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Estimation of Space-Time Varying Parameters Using
a Diffusion LMS Algorithm
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Abstract—We study the problem of distributed adaptive estima-
tion over networks where nodes cooperate to estimate physical pa-
rameters that can vary over both space and time domains. We use
a set of basis functions to characterize the space-varying nature of
the parameters and propose a diffusion least mean-squares (LMS)
strategy to recover these parameters from successive time mea-
surements. We analyze the stability and convergence of the pro-
posed algorithm, and derive closed-form expressions to predict its
learning behavior and steady-state performance in terms of mean-
square error. We find that in the estimation of the space-varying
parameters using distributed approaches, the covariance matrix
of the regression data at each node becomes rank-deficient. Our
analysis reveals that the proposed algorithm can overcome this dif-
ficulty to a large extent by benefiting from the network stochastic
matrices that are used to combine exchanged information between
nodes. We provide computer experiments to illustrate and support
the theoretical findings.

Index Terms—Diffusion adaptation, distributed processing, in-
terpolation, parameter estimation, sensor networks, space-varying
parameters.

I. INTRODUCTION

I N previous studies on diffusion algorithms for adaptation
over networks, including least-mean-squares (LMS) or re-

cursive least squares (RLS) types, the parameters being esti-
mated are often assumed to be space-invariant [1]–[6]. In other
words, all agents are assumed to sense and measure data that
arise from an underlying physical model that is represented by
fixed parameters over the spatial domain. Some studies consid-
ered particular applications of diffusion strategies to data that
arise from potentially different models [7], [8]. However, the
proposed techniques in these works are not immediately appli-
cable to scenarios where the estimation parameters vary over
space across the network. This situation is encountered in many
applications, including the monitoring of fluid flow in under-
ground porous media [9], the tracking of population dispersal in
ecology [10], the localization of distributed sources in dynamic
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systems [11], and the modeling of diffusion phenomena in inho-
mogeneous media [12]. In these applications, the space-varying
parameters being estimated usually result from discretization
of the coefficients of an underlying partial differential equation
through spatial sampling.
The estimation of spatially-varying parameters has been ad-

dressed in several previous studies, including [13]–[17]. In these
works and other similar references on the topic, the solutions
typically rely on the use of a central processing (fusion) unit
and less attention is paid to distributed and in-network pro-
cessing solutions. Distributed algorithms are useful in large net-
works when there is no powerful fusion center and when the
energy and communication resources of individual nodes are
limited. Many different classes of distributed algorithms for pa-
rameter estimation over networks have been proposed in the
recent literature, including incremental method [18]–[22], con-
sensus methods [23]–[34], and diffusion methods [2], [3], [6],
[35]–[37]. Incremental techniques require to set-up a cyclic path
between nodes over the network and are therefore sensitive to
link failures. Consensus techniques require doubly-stochastic
combination policies and can cause network instability in ap-
plications involving continuous adaptation and tracking [5]. In
comparison, diffusion strategies demonstrate a stable behavior
over networks regardless of the topology and endow networks
with real-time adaptation and learning abilities [5], [6], [36].
Motivated by these considerations, in this paper, we develop

a distributed LMS algorithm of the diffusion type to enable
the estimation and tracking of parameters that may vary over
both space and time. Our approach starts by introducing a
linear regression model to characterize space-time varying phe-
nomena over networks. This model is derived by discretizing a
representative second-order partial differential equation (PDE),
which can be useful in describing many dynamic systems with
spatially-varying properties. We then introduce a set of basis
functions, e.g., shifted Chebyshev polynomials, to represent
the space-varying parameters of the underlying phenomena
in terms of a finite set of space-invariant expansion coeffi-
cients. Building on this representation, we develop a diffusion
LMS strategy that cooperatively estimates, interpolates, and
tracks the model parameters over the network. We analyze
the convergence and stability of the developed algorithm, and
derive closed-form expressions to characterize the learning and
convergence behavior of the nodes in mean-square-error sense.
It turns out that in the context of space-time varying models,
the covariance matrices of the regression data at the various
nodes can become rank deficient. This property influences the
learning behavior of the network and causes the estimates to
become biased. We elaborate on how the judicious use of sto-
chastic combination matrices can help alleviate this difficulty.
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The paper is organized as follows. In Section II, we intro-
duce a space-varying linear regression model which is moti-
vated from a physical phenomenon characterized by a PDE, and
formulate an optimization problem to find the unknown param-
eters of the introduced model. In Section III, we derive a dif-
fusion LMS algorithm that solves this problem in a distributed
and adaptive manner. We analyze the performance of the algo-
rithm in Section IV, and present the numerical results of com-
puter simulations in Section V. The concluding remarks appear
in Section VI.
Notation:Matrices are represented by upper-case and vectors

by lower-case letters. Boldface fonts are reserved for random
variables and normal fonts are used for deterministic quantities.
Superscript denotes transposition for real-valued vectors
and matrices and denotes conjugate transposition for com-
plex-valued vectors and matrices. The symbol is the expec-
tation operator, represents the trace of its matrix argument
and extracts the diagonal entries of a matrix, or con-
structs a diagonal matrix from a vector. represents the iden-
tity matrix of size (subscript is omitted when the size
can be understood from the context). The operator vec-
torizes a matrix by stacking its columns on top of each other. A
set of vectors are stacked into a column vector by .

II. MODELING AND PROBLEM FORMULATION

In this section, we introduce a linear regression model
that can be used to describe dynamic systems with spatially
varying properties. We derive the model from a representative
second-order one-dimensional PDE that is used to characterize
the evolution of the pressure distribution in inhomogeneous
media and features a diffusion coefficient and an input source,
both of which vary over space. Extension and generalization of
the proposed approach, in modeling space-varying phenomena,
to PDEs of higher order or defined over two-dimensional space
are generally straightforward (see, e.g., Section V-C).
The PDE we consider is expressed as [12], [38]:

(1)

where denote the space and time variables
with upper limits and , respectively,

, represents the system distribution (e.g., pressure or
temperature) under study, is the space-varying
diffusion coefficient and is the input distribu-
tion that includes sources and sinks. PDE (1) is assumed to sat-
isfy the Dirichlet boundary conditions1,
for all . The distribution of the system at is given
by for . It is convenient to rewrite (1)
as:

(2)

and employ the finite difference method (FDM) to discretize the
PDE over the time and space domains [39]. For and given
positive integers, let and for

1Generalization of the boundary conditions to nonzero values is possible as
well.

, and similarly, let and
for . We further introduce the

sampled values of the pressure distribution ,
input , and space-varying coefficient

. It can be verified that applying FDM to (2) yields the
following recursion:

(3)

where the vectors and are defined as

(4)

(5)

the entries are:

(6)

(7)

(8)

and . Note that relation (3) is defined for
, i.e., no data sampling is required to be taken at

because and respectively correspond
to the known boundary conditions and . For mon-
itoring purposes (e.g., estimation of ), sensor nodes collect
noisy measurement samples of across the network. We
denote these scalar measurement samples by

(9)

where is random noise term. Substituting (3) into (9)
leads to

(10)

where

(11)

The space-dependent model (10) can be generalized to accom-
modate higher order PDE’s, or to describe systems with more
than one spatial dimension. In the generalized form, we assume
that is random due to the possibility of sampling errors, and
therefore represent it using boldface notation . We also let
and be -dimensional vectors. In addition, we denote

the noise more generally by the symbol to account for dif-
ferent sources of errors, including themeasurement noise shown
in (9) and modeling errors. Considering this generalization, the
space-varying regression model that we shall consider is of the
form:

(12)

where and . In
this work, we study networks that monitor phenomena charac-
terized by regression models of the form (12), where the objec-
tive is to estimate the space-varying parameter vectors for

. In particular, we seek a distributed solu-
tion in the form of an adaptive algorithm with a diffusion mode
of cooperation to enable the nodes to estimate and track these
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parameters over both space and time. The available informa-
tion for estimation of the are the measurement samples,

, collected at the spatial position , which we
take to represent nodes.
Several studies, e.g., [13]–[15], solved space-varying param-

eter estimation problems using non-adaptive centralized tech-
niques. In centralized optimization, the space-varying param-
eters are found by minimizing the following global cost
function over the variables :

(13)

where

(14)

To find using distributed mechanisms, however, preliminary
steps are required to transform the global cost (13) into a suit-
able form convenient for decentralized optimization [2]. Ob-
serve from (6)–(8) that collaborative processing is beneficial in
this case because the of neighboring nodes are related to each
other through the space-dependent function .
Remark 1: Note that if nodes individually estimate their own

space-varying parameters by minimizing , then at each
time instant, they will need to transmit their estimates to a fu-
sion center for interpolation, in order to determine the value of
the model parameters over regions of space where no measure-
ments were collected. Using the proposed distributed algorithm
in Section III-B, it will be possible to update the estimates and
interpolate the results in a fully distributed manner. Cooperation
also helps the nodes refine their estimates and perform more ac-
curate interpolation.

III. ADAPTIVE DISTRIBUTED OPTIMIZATION

In distributed optimization over networked systems, nodes
achieve their common objective through collaboration. Such an
objective may be defined as finding a global parameter vector
that minimizes a given cost function that encompasses the en-
tire set of nodes. For the problem stated in this study, the un-
known parameters in (13) are node-dependent. However, as we
explained in Section II, these space-varying parameters are re-
lated through a well-defined function, e.g., over the spatial
domain. In the continuous space domain, the entries of each ,
i.e., can be interpreted as samples of un-
known space-varying parameter functions
at location , as illustrated in Fig. 1.
We can now use the well-established theory of interpolation

to find a set of linear expansion coefficients, common to all
the nodes, in order to estimate space-varying parameters using
distributed optimization. Specifically, we assume that the -th
unknown space-varying parameter function, can be ex-
pressed as a unique linear combination of some space basis
functions, i.e.,

(15)

where are the unique expansion coefficients and
are the basis functions. In the application examples

treated in Section V, we adopt shifted Chebyshev polynomials

Fig. 1. An example of the space-varying parameter estimation problem over
a one-dimensional network topology. The larger circles on the -axis represent
the node locations at . These nodes collect samples to es-
timate the space-varying parameters . For simplicity in defining the vectors
in (20), for this example, we assume that the node positions are uniformly

spaced, however, generalization to non-uniform spacing is straightforward.

as basis functions, which are generated using the following
expressions [40]

(16)

(17)

The choice of a suitable set of basis functions is
application-specific and guided by multiple considerations such
as representation efficiency, low computational complexity, in-
terpolation capability, and other desirable properties, such as
orthogonality. Chebyshev basis functions yield good results in
terms of the above criteria and helps avoid the Runge’s phenom-
enon at the endpoints of the space interval [40].
The sampled version of the -th space-varying parameter

in (15), at , can be written as:

(18)

where

(19)

(20)

and each entry is obtained by sampling the corresponding
basis function at the same location, i.e.,

(21)

Collecting the sampled version of all functions for
into a column vector as

(22)

and using (18), we arrive at:

(23)

where

...
...

...
(24)
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Remark 2: Several other interpolation techniques can be used
to obtain the basis functions , such as the so-called kriging
method [41]. The latter is a data-based weighting approach,
rather than a distance-based interpolation. It is applicable in
scenarios where the unknown random field to be interpolated,
in our case , is wide-sense stationary; accordingly, it requires
knowledge about the means and covariances of the random
field over space, as employed in [42]. If these covariances
are not available, then the variogram models, describing the
degree of spatial dependence of the random field, are used
to generate substitutes for these covariances [43]. However,
a-priori knowledge about the parameters of variogram models,
including nugget, sill, and range, are required to obtain the
spatial covariances. In this work, since neither the means and
covariances nor the parameters of the variogram models of
the random fields are available, we focus on interpolation
techniques that rely on distance information rather than the
statistics of the random field to be interpolated.
Returning to (23), it is convenient to rearrange into an

column vector by stacking up the columns of ,
i.e., , and defining the block diagonal matrix

as:

(25)

Then, relation (23) can be rewritten in terms of the unique pa-
rameter vector as:

(26)

so that substituting from (26) into (12) yields:

(27)

Subsequently, the global cost function (13) becomes:

(28)

In the following, we elaborate on how the parameter vector
and, hence, the can be estimated from the data
using centralized and distributed adaptive optimization.

A. Centralized Adaptive Solution

We begin by stating the assumed statistical conditions on the
data over the network.
Assumption 1: We assume that in model

(27) satisfy the following conditions:
1) and are zero-mean, jointly wide-sense stationary
random processes with second-order moments:

(29)

(30)

2) The regression data are i.i.d. over time, independent
over space, and their covariance matrices, , are posi-
tive definite for all .

3) The noise processes are zero-mean, i.i.d. over
time, and independent over space with variances .

4) The noise process is independent of the regression
data for all and .

The optimal parameter that minimizes (28) can be found
by setting the gradient vector of to zero. This yields the
following normal equations:

(31)

where denote the second-order moments of
and :

(32)

It is clear from (31) that when , then can
be determined uniquely. If, on the other hand, is
singular, then we can use its pseudo-inverse to recover the min-
imum-norm solution of (31). Once the global solution is esti-
mated, we can retrieve the space-varying parameter vectors
by substituting into (26).
Alternatively the solution of (31) can be sought iteratively

by using the following steepest descent recursion:

(33)

where is a step-size parameter and is the estimate
of at the -th iteration. Recursion (33) requires the central-
ized processor to have knowledge of the covariance matrices,

, and cross covariance vectors, , across all nodes. In
practice, these moments are unknown in advance, and we there-
fore use their instantaneous approximations in (33). This sub-
stitution leads to the centralized LMS strategy (34)–(35) for
space-varying parameter estimation over networks.

Algorithm 1: Centralized LMS

(34)

(35)

In this algorithm, at any given time instant , each node trans-
mits its data to the central processing unit to up-
date . Subsequently, the algorithm obtains an estimate for
the space-varying parameters, , by using the updated esti-
mate , and the basis function matrix at location , (i.e., ).
This latter step can also be used as an interpolation mechanism
to estimate the space-varying parameters at locations other than
the pre-determined locations , by using the corresponding
matrix for some desired location .

B. Adaptive Diffusion Strategy

There are different distributed optimization techniques that
can be applied to (28) in order to estimate and consequently
obtain the optimal space-varying parameters . Let denote
the index set of the neighbors of node , i.e., the nodes with
which node can share information (including itself). One
possible optimization strategy is to decouple the global cost (28)
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and write it as a set of constrained optimization problems with
local variables , [44], i.e.,

(36)

where are nonnegative entries of a right-stochastic matrix
satisfying:

(37)

and is the column vector with unit entries.
The optimization problem (36) can be solved using, for

example, the alternating directions method of multipliers
(ADMM) [44], [45]. In the algorithm derived using this method,
the Lagrangian multipliers associated with the constraints need
to be updated at every iteration during the optimization process.
To this end, information about the network topology is required
to establish a hierarchical communication structure between
nodes. In addition, the constraints imposed by (36) require all
agents to agree on an exact solution; this requirement degrades
the learning and tracking abilities of the nodes over the network.
When some nodes observe relevant data, it is advantageous for
them to be able to respond quickly to the data without being
critically constrained by perfect agreement at that stage. Doing
so, would enable information to diffuse more rapidly across the
network.
A technique that does not suffer from these difficulties and

endows networks with adaptation and learning abilities in real-
time is the diffusion strategy [2], [3], [6], [35], [36]. In this
technique, minimizing the global cost (28) motivates solving
the following unconstrained local optimization problem for

[2]:

(38)

where is the available estimate of the global parameter at
node , denotes set excluding node , and
are nonnegative scaling parameters. Following the arguments
in [2], [3], [6], the minimization of (38) leads to a general form
of the diffusion strategy described by (39)–(42), which can be
specialized to several simpler yet useful forms.

Algorithm 2: Diffusion LMS

(39)

(40)

(41)

(42)

In this algorithm, is the step-size at node ,
are intermediate estimates of , is an

intermediate estimate of , and are nonnegative
entries of left-stochastic matrices that satisfy:

(43)

(44)

Each node in the first combination step fuses
in a convex manner to generate . In the following step,
named adaptation, each node uses its own data and that of
neighboring nodes, i.e., to adaptively update

to an intermediate estimate . In the third step, which
is also a combination, the intermediate estimates are
fused to further align the global parameter estimate at node to
that of its neighbors. Subsequently, the desired space-varying
parameter is obtained from . Note that each step in the
algorithm runs concurrently over the network.
Remark 3: The main difference between Algorithm 2 and the

previously developed diffusion LMS strategies in, e.g., [2], [6],
[35] is in the transformed domain regression data in (40)
which now have singular covariance matrices. Moreover, there
is an additional interpolation step (42).
Remark 4: The proposed diffusion LMS algorithm estimates
spatially dependent variables using global in-

variant coefficients in . From the computational complexity
and energy efficiency point of view, it seems this is advanta-
geous when the number of nodes, , is greater than the number
of basis functions . However, even if this is not the case, using
the estimated global invariant coefficients, the algorithm
not only can estimate the space-varying parameters at the loca-
tions of the nodes, but can also estimate the space-varying
parameters at locations where no measurements are available.
Therefore, even when , the algorithm is still useful as
it can perform interpolation.
There are different choices for the combination matrices

. For example, the choice
reduces the above diffusion algorithm to the non-cooperative
case where each node runs an individual LMS filter without
coordination with its neighbors. Selecting simplifies
the adaptation step (40) to the case where node uses only its
own data to perform local adaptation. Choosing

and , for some left-stochastic matrix ,
removes the first combination step and the algorithm reduces
to an adaptation step followed by combination (this variant of
the algorithm has the Adapt-then-Combine or ATC diffusion
structure) [2], [6]. Likewise, choosing and
removes the second combination step and the algorithm reduces
to a combination step followed by adaptation (this variant has
the Combine-then-Adapt (CTA) structure of diffusion [2], [6]).
Often in practice, either the ATC or CTA version of the algo-
rithm is used with set to such as using the following
ATC diffusion version described by equations (45)–(47).

Algorithm 3: Diffusion ATC

(45)

(46)

(47)
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Nevertheless for generality, we shall study the performance
of Algorithm 2 for arbitrary matrices with right-
stochastic and left-stochastic. The results can then
be specialized to various situations of interest, including ATC,
CTA, and the non-cooperative case.
The combination matrices are normally ob-

tained using some well-known available combination rules
such as the Metropolis or uniform combination rules [2], [24],
[35]. These matrices can also be treated as free variables in the
optimization procedure and used to further enhance the perfor-
mance of the diffusion strategies. Depending on the network
topology and the quality of the communication links between
nodes, the optimized values of the combination matrices differ
from one case to another [6], [46]–[48].

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the diffusion
strategy (39)–(42) in the mean and mean-square sense and de-
rive expressions to characterize the network mean-square de-
viation (MSD) and excess mean-square error (EMSE). In the
analysis, we need to consider the fact that the covariance ma-
trices defined in (32) are now rank-deficient since
we have . We explain in the sequel the ramifications that
follow from this rank-deficiency.

A. Mean Convergence

We introduce the local weight-error vectors:

(48)

and define the network error vectors:

(49)

(50)

(51)

We collect the estimates from across the network into the block
vector:

(52)

and introduce the following extended combination matrices:

(53)

(54)

(55)

We further define the block diagonal matrices and vectors:

(56)

(57)

(58)

(59)

and introduce the expected values of and :

(60)

(61)

where

(62)

(63)

We also introduce an indicator matrix operator, denoted by
, such that for any real-valued matrix with -th

entry , the corresponding entry of is:

if
otherwise

(64)

Now from (39)–(41), we obtain:

(65)

where

(66)

In turn, making use of (27) in (65), we can verify that the net-
work error vector follows the recursion

(67)

By taking the expectation of both sides of (67) and using As-
sumption 1, we arrive at:

(68)

where in this relation:

(69)

To obtain (68), we used the fact that the expectation of the
second term in (67), i.e., , is zero because is
independent of and . The rank-deficient ma-
trices appear inside in (69). We now verify that de-
spite having rank-deficient matrix , recursion (68) still guar-
antees a bounded mean error vector in steady-state.
To proceed, we introduce the eigendecomposition:

(70)

where is a unitary matrix with column
eigenvectors and is a
diagonal matrix with eigenvalues . For this decom-
position, we assume that the eigenvalues of are arranged in
descending order, i.e,

, and the rank of is . If we define
and , then the

network covariance matrix, , given by (60) can be expressed
as:

(71)

We now note that the mean error vector, , expressed by
(68) will be asymptotically unbiased if the spectral radius of ,
denoted by , is strictly less than one. Let us examine under
what conditions this requirement is satisfied. Since and
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are left-stochastic matrices and is block-diagonal, we have
from [6] that:

(72)

Therefore, if is positive-definite, then choosing
ensures convergence of the algorithm in the mean

so that as . However, when is singular, it
may hold that , in which case choosing the step-sizes
according to the above bound guarantees the boundedness of
the mean error, , but not necessarily that it converges to
zero. The following result clarifies these observations.
Theorem 1: If the step-sizes are chosen to satisfy

(73)

then, under Assumption 1, the diffusion algorithm is stable in
the mean in the following sense: (a) If , then
converges to zero and (b) if then

(74)

where stands for the block-maximum norm, as defined
in [6], [47].

Proof: See Appendix A.
In what follows, we examine recursion (65) and derive an

expression for the asymptotic value of —see (89) further
ahead. Before doing so, we first comment on a special case of
interest, namely, result (76) below.
Special case: Consider a network with and an

arbitrary right stochastic matrix satisfying (37). Using (27)
and (62)–(63), it can be verified that the following linear system
of equations holds at each node :

(75)

We show in Appendix B that under condition (73) the mean
estimate of the diffusion LMS algorithm at each node will
converge to:

(76)

where represents the pseudo-inverse of , and is
the node initial value. This result is consistent with the mean
estimate of the stand-alone LMS filter with rank-deficient input
data (which corresponds to the situation )

[49]. Note that in (76) corresponds to the minimum-norm
solution of . Therefore, the second term on the right
hand side of (76) is the deviation of the node estimate from
this minimum-norm solution. The presence of this term after
convergence is due to the zero eigenvalues of . If were
full-rank so that , then this term would disappear
and the node estimate will converge, in the mean, to its optimal
value, . We point out that even though the matrices are
rank deficient since , it is still possible for the matrices

to be full rank owing to the linear combination operation
in (62). This illustrates one of the benefits of employing the
right-stochastic matrix . However, if despite using , still

remains rank-deficient, the second term on the right-hand side
of (76) can be annihilated by proper node initialization (e.g., by
setting ). By doing so, the mean estimate of each
node will then approach the unique minimum-norm solution,

.
General case: Let us now find the mean estimate of the net-

work for arbitrary left-stochastic matrices and . Consid-
ering definitions (60)–(61) and relation (75) and noting that

, it can be verified
that satisfies the following linear system of equations:

(77)

This is a useful intermediate result that will be applied in our
argument.
Next, if we iterate recursion (65) and apply the expectation

operator, we then obtain

(78)

The mean estimate of the network can be found by computing
the limit of this expression for . To find the limit of the
first term on the right hand side of (78), we evaluate
and find conditions under which it converges. For this purpose,
we introduce the Jordan decomposition of matrix as [50]:

(79)

where is an invertible matrix, and is a block diagonal matrix
of the form

(80)

where the -th Jordan block, , can be expressed as:

(81)

In this relation, is some nilpotent matrix of size .
Using decomposition (79), we can express as

(82)

Since is block diagonal, we have

(83)

From this relation, it is deduced that exists if
exists for all . Using (81), we can

write [50]:

(84)
When , becomes the dominant factor in this ex-
pression. Note that under condition (73), we have
which in turn implies that the magnitude of the eigenvalues
of are bounded as . Without loss of gen-
erality, we assume that the eigenvalues of are arranged as

. Now we
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examine the limit (84) for every in this range. Clearly for
, the limit is zero (an obvious conclusion since in this

case is a stable matrix). For , the limit is the identity
matrix if and . However, the limit does not exist
for unit magnitude complex eigenvalues and eigenvalues with
value , even when . Motivated by these observations,
we introduce the following definition.
Definition: We refer to matrix as power convergent if (a)

its eigenvalues satisfy , (b) its unit magnitude
eigenvalues are all equal to one, and (c) its Jordan blocks asso-
ciated with are all of size 1 1.
1) Example 1: Assume , , and uniform

step-sizes and covariance matrices across the agents, i.e.,
, for all . Assume further that is doubly-sto-
chastic (i.e., and is singular. Then, in this
case, the matrix can be written as the Kronecker product

. For strongly-connected networks where
is a primitive matrix, it follows from the Perron-Frobe-

nius Theorem [51] that has a single unit-magnitude eigen-
value at one, while all other eigenvalues have magnitude less
than one. We conclude in this case, from the properties of Kro-
necker products and under condition (73), that is a power-con-
vergent matrix.
2) Example 2: Assume , , ,
, and uniform step-sizes and covariance matrices across the

agents again. Let and select

(85)

which is not primitive. Let further denote a
singular covariance matrix. Then, it can be verified in this case
the corresponding matrix will have an eigenvalue with value
and is not power convergent.
Returning to the above definition and assuming is power

convergent, then this means that the Jordan decomposition (79)
can be rewritten as:

(86)

where is a Jordan matrix with all eigenvalues strictly inside
the unit circle, and the identity matrix inside accounts for the
eigenvalues with value one. In (86) we further partition and

in accordance with the size of . Using (86), it is straight-
forward to verify that

(87)

and if we multiply both sides of (77) from the left by , it also
follows that

(88)

Using these relations, we can now establish the following re-
sult, which describes the limiting behavior of the weight vector
estimate.

Theorem 2: If the step-sizes satisfy (73) and
matrix is power convergent, then the mean estimate of the
network given by (78) asymptotically converges to:

(89)

where the notation denotes a (reflexive) generalized inverse
for the matrix . In this case, the generalized inverse for
is given by

(90)

which is in terms of the factors defined in (86).
Proof: See Appendix C.

We also argue in Appendix C that the quantity on the right-
hand side of (89) is invariant under basis transformations for
the Jordan factors . It can be verified that if

then will be symmetric and the result (89) will
reduce to (76). Now note that the first term on the right hand
side of (89) is due to the zero eigenvalues of . From this
expression, we observe that different initialization values gener-
ally lead to different estimates. However, if we set ,
the algorithm converges to:

(91)

In other words, the diffusion LMS algorithm will converge on
average to a generalized inverse solution of the linear system of
equations defined by (77).
When matrix is stable so that then the factor-

ization (86) reduces to the form and will
be full-rank. In that case, the first term on the right hand side of
(89) will be zero and the generalized inverse will coincide with
the actual matrix inverse so that (89) becomes

(92)

Comparing (92) with (77), we conclude that:

(93)

which implies that the mean estimate of each node will be .
This result is in agreement with the previously developed mean-
convergence analysis of diffusion LMS when the regression
data have full rank covariance matrices [6].

B. Mean-Square Error Convergence

We now examine the mean-square stability of the error recur-
sion (67) in the rank-deficient scenario. We begin by deriving an
error variance relation as in [52], [53]. To find this relation, we
form the weighted square “norm” of (67), and compute its ex-
pectation to obtain:

(94)

where and is an arbitrary weighting
matrix of compatible dimension that we are free to choose. In
this expression,

(95)
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Under the temporal and spatial independence conditions on
the regression data from Assumption 1, we can write:

(96)

so that (94) becomes:

(97)

where is given by

(98)

and

(99)

We shall employ (99) under the assumption of sufficiently small
step-sizes where terms that depend on higher-order powers of
the step-sizes are ignored. We next introduce

(100)

and use (97) to write:

(101)

From (101), we arrive at

(102)
To prove the convergence and stability of the algorithm in the

mean-square sense, we examine the convergence of the terms on
the right hand side of (102).
In a manner similar to (88), it is shown in Appendix D that

the following property holds:

(103)

Exploiting this result, we can arrive at the following statement,
which establishes that relation (102) converges as and
determines its limiting value.
Theorem 3: Assume the step-sizes are sufficiently small and

satisfy (73). Assume also that is power convergent. Under
these conditions, relation (102) converges to

(104)

where

(105)

and factors are defined in (86).
Proof: See Appendix D.

In a manner similar to the proof at the end of Appendix C,
the term on the right hand side of (104) is invariant under basis
transformations on the factors . Note that the
first term on the right hand side of (104) is the network penalty
due to rank-deficiency. When the node covariance matrices are
full rank, then choosing step-sizes according to (73) leads to

. When this holds, then . In this case,

the first term on the right hand side of (104) will be zero, and
. In this case, we obtain:

(106)

which is in agreement with the mean-square analysis of diffu-
sion LMS strategies for regression data with full rank covari-
ance matrices given in [2], [6].

C. Learning Curves

For each , the MSD and EMSE measures are defined as:

(107)

(108)

where . These parameters can be computed
from the network error vector (104) through proper selection of
the weighting matrix as follows:

(109)

where

(110)

and denote the vectors of a canonical basis set in
dimensional space. The network MSD and EMSE measures are
defined as

(111)

We can also define MSD and EMSE measures over time as

(112)

(113)

Using (102), it can be verified that these measures evolve ac-
cording to the following dynamics:

(114)

(115)

where

(116)

(117)

(118)

(119)

To obtain (114) and (115), we set for all .

V. COMPUTER EXPERIMENTS

In this section, we examine the performance of the diffusion
strategy (39)–(42) and compare the simulation results with the
analytical findings. In addition, we present a simulation example
that shows the application of the proposed algorithm in the esti-
mation of space-varying parameters for a physical phenomenon
modeled by a PDE system over two spatial dimensions.
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Fig. 2. The network MSD learning curve for (a) The network MSD (b)
The MSD at some individual nodes.

A. Performance of the Distributed Solution

We consider a one-dimensional network topology, illustrated
by Fig. 1, with and equally spaced nodes along the di-
rection. We choose as the identity matrix, and compute
and based on the uniform combination and Metropolis rules
[2], [6], respectively. We choose and and gen-
erate the unknownglobal parameter randomly for each exper-
iment. We obtain using the shifted Chebyshev polynomials
given by (17) and compute the space varying parameters ac-
cording to (26).Themeasurement data
are generated using the regressionmodel (12). The SNR for each
node is computed as . The noise
and the entries of the regression data are white Gaussian and sat-
isfy Assumption 1. The noise variances, , and the trace of
the covariance matrices, , are uniformly distributed
between and , respectively.
Fig. 2 illustrates the simulation results for a network with

nodes. For this experiment, we set for all
and initialize each node at zero. In the legend of the figure,

we use the subscript to denote the MSD for and the sub-
script to refer to the MSD of . The simulation curves are

obtained by averaging over 300 independent runs. It can be seen
that the simulated and theoretical results match well in all cases.
To obtain the analytical results, we use expression (104) to as-
sess the steady-state values and expression (114) to generate the
theoretical learning curves.
Two important points in Fig. 2 need to be highlighted. First,

note from the top plot that the network MSD for is larger
than that for . This is because

(120)

so that the MSD of is a weighted version of the MSD of
. In this experiment, the weighting leads to a lower esti-

mation error. Second, note from the bottom plot that while the
MSD values of are largely independent of the node index,
the same is not true for the MSD values of . In previous
studies on diffusion LMS strategies, it has been shown that,
for strongly-connected networks, the network nodes approach
a uniform MSD performance level [36]. The result in Fig. 2(b)
supports this conclusion where it is seen that the MSD of
for nodes 2 and 4 converge to the same MSD level. However,
note that theMSD of is different for nodes 2 and 4. This dif-
ference in behavior is due to the difference in weighting across
nodes from (120).

B. Comparison With Centralized Solution

We next compare the performance of the diffusion strategy
(34)–(35) with the centralized solution (39)–(42). We consider
a network with nodes with the topology illustrated by
Fig. 1. In this experiment, we set for all , while
the other network parameters are obtained following the same
construction described for Fig. 2.As the results in Fig. 3 indicate,
the diffusion and centralized LMS solutions tend to the same
MSD performance level in the domain. This conclusion is
consistent with prior studies on the performance of diffusion
strategies in the full-rank case over strongly-connected networks
[36]. However, discrepancies in performance are seen between
the distributed and centralized implementations in the domain,
and thediscrepancy tends tobecome larger for larger valuesof .
This is because, in moving from the domain to the domain,
the inherent aggregation of information that is performed by
the centralized solution leads to enhanced estimates for the
variables. For example, if the estimates which are generated
by the distributed solution are averaged prior to computing the

, then it can be observed that the MSD values of for
both the centralized and the distributed solution will be similar.
In these experiments, we also observe that if we increase

the number of basis functions, , then both the centralized
and diffusion algorithms will converge faster but their steady-
state MSD performance will degrade. Therefore, in choosing
the number of basis functions, , there is a trade off between
convergence speed and MSD performance.

C. Example: Two-Dimensional Process Estimation

In this example, we consider a two-dimensional network
with 13 13 nodes that are equally spaced over the unit square

with (see Fig. 4(a).
This network monitors a physical process described by
the Poisson PDE:

(121)
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Fig. 3. The network MSD learning curve for (a) (b)
.

where is an unknown input function. The
PDE satisfies the following boundary conditions:

For this problem, the objective is to estimate , given
noisy measurements collected by
nodes corresponding to the interior points of the network.

To discretize the PDE, we employ the finite difference method
(FDM) with uniform spacing of and . We define

, and introduce the sampled values
and . We use the central dif-

ference scheme [39] to approximate the second order partial
derivatives:

(122)

(123)

Fig. 4. Spatial distribution of over the network grid (a)
Network topology (b) over the space.

This leads to the following discretized input function:

(124)

For this example, the unknown input process is

(125)
where .
To obtain , we solve (121) using the Jacobi over-re-

laxation method [45]. Fig. 4(b) illustrates the values of
over the spatial domain. For the estimation of , the given
information are the noisy measurement samples

. In this relation, the noise process
is zero mean, temporally white and independent over space. For
this network, the two dimensional reference signal is the dis-
torted version of which is represented by . The
reference signal is obtained from (124) with replaced by
their noisy measured samples , i.e.,

(126)
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Fig. 5. Spatial distribution of SNR over the network.

Fig. 6. True and estimated by diffusion LMS (a) True parameters (b)
Estimated parameters.

According to (126), the linear regression model for this
problem takes the following form:

(127)

where . Therefore, in this example, we are led to
a linear model (127) with deterministic as opposed to random
regression data. Although we only studied the case of random
regression data in this article, this example is meant to illus-
trate that the diffusion strategy can still be applied to models
involving deterministic data in a manner similar to [1], [54].
To represent as a space-invariant parameter vector, we

use two-dimensional shifted Chebyshev basis functions [55].
Using this representation, can be expressed as:

(128)

where each element of the two-dimensional basis set is:

(129)

where and are the one-dimensional shifted
Chebyshev polynomials in the and directions, respectively-
recall (21).
In the network, each interior node communicates with its four

immediate neighbors. We use and compute and
by using the Metropolis and relative degree rules [2], [6],

[35]. All nodes are initialized at zero and for all .
The signal-to-noise ratio (SNR) of the network is uniformly dis-
tributed in the range and is shown in Fig. 5.
Figs. 6(a) and 6(b) show three dimensional views of the true

and estimated input process using the proposed diffusion LMS
algorithm after 3000 iterations. Fig. 7 illustrates the MSD of the
estimated source, i.e., .

Fig. 7. Network steady-state MSD performance in dB.

VI. CONCLUSION

By combining interpolation and distributed adaptive opti-
mization, we proposed a diffusion LMS strategy for estimation
and tracking of space-time varying parameters over networks.
The proposed algorithm can find the space-varying parameters
not only at the node locations but also at spaces where no
measurement is collected. We showed that if the network
experiences data with rank-deficient covariance matrices, the
non-cooperative LMS algorithm will converge to different
solutions at different nodes. In contrast, the diffusion LMS al-
gorithm is able to alleviate the rank-deficiency problem through
its use of combination matrices especially since, as shown by
(72), , where is the coefficient
matrix that governs the dynamics of the non-cooperative so-
lution. Nevertheless, if these mechanisms fail to mitigate the
deleterious effect of the rank-deficient data, then the algorithm
converges to a solution space where the error is bounded. We
analyzed the performance of the algorithm in transient and
steady-state regimes, and gave conditions under which the
algorithm is stable in the mean and mean-square sense.

APPENDIX A
MEAN ERROR CONVERGENCE

Based on the rank of , we have two
possible cases:
a) : As (68) implies, con-
verges to zero if . In [6], it was shown that when

, choosing the step-sizes according to (73) guaran-
tees .

b) for which is rank-deficient: For this
case, we first show that

(130)

where denotes the block-maximum norm for block vec-
tors with block entries of size and block matrices
with blocks of size . To this end, we note that for
the left-stochastic matrices and , we have

[6], and use the sub-multiplicative property of
the block maximum norm [46] to write:

(131)
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If we introduce the (block) eigendecomposition of (71) into
(131) and consider the fact that the block-maximum norm is
invariant under block-diagonal unitary matrix transformations
[6], [47], then inequality (131) takes the form:

(132)

Using the property for a block diagonal Her-
mitian matrix [6], we obtain:

(133)

Using (133) in (132), we arrive at (130). We now proceed to
show the boundedness of the mean error for case (b). We iterate
(68) to get:

(134)

Applying the block maximum norm to (134) and using in-
equality (130), we obtain:

(135)
The value of can be computed
by evaluating the limits of its diagonal entries. Considering the
step-sizes as in (73), the diagonal entries are computed as:

if
otherwise

(136)

Therefore, (135) reads as:

(137)

APPENDIX B
MEAN BEHAVIOR WHEN

Setting in the diffusion recursions (39)–(42)
and subtracting from both sides of (40), we get:

(138)
Under Assumption 1 and using , we
obtain:

(139)

We define and start from some initial conditions
to arrive at

If we choose the step-sizes according to (73) then we get:

(140)

Equivalently, this can be written as:

(141)

This result indicates that the mean error does not grow un-
bounded. Now from (75), we can verify that:

(142)

Then, upon substitution of into (141), we
obtain:

(143)

APPENDIX C
PROOF OF LEMMA 2

From (87), we readily deduce that

(144)

On the other hand, from (86), we have

(145)
Using (88), the term involving cancels out and the above
reduces to

(146)

since . We now verify that the matrix

(147)

is a (reflexive) generalized inverse for the matrix .
Recall that a (reflexive) generalized inverse for a matrix is
any matrix that satisfies the two conditions [56]:

(148)

(149)

To verify these conditions, we first note from and
in (86) that the following relations hold:

(150)

(151)

(152)

(153)
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(154)

We further note that can be expressed as:

(155)

It is then easy to verify that the matrices satisfy con-
ditions (148) and (149), as claimed. Therefore, (146) can be ex-
pressed as:

(156)

Substituting (144) and (156) into (78) leads to (89).
Let us now verify that the right-hand side of (89) remains

invariant under basis transformations for the Jordan factors
. To begin with, the Jordan decomposition

(86) is not unique. Let us assume, however, that we fix the cen-
tral term to remain invariant and allow the Jordan
factors to vary. It follows from (86) that

(157)

so that the columns of and the rows of correspond to
right and left-eigenvectors of , respectively, associated with
the eigenvalues with value one. If we replace by any trans-
formation of the form , where is invertible, then by
(154), should be replaced by . This conclusion can
also be seen as follows. The new factor is given by

(158)

and, hence, the new becomes

(159)

which confirms that is replaced by . It follows that
the product remains invariant under arbitrary invertible
transformations . Moreover, from (86) we also have that

(160)

Assumewe replace by any transformation of the form ,
where is invertible, then by (153), should be replaced by

. However, since we want to maintain invariant, then
this implies that the transformation must also satisfy

(161)

It follows that the product remains invariant
under such invertible transformations , since

(162)

APPENDIX D
PROOF OF LEMMA 3

We first establish that and are both equal to zero.
Indeed, we start by replacing in (88) by its expression from
(61) and (63) as that leads to:

(163)

By further replacing by their values from (32), we obtain:

(164)
This relation must hold regardless of the cross-correlation vec-
tors . Therefore,

(165)

We now define

(166)

and rewrite expression (100) as

(167)

Multiplying this from the left by and comparing the result
with (165), we conclude that

(168)

Noting that is symmetric, we then obtain:

(169)

Returning to recursion (102), we note first from (86) that can
be rewritten as

(170)

Since is power convergent, the first term on the right hand
side of (102) converges to

(171)

Substituting (170) into the second term on the right hand side of
(102) and using (168) and (169), we arrive at

(172)

If matrices , and are of compatible dimensions, then
the following relations hold [6]:

(173)

(174)
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Using these relations in (172), we obtain

(175)

This is equivalent to:

(176)

where

(177)

Since , the series converges and we obtain:

(178)
Upon substitution of (171) and (178) into (102), we arrive at
(104).
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