative, power balancing, relay.

I. INTRODUCTION

M ULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO)
wireless relaying can increase system throughput, over-

come shadowing and expand network coverage more efficiently
than its single-antenna counterpart [1]. The multi-antenna re-
lays can either decode and re-encode information bits, or simply
apply linear processing matrices to the received baseband sig-
nals before retransmitting them. These approaches are known
as decode-and-forward (DF) and amplify-and-forward (AF),
respectively. This paper is concerned with the latter non-re-
generative approach, which benefits from shorter processing
delays, lower complexity and better security [2]–[8].
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Communication between a source and a destination can be
assisted by either a single or multiple relays [2]. These configu-
rations are referred to as one-source—one-relay—one-destina-
tion (1S-1R-1D) and one-source—multiple-relays—one-desti-
nation (1S-MR-1D) hereafter. The optimal relaying matrices
for 1S-1R-1D configurations are well established for a wide
variety of criteria when the transmit power of the relay is
constrained [3]–[6]. These matrices share a common singular
value decomposition SVD structure which diagonalizes the
backward and forward channels. This framework, however,
cannot be extended to the joint design of multiple relaying
matrices for 1S-MR-1D systems. Indeed, since the relays can
only process their own signals, the compound AF matrix has to
be block-diagonal.
The essential feature of an appropriate relaying strategy

is that the signals from different relays should be coherently
combined at the destination, thereby leading to a distributed
array gain [1], [7], [9]. In this regard, some strategies have been
proposed that “borrow” ideas from MIMO transceiver design,
including matched filtering (MF), zero-forcing (ZF), linear
minimum mean square error (MMSE) [7], QR decomposition
[8] and the hybrid relaying framework [10]. These heuristic
methods, although structurally constrained, were shown to
perform much better than simplistic AF which only amplifies
the signals. A more comprehensive approach is to formulate the
collaborative design of the relaying matrices as optimization
problems with power constraints [11]–[16]. The objective can
be to maximize the achievable rate [11] or to minimize the
mean square error (MSE) [13], [14]. However, most works
rely on numerical algorithms such as gradient descent [13],
bisection [14] and iterative schemes [13]–[15] to obtain the
optimal solution. This lack of closed-form expressions leads
to high implementation complexity, which in turn limits the
potential applicability of these methods. For completeness,
it is worth mentioning that explicit formulas were derived
in [17]–[19] when the power constraints are enforced on the
signals received at the destination. However, these results do
not carry over to the case when the constraints are imposed on
the transmit power of the relays [16].
In this paper, we concentrate on the similar problems of

designing the multiple relaying matrices, with the purpose of
minimizing the MSE between the input and output signals. Two
types of constraints on the transmit power of the relays are con-
sidered separately: 1) a weighted sum power constraint which
was not investigated before, and 2) per-relay power constraints.
The problems are first recast as standard quadratically con-
strained quadratic programs (QCQPs) through vectorization. As
opposed to using general-purpose interior-point methods [20],
we exploit the inherent structures of the problems to develop
more efficient algorithms. Under the weighted sum power
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constraint, the optimal solution is expressed as an explicit
function of a Lagrangian parameter. By introducing a complex
scaling factor at the destination, we derive a closed-form
expression for this parameter, thereby overcoming the hurdle
of solving an implicit nonlinear equation. Under the per-relay
power constraints, the optimal solution is the same as that
under the weighted sum power constraint if a particular set of
weights is chosen. We then propose a simple iterative power
balancing algorithm to compute these weights efficiently.
In addition, under both types of constraints, we investigate
the joint design of a multiple-input multiple-output (MIMO)
equalizer at the destination and the relaying matrices, using
block coordinate descent or steepest descent. The bit-error rate
(BER) simulation results demonstrate better performance for
the proposed MMSE-based relaying strategies, under either
type of constraints, with or without the equalizer, than previous
methods.
Our work provides new insights into the design of non-regen-

erative 1S-MR-1D systems. Firstly, we point out the possible
non-uniqueness of the solution to the first-order necessary con-
dition, which was overlooked in [12], [14], [15]. Moreover, it
is not legitimate to simply choose the minimum-norm solution,
unless the vectorization is done on specific transformations
of the relaying matrices instead of these matrices themselves.
Secondly, the optimal design does not require global channel
state information (CSI) availability: each relay only needs to
know its own backward and forward channel, together with
a little additional information. Thirdly, under the weighted
sum power constraint, the optimal strategy tends to allocate
more power to those relays with better source-relay links or
worse relay-destination links. Lastingly, under the per-relay
power constraints, the optimal strategy sometimes does not use
the maximum power at some relays. Forcing equality in the
per-relay power constraints as in [13] would result in loss of
optimality. Another interesting point is that, no matter how low
the signal-to-noise ratio (SNR) is at a particular relay, this relay
does not have to be turned off completely.
The organization of this paper is as follows: Section II

introduces the system model and formulates the mathematical
problem. Section III derives the closed-form optimal relaying
matrices under the weighted sum power constraint. Section IV
studies the per-relay power constraints. The joint design of
the relaying matrices and the MIMO equalizer is discussed in
Section V. Section VI covers the implementation issues and
computational complexity. Numerical results are presented in
Section VII followed by a brief conclusion in Section VIII.
The following notations are used: italic, boldface lowercase

and boldface uppercase letters represent scalars, vectors and
matrices; superscripts and denote conjugate, trans-
pose, Hermitian transpose and Moore-Penrose pseudo-inverse,
respectively; refers to the trace of a matrix;
stands for the Euclidean (or Frobenius) norm of a vector;
stacks many column vectors into a single vector, stacks
the columns of a matrix into a vector and is its inverse
operator; forms a diagonal (or block-diagonal) matrix
from multiple scalars (or matrices); represents the Kronecker
product; is an identity matrix of dimension refers to
mathematical expectation; and denote the sets of real and
complex numbers; and are the column space and the
null space of a matrix; is the dimension of a space.

Fig. 1. System model of 1S-MR-1D.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In the 1S-MR-1D system model depicted by Fig. 1, a
multi-antenna source is sending symbols to a multi-antenna
destination with the aid of multiple multi-antenna relays. The
transmitted signals propagate through the backward channels
between the source and the relays. These signals are processed
at the individual relays and propagate through the forward
channels to the destination. The relays work in a half-duplex
mode: their antennas are used for either transmitting or re-
ceiving during different time slots. We neglect the presence of
a possible direct source-to-destination link, which is typically
hindered by high levels of attenuation.
We assume that the channels undergo frequency-flat

block-fading [21]. The source does not have access to the
CSI; each relay knows its own backward and forward channels
and a little additional shared information; the destination may
need an equalizer matrix. Once knowing the structures of the
optimal solution, we shall be able to discuss this topic in detail
(cf. Section VI). The channel matrices have to be estimated
timely and accurately, which is an important topic in its own
right. For more details, we refer the reader to [22]–[24] and the
references therein.
The bandpass signals and channels are modeled in terms of

their discrete-time complex baseband counterparts. The num-
bers of antennas at the source, relays and destination are re-
spectively denoted by and .1 The source signal

consists of statistically independent symbol streams.
It is assumed to have zero mean and a full-rank covariance
matrix . The received signal at the th relay,

, can be expressed as

(1)

where is the backward channel matrix from
the source to the th relay, and is an additive
noise termmodeled as a circularly symmetric complex Gaussian
random vector with zero mean and full-rank covariance matrix

. The random vectors and
are statistically independent.
The th relay retransmits its noisy signal as

(2)

1For notational simplicity, each relay is equipped with the same number of
antennas; however, generalization to different numbers of antennas at the relays,
i.e., , is straightforward.
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where is the corresponding non-regenerative
MIMO relaying matrix. The signal received at the destination,
denoted by , takes the form of

(3)

where is the forward channel matrix from the
th relay to the destination and is the noise in-
duced at the destination receiver. This term is independent from
and and also modeled as a circularly symmetric com-

plex Gaussian random vector, with zero mean and covariance
. The destination may apply a linear MIMO

equalizer (combiner) , resulting in

(4)

The above signal model can also be expressed in a compact
block-diagonal form, viz.,

(5)

where we define
and with

. If , this
signal model reduces to the 1S-1R-1D case.
In addition, with proper refinement, the mathematical model

in this paper is applicable to a much broader scope such as
1S-MR-1D systems with broadband transmission [25], dis-
tributed relaying systems, and multiuser multi-relay systems.

B. Problem Formulation

The major goal is to design the relay processing matrices
, so that the distortion between the output and the input

is minimized. Our choice of the objective function, for practical
reasons, is the MSE:

(6)

Although BER performance also depends on nonlinear compo-
nents such as channel coding, space-time coding, interleaving
and constellation mapping, the MSE serves as a good perfor-
mance indicator and is more mathematically tractable [26].
Two types of power constraints are separately imposed on the

relays. The first is the weighted sum power constraint

(7)

where , and for
are the weights assigned to different relays. The

other type is the per-relay power constraints, i.e., each relay has
its own power budget, expressed as

(8)

where .

To simplify the mathematical development, it is convenient
to vectorize the relaying matrices. To this end, we define

(9)

and . The reason for this definition, instead
of , is that the square of the 2-norm of is equal to the
transmit power of the th relay, viz.,

(10)

As shown later, this will bring much convenience. It is straight-
forward to invert (9) as . For notational
simplicity, we also define the matrices

(11a)

(11b)

for . These matrices serve as the building blocks for
the following matrices and vectors:

(12a)

(12b)

(12c)

(12d)

With the above notations, the objective function in (6) be-
comes a quadratic function of the vector :

(13)

where we have used the following properties [27]

(14a)

(14b)

(14c)

Hereafter, we may denote the arguments of the function
in (13) differently, to emphasize its dependence on

certain variables, vectors or matrices.
The power constraints are also represented in terms of . For

convenience, define as

(15)

where is in the th diagonal sub-block. A weighted sum of

such matrices is also defined: . Then, the
weighted sum power constraint in (7) becomes

(16)

and the per-relay power constraints in (8) would be

(17)

The above formulated optimization problems are flexible
with respect to the equalizer —it can be either pre-deter-
mined, or jointly designed with (or equivalently ). If is
fixed, the problems under both types of constraints are standard
QCQPs that can be solved by general-purpose interior-point
methods [20], [28]. In Sections III and IV, however, the proper
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exploitation of the sparse structures of and leads
to more efficient algorithms and in some cases closed-form
expressions for the optimal solution. For the joint design of
and , we shall propose two algorithms in Section V, both of
which rely upon the results from Sections III and IV.

III. THE WEIGHTED SUM POWER CONSTRAINT

In this section, we assume is fixed and derive the optimal
under the weighted sum power constraint. The first step is to es-
tablish the optimality conditions through the framework of La-
grangian duality. Then, the optimal solution is expressed as
an explicit function of a Lagrangian parameter. By introducing
a complex scaling factor in , we derive a closed-form expres-
sion for this parameter.

A. Optimality Conditions

Most constrained optimization problems are solved through
Lagrangian duality [20], [28]. The starting step is to define the
Lagrangian function as

(18)

where the dual variable satisfies . The infimum of (18)
over is defined as

(19)

The dual problem is defined as:

(20)

Let the solution of the primal problem be and
; let the solution of the dual problem be

and . For a convex primal problem, strong
duality holds (i.e., the duality gap is zero) if the Slater’s
condition is satisfied ([28], p. 226). Here, the primal problem
is convex ( and are both positive semidefinite) and the
Slater’s condition is always satisfied ( is strictly feasible:

). Henceforth, the Karush-Kuhn-Tucker (KKT) condi-
tions are necessary and sufficient for the optimal primal-dual
pair , viz.,

(21a)

(21b)

(21c)

(21d)

Among these four conditions, the first-order necessary condition
(21a), which we referred to as the stationarity condition from
now on, determines the analytical form for the optimal solution;
the complementary slackness condition (21d) serves as the key
to computing the value of .

B. The Solution Space of the Stationarity Condition

The stationarity condition (21a) can be rewritten as the fol-
lowing linear equation

(22)

in which is a function of . Three questions
can be asked about (22): Does the solution always exist? If yes,
is it unique? If non-unique, what is the general solution form?
The following theorem answers the first question:
Theorem 1: The stationarity equation (22) has at least one

solution for any and , that is: .
Proof: We proceed by contradiction. If no solution exists,

. Let be the orthogonal projection of
onto and then the non-zero residual would satisfy

The value of the Lagrangian function (18) evaluated at
would be

As because
. However, all terms in the definition of in (18) are
nonnegative except for the constant . This means

, which leads to a contradiction.
The second question is whether the solution is unique. This

is true, if and only if, does not have a non-zero solu-
tion, or equivalently . The following propositions
establish some facts on and , respectively:
Proposition 2:
1) If is in the null space of , the
vector must be
in the null space of .

2) For any , all such together span a subspace with
dimension .

3) For and are orthogonal to each other.
4) The vector is orthogonal to all for .
Proof: 1) Define as the th sub-block of . The

th sub-block of is

where if
and if . 2) Because a one-to-one cor-
respondence exists between and according to the def-
inition, all together also span a subspace isomorphic
to . Since the rank of (with di-
mension ) is , the dimension of
its null space is , which is also that of
. 3) From the definition, always holds for ,

and so and are orthogonal to each other. 4) According to
Theorem 1, leads to . Therefore, is orthog-
onal to which includes any as a subset.
Proposition 3: Let denote the set of relay

indexes and includes all the indexes
satisfying . The null space of is the direct sum

of , that is, .
Proof: We have because any

as defined in Proposition 2 would satisfy



ZHAO AND CHAMPAGNE: MIMO RELAYING MATRICES WITH POWER CONSTRAINTS 4865

To prove equality, we only need to prove that
and have the same dimension. On the one hand,

the subset relation leads to

On the other hand, we have

where the inequality comes from the fact that is a sum of pos-
itive semidefinite matrices and hence its rank cannot increase by
removing .
Proposition 3 indicates that a positive causes the null

space of to shrink and its column space to expand, by the
“amount” of . When is positive, any vector
would satisfy

(23)

This means that is always an eigenvector of with eigen-
value .
Since the linear equation in (22) is consistent and the null

space has been established in Proposition 2 and 3, we
are ready to answer the third question:
Theorem 4: The general solution form of (22) is

(24)

in which is the set of all indexes such that
, and satisfies

. The terms in (24) are or-
thogonal to each other. The first term, , is the solution that
minimizes the transmit power of each relay simultaneously.

Proof: Since and is a projection ma-
trix onto , we have . The general form in
(24) follows immediately because
(cf. Proposition 3). Since are mutually
orthogonal, the terms in (24) are also orthogonal to
each other. Let . For those satisfying

is unique; for those , the
transmit power of the th relay is

which can only be minimized by setting . Therefore
among all the solutions, minimizes the transmit power of
each relay simultaneously.
It appears that immediately after Theorem 1, we could

have applied the pseudo-inverse to obtain the solution. This
approach, however, would only guarantee that among all the
solutions of (22), minimizes the sum power of the relays,

. With the help of Propositions 2 and 3, we were able
to prove a stronger conclusion: minimizes the power of
each relay simultaneously. Moreover, if were defined as

instead of , taking the pseudo inverse
directly would not even minimize the sum power. This is
because for Hermitian matrices and (with nonsingular),

except under special situations.
The main drawback of computing from (24) is that the di-

mension of , is larger than those of the original
matrices. We can use the relationships in (12) to simplify (24)
as in the following corollary:
Corollary 5: The minimum-norm solution of (22) can be ex-

pressed in an alternative form:

(25)

where is defined as

(26)

Proof: See Appendix A.

C. Optimal Solution

We now return to the KKT conditions in (21). The comple-
mentary slackness in (21d) indicates that either and
the constraint (21b) is inactive, or and the constraint is
tightly satisfied. Define the weighted sum power as a function
of , viz.,

(27)

where the explicit argument for is used to emphasize its de-
pendence on . If , the unconstrained solution
satisfies the weighted sum power constraint (21d) and .
Otherwise, and should be the implicit solu-
tion to the nonlinear equation

(28)

The following proposition justifies the uniqueness of :
Proposition 6: If is a monotonically de-

creasing function of with .
Proof: See Appendix B.

Up to now, the optimal solution has been expressed in closed
forms (24) or (25), but the dual variable does not have
an explicit formula. Numerical methods such as bisection or
Newton’s method [20] are necessary to solve the nonlinear
equation (28). This, in fact, can be improved by allowing a
complex scaling in the equalizer . That is, we consider the
set , in which each member
is a complex-scaled version of . For different , the
optimal and , and the corresponding minimum value
of the MSE in (13) are also different. We are interested in a
single leading to the smallest minimum MSE, so that
any other member in the set can be replaced by .
Interestingly, for this special , the optimal and
the minimum MSE always have explicit formulas, as shown in
the following theorem:
Theorem 7: Any equalizer can be replaced by a complex-

scaled version so that:
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1) The optimal solution is

(29)

where can be an arbitrary number
in , and is the unique number satisfying

, that is,

(30)

The optimal duality parameter is .
2) The minimum MSE with the equalizer , i.e.,

(31a)

(31b)

is always smaller than or equal to that with any other scaled
equalizer , including
itself.
Proof: With the equalizer , we rewrite the MSE

function in (13) as

(32)

The minimum-norm solution is obtained by replacing in (24)
with :

(33)

The duality parameter should satisfy the KKT conditions in
(21b), (21c) and (21d). If the unconstrained solution satisfies

(34)

or equivalently, , the con-
straint (21b) is inactive, i.e., . Substituting (33) into the
MSE expression in (32), we have

(35)

If , the constraint (21b) is tightly satisfied:

(36)

through which is an implicit function of . Substituting the
optimal solution in (33) into the MSE expression in (32) and
using (36) to replace , we have

(37)

Up to now, the minimum MSE, which does not depend on ,
has been expressed as a function of . From (35), is
a monotonically decreasing function of in the interval
and therefore can only be minimized when . Although
does not have an explicit formula, the minimumMSE in (37)

depends only on the product , which can take all non-
negative values. Let be a set of orthonormal basis
vectors for and define .

Using the same tactics as in the proof of Proposition 6, we get
the derivative of as

(38)

Obviously, is monotonically decreasing if
, and monotonically increasing if . Therefore,

is the unique solution to minimize (37) and it
is straightforward to derive (29) and (31).
Wemay visualize as a target signal power level at the desti-

nation and as an automatic gain control factor. For ,
the power budget at the relays is sufficient to support the un-
constrained optimal solution . As seen in (35), the
first part, , does not depend on . The second
part, , decreases monotonically as a function
of , indicating weaker effects of the noise term in (3)
on the decoding process. Once exceeds the threshold , the
power budget becomes insufficient and therefore the power reg-
ularization term is introduced. This slightly increases
the first part of (32) (the first four terms), but the overall MSE
still decreases because the second part is re-
duced by more. Nonetheless, there is a critical and therefore op-
timal above which the latter cannot completely compensate
for the former any more.
An alternative formulation is to introduce as early as in the

definition of the objective function in (6), which was used before
for other relaying systems [12], [29], [30]. In this case, the ob-
jective function would be a convex function of , but not of both
and . Therefore, it does not formally guarantee optimality to

set to zero the partial derivatives with respect to both and .
We also note that if (a single relay), the optimal relaying
matrix in (29) would be in agreement with the result in [30].

IV. PER-RELAY POWER CONSTRAINTS

Due to practical reasons such as the dynamic range of power
amplifiers, it may sometimes be more appropriate to consider
the per-relay power constraints. In this section, we study the
optimality conditions and propose a power balancing algorithm
to compute the optimal solution. Our analysis provides some
insights into the power usage at the relays.

A. KKT Conditions and the Optimal Solution

The Lagrangian function for the relay optimization problem
with the per-relay power constraints in (16) is given by

(39)

where . By comparing with (18), we note
that many results for the weighted sum power constraint ex-
tend to the per-relay power constraints, simply by replacing
with . Subsequently, we skip the details to focus on presenting
the main results. Redefine . The optimal
and its dual-optimal variables , satisfy the

following KKT conditions:

(40a)

(40b)
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(40c)

(40d)

for all . Akin to Theorem 4 and Corollary 5,
the minimum-norm solution to (40a) is with an al-
ternative form , where

.
The only difference from the weighted sum power case

is the existence of multiple dual variables and complemen-
tary slackness conditions. This requires algorithms that are
more sophisticated than bisection or Newton’s method, e.g.,
interior-point methods such as the path-following and the
primal-dual methods [20], [28]. Software packages for these
algorithms, e.g., Gurobi, CPLEX and SeDuMi, are available
and can be used in Matlab via YALMIP [31] or CVX [32].
Here, it is reasonable to consider the same complex-scaled

equalizer as in Section III-C, which results in the
following theorem:
Theorem 8: Any equalizer can be replaced by a complex-

scaled version so that:
1) The optimal solution is

(41)

where satisfies

(42)

and is the unique positive number such that
for .

2) The minimum MSE with the equalizer is

(43)

Proof: For any and , the optimal solu-
tion is , where , and
the dual-optimal variables are implicit functions of
through (40b)–(40d). The minimumMSE is also a function of

, viz.,

(44)

Next, we minimize (44) over . With similar argument to
that in Section III-C, there exists an such that for all

. As a result, is a mono-
tonically decreasing function in according to (44). This
means that (44) is minimized only when . In this sit-
uation, at least one of the dual variables is nonzero and hence

. For convenience, rewrite the complementary
slackness from (40d) as

(45)

Adding from to , we have

(46)

Substituting (45) and (46) into (44) and using similar techniques
to those in the proof of Theorem 7, we can prove that the optimal
, the corresponding and satisfy (42), and the

minimum MSE takes the form of (44).
Equation (42) provides an elegant relationship between dif-

ferent . These parameters serve as regularization terms that
control the transmit power of the relays.When the power budget
is higher, the required regularization tends to be lower and

the value of tends to be smaller. Although complex scaling
does not lead to closed-form expressions for the individual pa-
rameters , the results in (42), (41) and (43) lay the foun-
dation for the power balancing algorithm proposed in the next
subsection.

B. Power Balancing

The optimal solutions, (29) under the weighted sum power
constraint and (41) under the per-relay power constraints, share
some common structure. In particular, they are identical if the
weights and are chosen to satisfy

(47)

The minimumMSE, (31) and (43), would also be equal. In other
words, if we know this equivalent weighted sum power con-
straint, the optimal solution is immediately available from The-
orem 7. Of course, scaling all simultaneously by a common
positive factor does not alter the optimal solution.
With this in mind, we propose a power balancing algorithm

which finds these weights iteratively. The initial weights are all
set to 1. In each iteration, the algorithm computes the optimal
relaying matrices with the previous weights, compares the ac-
tual power of the relays with the per-relay power constraints,
and adjusts the weights accordingly. If the actual power of the
th relay is higher than , the weight is increased and vice
versa. The algorithm stops when all the constraints are satisfied.
These steps are summarized in Algorithm 1.

Algorithm 1: Power Balancing

Initiate the counter ;

Initiate the weights: ;

repeat

Add the counter ;

Compute the weighted sum power:

(48)

Compute the optimal from (29) or (25);

Compute ;

Update the weights for :

(49)

until .
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C. Remarks on Power Usage

With the per-relay power constraints, the optimal relaying
strategy may not use the maximum power at some relays. We
show this for a simplified single-antenna case but our analysis
also captures the essence of multi-antenna systems. The ma-
trices/vectors in the signal model in Section II become scalars,
represented by the corresponding lowercase italic letters. For
convenience, we assume and are all
real positive numbers and extension to the complex scenarios is
straightforward.
Define and with

. Without the th relay, the signal received by the
destination would be

(50)

and the SNR at the destination would be
. With the th relay, the signal would be

(51)

and the SNR would be a function of

(52)

where the second operand is the gain or penalty due
to the th relay, depending on whether it is larger than or smaller
than 1.
By taking the first-order derivative, we know that is

strictly monotonically increasing when

(53)

and strictly monotonically decreasing when . As
, the limit would be

(54)

where is the SNR at the th relay. Since the
power transmitted by the relay is proportional to , the above
properties of lead to several interesting conclusions:
1) If according to (54). Since

, and increases in and decreases in
always holds in , implying that

the system always benefits from the use of the th relay,
no matter how much power the relay transmits. However,
it is not necessarily better to use more power. Any
would not be as good as .

2) If and there exists an such
that . Hence, in the interval ,
which means that the th relay can still contribute to the
SNR at the destination as long as it reduces its transmit
power to a level low enough. The reason for this is that the
signal components are added coherently, whereas the noise
components are not.

3) If the value of corresponding to the power constraint
falls in the interval , the relay would use the max-
imum amount of power; otherwise, it would use only a
portion . It is not justified to turn off a relay
completely.

In practice, it is a waste of resources if a relay transmits
only a small amount of power. Thanks to the randomness of
the channels and users, this problem with the ideal narrowband
configuration is probably not as important in practice. Firstly,
most modern communication systems are based on a multicar-
rier scheme such as OFDM. A relay station may transmit less
power on one subcarrier but more on another, so that the vari-
ation in the total power is smaller. Secondly, the multiple re-
lays are simultaneously serving several randomly located users
(with different subcarriers or time intervals). This will further
reduce the disparity between the transmit power of different re-
lays. Lastly, if the expected transmit power of a particular relay
is abnormally small, the problem likely comes from inappro-
priate network layout and the relays should be relocated instead.

V. THE OPTIMAL EQUALIZER

In this section, we consider the joint design of the MIMO
equalizer and the relaying matrices (or equivalently ), under
the weighted sum power constraint. For any , the optimal
is in the form of (29); for any (or ), the optimal equalizer
is the MMSE equalizer

(55)

where and .
This observation suggests a block coordinate descent method.

The algorithm starts from an initial and repeats the following
steps: it first updates using (29) while fixing , and then cal-
culates as in (55) while holding constant. Thanks to the op-
timality in each step, the (bounded) sequence of MSE values is
monotonically non-increasing, which must converge. As a re-
sult, the block coordinate descent algorithm is guaranteed to
converge to a local optima. This idea is widely used in the litera-
ture such as [18], [33].We also note that the design of a precoder
is also possible through this framework.
The other approach is to consider the joint design as a two-

step process. The first step is to design as a function of ,
which is what we have done in Section III. After this, the second
step is to optimize to further minimize the MSE in (31). This
approach handles the constraints in the convex problem (the first
step), so that the remaining problem, though still non-convex, is
an unconstrained one.2 The line search algorithms are readily
applicable to find a local minima. Beginning with , these
methods generate a sequence of iterates until a so-
lution has been approximated with sufficient accuracy. Specif-
ically, these algorithms choose a direction and search
along this direction from the current for a new iterate
with a lowerMSE value. The distance to move along should
satisfy criteria such as Wolfe’s conditions [20]. In particular, the
steepest descent method uses the opposite direction of the gra-
dient (see Appendix C for derivation), viz.,

(56)

2An alternative, usually more popular, approach is to first set the equalizer
as the MMSE equalizer. After substituting this optimal into (6), the MSE

becomes a function of the matrices . The resulting problem is, however,
not only non-convex but also with constraints.
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where is the optimal (block-diagonal) relaying matrix
under , and and are the corresponding intermediate
matrices/variables when computing , cf. (5), (9) and (29).
The steepest descent method is summarized in Algorithm 2.

Algorithm 2: Steepest Descent

Choose the weights and ;

Choose Line search parameters.

Initiate the counter and the equalizer ;

repeat

Increment counter ;

Compute from (56);

Set ;

repeat

Backtracking line search.

until
;

Update ;

until .

As for the per-relay power constraints, Algorithm 1 is still
applicable except that in each iteration, is updated along with
using the above methods.

VI. IMPLEMENTATION ISSUES AND COMPLEXITY

We discuss implementation issues for the proposed algo-
rithms, including the requirements on communication and
computing resources. Firstly, an important feature of the op-
timal methods is that they only require local CSI knowledge
and a little additional shared information. As seen from (25),
all the th relay needs to know, in addition to its own backward
channel and forward channel , is the vector
(of size ). Thanks to this attractive feature, these
methods naturally lend themselves to distributed implemen-
tations. One possible implementation scheme is that a fusion
center computes this vector and feeds it back to the relays via
broadcasting. An alternative way is to compute the relaying
matrices also at the fusion center. The fusion center can be
the destination or one of the relays. Some dedicated resources
are required but for a small number of relays (say 2 or 3), the
overall complexity will be manageable.
Secondly, the existence of closed-form expressions such

as (25) results in relatively low computational complexity.
The major computing task consists of two parts: evaluating

and . The power balancing algorithm in Algo-
rithm 1 for the per-relay constraints and the algorithms for the
equalizer (cf. Section V) are primarily composed of repeti-
tions of these operations. Although vectorization increases the
dimensions of the matrices and vectors in the system model
(cf. (11)), the complexity is not notably higher thanks to the
properties of the SVDs and eigenvalue decompositions (EVDs)
for Kronecker products. For example, we have

which is essentially the SVD of except that the
singular values are not sorted in descending order. A sim-
ilar property holds for the EVD. Consequently, the EVD
of the pseudo inverse can
be obtained based on those of and

. Then, two matrix multiplications (not in-
cluding those involving diagonal matrices) are needed to
compute .
One additional matrix multiplication is necessary to compute

. Subsequently, we
compute the sum matrix and solve the linear equation

to get . In the end, is obtained
from (25), which requires only matrix-vector multiplications.
In summary, the major operations include
• EVDs of matrices with dimension ;
• matrix multiplications involving matrices of dimen-
sion or .

• solving one linear equation of size .
Thirdly, the proposed algorithms in Sections III and IV min-

imize the MSE over not only the relaying vector , but also
the scaling factor . In contrast, the interior-point methods
can merely optimize for a single because the problem is
not convex if and are simultaneously considered. To obtain
the same result as our algorithms do, the interior-point methods
have to run for different , which further increases their
complexity.
In summary, the system complexity is well manageable for

multi-antenna systems if the number of relays is small. The ben-
efits brought by a three-relay configuration can be remarkable
as shown by the simulation results in Section VII and previous
publications such as [7], [11].

VII. NUMERICAL RESULTS

In this section, we first investigate the effects of channel gains
on the power allocation among relays under the weighted sum
power constraint. Next, we verify the convergence behaviors of
the proposed iterative algorithms, including power balancing for
the per-relay power constraints, block coordinate descent and
steepest descent for the equalizer. In the end, we compare the
BER results of the proposed designs and previous strategies.
The following assumptions are made. The variances of
and are respectively and

and the covariance matrices of the noise terms
have been normalized: . It is convenient to intro-
duce two SNR parameters as follows. The first SNR is defined
as , i.e., the ratio of transmitted signal power per
antenna to the received noise power per antenna. The second
SNR, defined in terms of the sum power as

, gives the ratio of average transmitted
power per relay antenna to the power of the noise induced at the
individual destination antennas. In our simulations, the channel
matrices have independent and identically distributed entries.
Each entry is a zero mean circular symmetric complex Gaussian
variable with unit variance.

A. Weighted Sum Power Constraint: Power Allocation

To study the effects of channel gains on the power alloca-
tion among the relays, we consider a 1S-2R-1D system with

dB and . In particular,
we multiply by which represents a relative channel gain,
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Fig. 2. Contours of the power of the first relay versus relative channel gains
and .

Fig. 3. Convergence behaviours of Algorithm 1: transmit power of the relays.

and multiply by which is independent from . Then, the
optimal relaying matrices and the transmit power of the relays

are all functions of these relative gains. A randomly
generated set of channel matrices are used and the other param-
eters are chosen as and . As shown
by the contours for in Fig. 2, if is fixed, the larger be-
comes, the more power is allocated to the first relay; if is held
constant, the larger comes, the less power to the first relay. In
other words, the optimal relaying strategy tends to allocate more
power to the relay with better backward channel and/or worse
forward channel.

B. Convergence of Iterative Algorithms

Power Balancing for the Per-Relay Power Constraints: We
study the convergence behaviors of Algorithm 1 base on a
1S-3R-1D system with dB and
the power constraints . For a particular
representative channel instance (randomly generated), Fig. 3
plots the power of the individual relays versus the iteration
index . Algorithm 1 usually converges within about 5 steps.

Our analysis in Section IV-C leads to the conclusion that the
optimal relaying strategy does not necessarily use the maximum
amount of power at some relays. This is verified by the right
subfigure in Fig. 3, where the channel matrices used are the same
as those in the left, except that has a relative path loss of

dB. We note that with optimal relaying strategy, the
first relay is neither using the maximum power, 200, nor being
turned off completely.
Equalizer Design: We study the convergence behaviors of

the block coordinate descent method and the steepest descent
method proposed in Section V, based on the same settings as
above. The weights are and . The
convergence behaviors are shown in Fig. 4 for a representative
channel instance. The steepest descent method converges sig-
nificantly faster than the block coordinate descent method. For
the former, the MSE comes close to the locally optimal value
after only 10 line-searches, whereas for the latter, it takes sev-
eral thousand iterations. One interesting observation is that as
far as we could verify, the optimal equalizer does not de-
pend on the algorithm used or the initial (except for a linear
scaling factor). This suggests that the solution so obtained may
be globally optimal, though it seems very difficult to prove and
remains a conjecture for now because the expression of the Hes-
sian is rather involved.

C. BER Performance

In this subsection, we compare the BER performance of the
following relaying strategies:
1) Simplistic AF, , [7];
2) MMSE-MMSE [7], [10];
3) CMMSE-MMSE [10];
4) Gradient-based MMSE [13];
5) Proposed method (sum power constraint, );
6) Proposed method (per-relay power constraints, );
7) Proposed joint design of the relaying matrices and the
equalizer (sum power constraint);

8) Relay selection based on the JMMSE strategy [5].
For methods 1), 2), 3), 4) and 6), the total power is evenly split
between different relays. For the selection-based strategy, the
total power is allocated only to the single relay that would result
in the minimum MSE based on the JMMSE relaying strategy
[5]. We consider a 1S-3R-1D system with
. In the simulations, each source antenna transmits indepen-
dent uncoded 16-PSK symbol streams. The relay stations apply
one of the above relaying schemes to their input signals and re-
transmit them. The destination applies a linear MMSE equalizer
and then employs single-stream maximum likelihood decoding.
The BER values are averaged over channel realizations.
First, we set to 20 dB and vary between 5 dB and

25 dB. Then, we set dB and vary . The BER
values are plotted in Figs. 5 and 6. As explained earlier,
SAF cannot achieve distributed array gain and accordingly
has the worst performance. The heuristic strategies including
MMSE-MMSE and CMMSE-MMSE perform better. The
gradient-based MMSE method provides further gain especially
under low-to-mid SNR levels. The proposed MMSE-based
strategies, 5), 6) and 7), outperform the above ones by large
gaps. The choice depends on the compromise between perfor-
mance and complexity: the joint design leads to lower BER
but comes with higher computational complexity. It is worth
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Fig. 4. Speed of convergence for the joint design: block coordinate descent and
steepest descent (Algorithm 2).

Fig. 5. Comparison of uncoded 16-PSK BER versus for different relaying
strategies. dB.

mentioning that the proposed strategies are much superior to
the selection-based one, which justifies the use of multiple
relays.

VIII. CONCLUSION

In this paper, we have considered the MMSE-based joint de-
sign of the multiple relaying matrices. Under the weighted sum
power constraint, we derived closed-form expressions for the
optimal relaying matrices. The optimal strategy tends to allo-
cate more power to those relays with better backward chan-
nels and/or worse forward channels, and to those with smaller
weights. Under the per-relay power constraints, we proposed
the power balancing algorithm (Algorithm 1) which is more
efficient than general-purpose interior-point methods. The op-
timal strategy may not use the maximum amount of power at
some relays, but does not turn off a relay either, no matter how
low the SNR is at that relay. Additionally, under both types of
constraints, a MIMO equalizer at the destination may be de-
signed together with the relaying matrices. The steepest descent

Fig. 6. Comparison of uncoded 16-PSK BER versus for different relaying
strategies. dB.

method (Algorithm 2) converges much faster than the block co-
ordinate descent method. The BER simulations show that all
the proposed designs, under either type of constraints, with or
without the equalizer, outperform previous ones by large mar-
gins. These simulations also illustrate significant performance
advantage of multi-relay systems over single-relay ones.

APPENDIX A
PROOF OF COROLLARY 5

The Woodbury matrix identity does not hold for pseudo in-
verse in general and therefore we prove this corollary by sub-
stituting (25) into the left hand side (LHS) of (22). The th
sub-block of the column vector would be

(57)

We always have :
if , the pseudo inverse operator is replaced by matrix
inverse; if ,

because is a projection matrix so
that is not changed. By inserting
between and in the second term of (57), the th sub-
block of is equal to

. Therefore, and (25) is
a solution of (22).
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In addition, (25) is indeed the minimum-norm solution, that
is, for . The following equality

leads to . Since , the inner product is

This completes the proof.

APPENDIX B
PROOF OF PROPOSITION 6

We prove this proposition by showing that the derivative of
is negative. The matrix can be singular, for example,

when for a particular and . Hence, the
major difficulty is that the following property for matrix inverse

(58)

does not hold for the pseudo inverse in general. Our tactics here
is to make invertible by adding a matrix to it, but without
changing the value of . According to Proposition 3,
is the direct sum of all satisfying , which does
not depend on the specific value of as long as . Let

be a set of orthonormal basis vectors for
and define (a function of ). The
orthogonality relationship leads to

(59)

Since , we have and therefore

(60)

To this point, all the pseudo inverses can be replaced by
matrix inverses .
Based on the chain rule, the derivative of satisfies

(61)

for thematrix is positive definite. Next we prove
by contradiction. Assume there exists a so that
. Since is positive definite, must
be a zero vector, which leads to

This means that is the solution of (22) for any
. As a result, the weighted sum power satisfies

This contradicts with and therefore, always
holds. The limit of is

APPENDIX C
GRADIENT OF THE MSE WITH RESPECT TO

From the MSE Expression in (31b), the partial derivative is

(62)

Using similar techniques to those in the proof of Proposition 6
and substituting (25), we can express (62) as

Define an indicator matrix whose th entry is one and
other entries are all zero, we have

According to the property (14c), we have

Because the power constraint is tightly satisfied, we have
and therefore

The property (14c) also leads to

Since , the gradient can be expressed as in
(56).
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