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In this paper, a recursive least squares (RLS) based blind adaptive beamforming algorithm
that features a new variable forgetting factor (VFF) mechanism is presented. The
beamformer is designed according to the constrained constant modulus (CCM) criterion,
and the proposed adaptive algorithm operates in the generalized sidelobe canceler (GSC)
structure. A detailed study of its operating properties is carried out, including a convexity
analysis and a mean squared error (MSE) analysis of its steady-state behavior. The results
of numerical experiments demonstrate that the proposed VFF mechanism achieves a
superior learning and tracking performance compared to other VFF mechanisms.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Numerous adaptive beamforming algorithms for applica-
tion to wireless communication receivers have been repor-
ted in the literature in the last few decades [1–4]. In this
application, blind adaptation is highly desirable for the digital
receivers equipped with an antenna array, since it operates
without the training sequences and leads to a good solution.
The constrained constant modulus (CCM) criterion [5] is often
considered as one of the most promising design criterions for
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blind beamforming. It takes advantage of the constant mod-
ulus (CM) property of the source modulation, while subject to
a constraint on the array response to the desired user [3,6].
The work in [7] investigates the CCM-RLS algorithms, which
combine the use of RLS adaptationwith the CCM criterion, for
different applications and shows that the CCM based algo-
rithms generally outperform the ones based on constrained
minimum variance (CMV).

The superior performance of the RLS-based blind beam-
formers is often demonstrated under the assumption of
stationarity, where an ideal choice of the forgetting factor
can be made. However in reality, it is difficult or even
impractical to compute a predetermined value for the
forgetting factor [8]. Hence, the use of a variable forgetting
factor (VFF) mechanism is an attractive choice to overcome
this shortcoming. Among such mechanisms, the most com-
mon one proposed in [6] is the gradient-based variable
forgetting factor (GVFF), which is varied according to the
measured square error at the beamformer output. Recently,
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Fig. 1. GSC structure for blind beamforming.
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the authors in [8] have extended the conventional GVFF
scheme to the CCM-RLS blind beamformer for direct
sequence code division multiple access (DS-CDMA) receiver.
In particular, they have proposed a new VFF mechanism that
leads to a superior performance yet with a reduced
complexity.

The problem formulation using the CCM criterion can
be broken down into constrained and unconstrained
components that give rise to the generalized sidelobe
canceler (GSC) [6] structure. The latter uses a main branch
consisting of a fixed beamformer steered towards the
desired user, in parallel with adaptive auxiliary branches
that have the ability to block the signal of interest; they
produce an output which ideally consists only of inter-
ference and is subtracted from that of the main branch.
To the best of our knowledge, the study of effective VFF
mechanisms for CCM-RLS beamformers developed around
the GSC structure has not been addressed in the technical
literature.

In this work, we present an extension of the method
reported in [8] for the direct-form beamformer (DFB)
structure to the more practical GSC structure. The differ-
ence between these two structures has a major influence
on the derivations and expressions of the adaptive weight
vectors. In the GSC context, the proposed time-averaged
variable forgetting factor (TAVFF) mechanism employs the
time average of the CM cost function to automatically
adjust the forgetting factor. Then convexity analysis and
convergence analysis of the resulting CCM-RLS algorithm
with TAVFF are carried out and expressions to predict the
steady-state mean squared error (MSE) are obtained.
Simulation results are presented to show that the pro-
posed TAVFF mechanism leads to a superior performance
of the CCM-RLS beamformer in the GSC structure.

2. System model and GSC beamformer design

We consider a wireless communication scenario in
which K narrowband user signals impinge on a uniform
linear array (ULA) comprised M identical omnidirectional
antennas. Let λc denote the wavelength and ds ¼ λc=2 be
the inter-element spacing of the ULA. Assuming that the
kth user signal impinges on the array with direction of
arrival θk, we can write the normalized corresponding
steering vector aðθkÞ ¼ ð1=

ffiffiffiffiffi
M

p
Þ½1; e� j2πðds=λcÞ cos θk ;…;

e� j2πðds=λcÞ cos θkðM�1Þ�T . Then the sampled array output
vector (or snapshot) at discrete time iAN can be modeled as

rðiÞ ¼ AðθÞbðiÞþnðiÞ; i¼ 0;1;2;… ð1Þ
where AðθÞ ¼ ½aðθ0Þ;…; aðθK�1Þ� is the matrix of steering
vectors, bðiÞ ¼ ½b0ðiÞ;…; bK�1ðiÞ�T is the data vector and nðiÞ is
an additive vector of sensor noise with zero-mean and
covariance matrix σ2I, where σ2 denotes the variance and I
is an identity matrix of order M. We assume that the
sequences of transmitted symbols by the desired and inter-
ference users are independent and identically distributed (i.i.
d.) random processes, with values taken from a constant
modulus modulation format.

The GSC structure, illustrated in Fig. 1, converts the
constrained optimization problem into an unconstrained
one [6]. Its output is given by yðiÞ ¼ ðvaðθ0Þ�BwðiÞÞHrðiÞ,
where v is a real scalar, the signal blocking matrix B is
orthogonal to the steering vector aðθ0Þ and wðiÞ is the
complex adaptive weight vector. In this work, wðiÞ is
optimized in an adaptive manner according to the CM
cost function

JCMðwðiÞÞ ¼ E½ðjyðiÞj2�1Þ2�: ð2Þ
The CCM design has its convexity enforced by adjusting
the parameter v, as will be discussed along with the
analysis in Section 5. The objective of the design based
on the CM cost function (2) is to minimize the expected
deviation of the square modulus of the beamformer output
from a constant while maintaining the contribution from
θ0 constant, i.e., ðvaðθ0Þ�BwðiÞÞHaðθ0Þ ¼ v.

3. Blind adaptive CCM-RLS-GSC algorithm

For the GSC structure depicted in Fig. 1, by employing
the time-averaged estimation, we obtain the following CM
cost function:

JCMðwðiÞÞ ¼ ∑
i

n ¼ 1
λi�nðjðvaðθ0Þ�BwðiÞÞHrðnÞj2�1Þ2; ð3Þ

where the forgetting factor λ should be chosen as a
positive constant. By taking the gradient of (3) with
respect to wnðiÞ and equating it to zero, we have

∂JCMðwðiÞÞ
∂wn

¼ ∑
i

n ¼ 1
λi�n x nð ÞxH nð Þw ið Þ�x nð Þdn nð Þ� �¼ 0; ð4Þ

where xðnÞ ¼ BH ~rðnÞ, ~rðnÞ ¼ ynðnÞrðnÞ and dðnÞ ¼ vaHðθ0Þ
~rðnÞ�1. Defining the correlation matrix Q ðiÞ ¼∑i

n ¼ 1

λðnÞi�nxðnÞxHðnÞ, and cross-correlation vector pðiÞ ¼∑i
n ¼ 1

λ ðnÞi�nxðnÞdnðnÞ, it follows from (4) that wðiÞ ¼Q �1ðiÞpðiÞ:
This expression for wðiÞ has the same form as the well-
known weighted least-square solution, and hence we can
directly obtain the RLS equations [6]

wðiÞ ¼wði�1ÞþkðiÞenðiÞ; ð5Þ

where kðiÞ ¼Q �1ði�1ÞxðiÞ=ðλþxHðiÞQ �1ði�1ÞxðiÞÞ; and
eðiÞ ¼ dðiÞ�wHði�1ÞxðiÞ: These equations with proper initi-
alization define the CCM-RLS blind beamforming algo-
rithm for the GSC structure.
4. Proposed TAVFF scheme

4.1. Blind TAVFF mechanism

Motivated by the variable step size (VSS) mechanism
for the least mean square (LMS) algorithm [6] and the
original work in [8], we introduce a new variable quantity



Table 1
The CCM-RLS-GSC-TAVFF algorithm.

Initialization:

Initialize Q �1ð0Þ, wð0Þ.

Update for each time index i
Coefficient updating:
~wði�1Þ ¼ vaðθ0Þ�Bwði�1Þ, yðiÞ ¼ ~wHði�1ÞrðiÞ;
~rðiÞ ¼ ynðiÞrðiÞ, xðiÞ ¼ BH ~rðiÞ, dðiÞ ¼ vaH ðθ0Þ~rðiÞ�1;
Adaptation gain computation:

k ið Þ ¼ Q �1ði�1ÞxðiÞ
λþxHðiÞQ �1ði�1ÞxðiÞ

;

Q �1ðiÞ ¼ λ�1ði�1ÞQ �1ði�1Þ�λ�1ði�1ÞkðiÞxHðiÞQ �1ði�1Þ;
Forgetting factor updating:

ϕðiÞ ¼ αϕði�1ÞþβðjyðiÞj2�1Þ2 ;

λ ið Þ ¼ 1
1þϕðiÞ

� �λþ

λ�
;

Weight vector calculation:
eðiÞ ¼ dðiÞ�wði�1ÞxðiÞ;
wðiÞ ¼wði�1ÞþkðiÞenðiÞ.

Table 2
Additional computational complexity.

Number of operations per symbol

Mechanism Multiplications Additions

TAVFF 5 3
Blind GVFF 12M2�12Mþ3 5M2�8Mþ5
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which is updated by the instantaneous CM cost function,
as follows:

ϕðiÞ ¼ αϕði�1Þþβðjðvaðθ0Þ�BwðiÞÞHrðiÞj2�1Þ2; ð6Þ

where 0oαo1 and β40. The updated quantity ϕðiÞ
changes more or less rapidly with time and can track the
average deviation from the CM property. In particular, large
deviations from CM in (3) will cause ϕðiÞ to increase, which
in turn can be exploited to reduce the forgetting factor λ for a
faster tracking, thereby alleviating the deleterious effects of
sudden changes. Conversely, in the case of small deviation
from CM, ϕðiÞ � 0 and a larger value of λ should be
employed. That is, λ should vary in an inverse way to ϕðiÞ,
while remaining within a reasonable range 0oλ� rλr
λþ o1. Using ϕðiÞ and based on the work in [8], we can
update λ through the non-linear operation1

λ ið Þ ¼ 1
1þϕðiÞ

� �λþ

λ�
ð7Þ

where ½��λþ

λ� denotes truncation to the limits of the range

½λ�
; λþ �. The proposed low-complexity TAVFF is given by (6)

and (7). A summary of CCM-RLS blind beamformer for the
GSC structure with the TAVFF is given in Table 1.

It can be shown in Table 2 that the computational
complexity of this TAVFF mechanism has been reduced
significantly compared with GVFF mechanism which is
detailed in [8]. Specifically, the GVFF requires 12M2�
12Mþ3 multiplications and 5M2�8Mþ5 additions per
iteration, while the proposed TAVFF only requires 5 multi-
plications and 3 additions.
4.2. Steady-state properties of TAVFF

We start by considering the CM cost function where we
take the additive white Gaussian noise into consideration,
which has not been addressed in [8]. Since 0oαo1, by
taking the expectation of (6) we obtain

E ϕ ið Þ� �¼ βE½ðjðvaðθ0Þ�BwðiÞÞHrðiÞj2�1Þ2�
1�α

: ð8Þ

Then, we rewrite the CM cost function as follows:

JCMðwðiÞÞ ¼ E½ðjðvaðθ0Þ�BwðiÞÞHrðiÞj2�1Þ2� ¼ E½ðjyðiÞj2�1Þ2�:
ð9Þ

To simplify this expression, it is convenient to introduce
the modified weight vector ~wðiÞ ¼ vaðθ0Þ�BwðiÞ, in terms
of which we have yðiÞ ¼ ~wðiÞHAðθÞHbðiÞþ ~wðiÞHnðiÞ. Since
bðiÞ is an i.i.d. sequence of random vectors with zero-mean
and identity covariance matrix, which is independent of
the noise nðiÞ, it follows according to [9] that the CM cost
function can be expressed as

JCMðwðiÞÞ ¼ J1ð ~wðiÞÞþσ2J2ð ~wðiÞÞ; ð10Þ
1 As an alternative to (7), we have experimented with different
formulas combining reciprocal, subtraction, power, etc. However, simulation
results have demonstrated that the proposed formula in (7) can achieve the
best performance among the various approaches investigated.
J1ð ~wðiÞÞ ¼ 2ðuHuÞ2� ∑
K�1

k ¼ 0
u4
k�2uHuþ1; ð11Þ

J2ð ~wðiÞÞ ¼ ð4uHu�2þ3σ2 ~wH ~wÞ ~wH ~w : ð12Þ

In these expressions, vector u is defined as u� uðiÞ ¼
½u0;…;uK�1�T ¼AðθÞH ~wðiÞ, where we have dropped the time
index i to simplify the notations. We assume that
limi-1J1ð ~wðiÞÞ ¼ J1ð ~woptÞ is approximately equal to the
steady-state noiseless value of the CM cost function where
~wopt ¼ vaðθ0Þ�Bwopt denotes the optimal beamformer, and
limi-1σ2J2ð ~wðiÞÞ ¼ Jexð1Þ contributes to the steady-state
noisy component. Taking the high signal-to-noise-ratio
(SNR) into account in our common environment [8,9],
we have J1ð ~woptÞb Jexð1Þ. Following the steps of analysis as
in [8], we can obtain

E ϕ 1ð Þ� �� βJ1ð ~woptÞ
1�α

; E½ϕ2 1ð Þ� � 2αβE½ϕð1Þ�J1ð ~woptÞ
1�α2 :

ð13Þ

Using (7) and with the aid of Taylor's formula, we can have
the expressions of the first and second order moments of the
VFF in steady-state:

E λ 1ð Þ� �� 1�ð1�α2ÞβJ1ð ~woptÞ�2αβ2J1ð ~woptÞ2
ð1�αÞð1�α2Þ ; ð14Þ



2 δ¼10 for SNR¼0 dB, δ¼0.1 for SNR¼20 dB and δ¼1 for SNR¼5,
10, 15 dB.
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E½λ2 1ð Þ� � 1�2ð1�α2ÞβJ1ð ~woptÞ�6αβ2J1ð ~woptÞ2
ð1�αÞð1�α2Þ : ð15Þ

5. Analysis of the CCM-RLS blind GSC beamformer

5.1. Convexity of the optimization problem

Without loss of generality, we let user 0 be the desired
user and we define D¼ u0un

0 ¼ v2, A ¼ ½aðθ1Þ;…; aðθK�1Þ�
and u ¼ ½u1;…;uK�1�T ¼A

H
~w . It is then possible to express

the CM cost function as

JCMðwðiÞÞ ¼ J1ð ~wÞþσ2J2ð ~wÞ; ð16Þ

J1ð ~wÞ ¼ 2ðDþuHuÞ2� D2þ ∑
K�1

k ¼ 1
u4
k

 !
�2ðDþuHuÞþ1;

ð17Þ

J2ð ~wÞ ¼ ð4ðDþuHuÞ�2þ3σ2 ~wH ~wÞ ~wH ~w : ð18Þ
To study the convexity of JCMðwðiÞÞ, we compute its Hessian

matrix using the rule H¼ ð∂=∂ ~wHÞ∂JCM=∂ ~w . This yields
H¼H1þσ2H2, where

H1 ¼ 4A½ðD�1=2ÞIþuHuIþu uH

�diagðju1j2;…; juK�1j2Þ�A
T
; ð19Þ

H2 ¼ ð4D�2ÞIþ6σ2ð ~wH ~wIþ ~w ~wHÞþ4ð ~wHA A
H
~wI

þðA A
HÞT ~wH ~wþð ~w ~wHAðAHÞT þð ~wHA A

H
~wÞT Þ: ð20Þ

For H1 in (19), the second, third and fourth terms yield the

positive definite matrix 4Aðu uHþdiagð∑K�1
k ¼ 2jukj2;…;

∑K�1
k ¼ 1;kaK�1jukj2ÞÞA

T
, while the first term provides the

condition D¼ v2Z1=2, which ensures the convexity of
J1ð ~wÞ. Since H2 in (20) is a smooth, differentiable function
of ~w , it follows that for small values of σ2, the cost function
JCMðwðiÞÞ in (16) remains convex under perturbation from
the noise-free case by the term σ2 J2ð ~wÞ [9]. For larger

values of σ2, the constant v can be adjusted to a sufficiently
large value such that H2 is positive definite in any bounded
region. We conclude that by properly selecting v, H can be
made positive definite, this implies that the cost function
JCMðwðiÞÞ is strictly convex and therefore, the algorithm can
reach the global minimum.

5.2. Convergence of the mean weight vector

The weight vector update equation wðiÞ ¼wði�1Þþ
kðiÞenðiÞ has the same form as in the well-known RLS
solution, which makes it convenient to analyze the con-
vergence performance. This similarity results from
employing the GSC structure instead of DFB structure as
in [8]. Before taking the analysis further, we should note
that while the input data in the conventional RLS algo-
rithm is the array output vector rðiÞ, in our proposed CCM-
RLS algorithm the input data is xðiÞ ¼ BHynðiÞrðiÞ. Despite
this difference, we can still employ the principle of
orthogonality between the optimum error and the data,
which give E½xðiÞenoptðiÞ� ¼ 0, where eoptðiÞ ¼ dðiÞ�wH
optxðiÞ

denotes the optimum error. By following the convergence
analysis of the mean weight vector for the RLS solution
and recalling that 0oE½λðiÞ�o1, we can finally obtain

lim
i-1

E½wðiÞ�wopt � ¼ 0: ð21Þ

This shows that the expected weight error converges to
zero as i-1.

5.3. Convergence of MSE

Next we discuss the convergence of the MSE for the
proposed CCM-RLS algorithm and provide an analytical
expression to predict its steady-state value. It can be
shown that the steady-state MSE is given by

lim
i-1

ξmseðiÞ ¼ lim
i-1

E½jb0ðiÞ� ~wHðiÞrðiÞj2�

¼ ð1�2vÞþE½ ~wH
optRðiÞ ~wopt �

þ lim
i-1

E½tr½RðiÞ ~εðiÞ ~εHðiÞ��; ð22Þ

where ~εðiÞ ¼ ~wðiÞ� ~wopt . We shall define ΘðiÞ ¼ E½ ~εðiÞ ~εHðiÞ�
and neglect the dependence among eopt(i), xðiÞ and Q �1ðiÞ
in the limit as i-1 [6]. We obtain

ΘðiÞ ¼ E½λ2ðiÞ�Θði�1Þþσ2
optBE½Q �1ðiÞ�E½xðiÞxHðiÞ�E½Q �1ðiÞ�BH ;

ð23Þ
where σ2

opt ¼ E½jeoptðiÞj2�. It converges since λðiÞo1.
At steady-state we have

lim
i-1

Θ ið Þ � σ2
optð1�E½λð1Þ�Þ2

ð1�E½λ2ð1Þ�ÞE½jyoptðiÞj2�
BðBHRBÞ�1BH ; ð24Þ

where yoptðiÞ ¼ ~wH
optrðiÞ, R¼ E½rðiÞrHðiÞ�, and E½λð1Þ� and

E½λ2ð1Þ� are given in (14) and (15), respectively. Finally,
based on (22) and (24), we can derive the expressions to
predict the steady-state MSE.

6. Simulations

In this section, we evaluate the performance of the
proposed TAVFF with the blind adaptive CCM-RLS-GSC
beamformer. On the TX side, the BPSK modulation is
employed to keep the CM property, and the source power
is normalized. On the RX side, the uniform linear array is
composed of M¼16 sensor elements. In our simulations,
an experiment is made up of 1000 independent runs and
for each such experiment, the DOAs of the users are
randomly generated with a uniform distribution between
01 and 1801 and kept fixed for all the runs. The exact DOA
of the desired user is assumed to be known by the
beamformer. There are K¼5 users including the desired
one and four interferers in a static environment and the
input SNR is fixed at 15 dB unless otherwise indicated. The
performance is not sensitive to the initial values, accordingly,
we set v¼1, Q �1ð0Þ ¼ δ�1I,2 generate wð0Þ randomly.

The result in Fig. 2(a) shows that as the number of
snapshots increases, the MSE value converges and reaches



Table 3
SINR steady-state values in Fig. 3.

Algorithm SINR (dB, 95% confidence interval)

CMV 10.3170.05
CCM 10.8470.04
CCM-GVFF 11.6870.02
CCM-TAVFF 12.1970.01

0 200 400 600 800 1000
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Number of Snapshots
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R
(d

B
) CCM−RLS−GSC−fixed
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CMV−RLS−GSC−fixed

Fig. 3. Output SINR against the number of snapshots (number of users
K¼5, input SNR¼15 dB).
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a steady-state level which is in good agreement with the
analytical result given by (22). In Fig. 2(b), we further
compare the simulation and theoretical results by showing
the steady-state MSE versus SNR. We compute the MSE
value at snapshot 1000 for each run, and 1000 indepen-
dent runs are averaged to get the final result for each exact
SNR. We find that the results agree well with each other
over the considered SNR range.

In the experiment of Fig. 3, we evaluate the beamfor-
mer SINR performance against the number of snapshots.
In all cases, the output SINR values increase to the steady-
state as the number of snapshots increases. The graph
illustrates that the CCM-RLS-GSC beamformer with the
proposed TAVFF achieves the fastest convergence and the
best performance. We list the observed SINR value at
snapshot 800 in the steady-state regime in Table 3, where
the results show that the performance improvements with
TAVFF are statistically significant.

In Fig. 4, we assess the SINR performance of the
proposed TAVFF and fixed forgetting factor against the
number of snapshots for both the DFB and GSC structures.
The resulting curves show that for both structures, the
performance of the CCM-RLS algorithm with TAVFF is
significantly better than the corresponding with fixed
forgetting factor. The GSC structure leads to an improved
performance compared to the DFB, especially a much
faster initial convergence. The observed steady-state SINR
values at snapshot 800 are listed in Table 4.

At last, we evaluate the SINR convergence performance in
a nonstationary scenario. The system starts with K¼5 users,
after 1000 snapshots, two more interferers having the same
power enter the system. From the results in Fig. 5, we can
see that the abrupt change at 1000 snapshot reduces the
output SINR and degrades the performance of all the
0 500 1000
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M
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Fig. 2. Analytical MSE versus simulated performance for the CCM-RLS-GSC
SNR¼15 dB). (a) Number of snapshots and (b) SNR dB.
algorithms. However, TAVFF can quickly track this change
and recover faster to a new and larger steady-state. To make
this clear, we have measured the rates of convergence (in dB
0 5 10 15 20
0
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1.2

1.4

M
S
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Simulated
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algorithm with the TAVFF mechanism (number of users K¼5, input



Table 4
SINR steady-state values in Fig. 4.

Algorithm SINR (dB, 95% confidence interval)

DFB 10.2270.05
GSC 10.8070.03
DFB-TAVFF 11.7070.03
GSC-TAVFF 12.2170.01

0 500 1000 1500 2000
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R
(d

B
)

CCM−RLS−GSC−fixed
CCM−RLS−GSC−GVFF
CCM−RLS−GSC−TAVFF
CMV−RLS−GSC−fixed

Fig. 5. SINR performance in a nonstationary environment (for the first
stage, the number of users is K¼5, for the second stage, the number of
users is K¼7, input SNR¼15 dB).

Table 5
SINR convergence rate (dB/iteration).

Snapshot CMV CCM CCM-GVFF CCM-TAVFF

0 5.341 6.512 7.510 8.488
40 0.158 0.265 0.272 0.278
80 0.094 0.134 0.138 0.143

120 0.069 0.091 0.093 0.096
1000 6.346 8.094 8.545 9.868
1040 0.221 0.237 0.248 0.268
1080 0.118 0.124 0.129 0.138
1120 0.081 0.085 0.088 0.093

Table 6
SINR standard deviation (dB).

Snapshot CMV CCM CCM-GVFF CCM-TAVFF

400 0.89 0.49 0.40 0.21
600 0.88 0.49 0.40 0.17
800 0.87 0.49 0.40 0.14
999 0.86 0.48 0.39 0.13

1400 0.86 0.53 0.44 0.20
1600 0.82 0.53 0.44 0.18
1800 0.80 0.53 0.44 0.17
1999 0.79 0.52 0.43 0.17
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Fig. 4. Output SINR against the number of snapshots (number of users
K¼5, input SNR¼15 dB).
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per iteration) and SINR standard deviation of the various
algorithms over time. The results, listed in Tables 5 and 6,
show that while all the presented algorithms recover from
the newly introduced interference, TAVFF mechanism exhi-
bits the fastest convergence rate, smallest standard deviation
and the best performance.
7. Conclusion

In this paper, we developed a CCM-RLS-based blind
adaptive beamforming algorithm that features a new pro-
posed low-complexity TAVFF mechanism and operates
within the GSC structure for its realization. The convergence
properties of this algorithm were analyzed, including the
study of convexity and steady-state MSE behavior. The
simulation results were in good agreement with the theore-
tical ones and showed that the proposed TAVFF mechanism
outperforms other VFF mechanisms previously developed
for CCM-RLS blind adaptive beamforming.
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