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Plane Rotation-Based EVD Updating
Schemes for Efficient Subspace Tracking

Benôıt Champagne and Qing-Guang Liu

Abstract—We present new algorithms based on plane ro-
tations for tracking the eigenvalue decomposition (EVD) of a
time-varying data covariance matrix. These algorithms directly
produce eigenvectors in orthonormal form and are well suited for
the application of subspace methods to nonstationary data. After
recasting EVD tracking as a simplified rank-one EVD update
problem, computationally efficient solutions are obtained in two
steps. First, a new kind of parametric perturbation approach
is used to express the eigenvector update as an unimodular
orthogonal transform, which is represented in exponential matrix
form in terms of a reduced set of small, unconstrained parame-
ters. Second, two approximate decompositions of this exponential
matrix into products of plane (or Givens) rotations are derived,
one of which being previously unknown. These decompositions
lead to new plane rotation-based EVD-updating schemes (PRO-
TEUS), whose main feature is the use of plane rotations for
updating the eigenvectors, thereby preserving orthonormality.
Finally, the PROTEUS schemes are used to derive new EVD
trackers whose convergence and numerical stability are inves-
tigated via simulations. One algorithm can track all the signal
subspace EVD components in onlyO(LM) operations, whereL
and M , respectively, denote the data vector and signal subspace
dimensions while achieving a performance comparable to an
exact EVD approach and maintaining perfect orthonormality of
the eigenvectors. The new algorithms show no signs of error
buildup.

I. INTRODUCTION

SUBSPACE-BASED signal analysis methods play a major
role in contemporary signal processing, with applications

including direction-of-arrival estimation in array processing
and frequency estimation of sinusoidal signals in spectral
analysis. As their distinguishing feature, these methods seek
to extract the desired information about the signal and noise
by first estimating either a part or all of the eigenvalue decom-
position (EVD) of the data covariance matrix. For example,
knowledge of the eigenvalues can be used in connection with
a criterion such as AIC or MDL to estimate the number
of dominant signal sources present in the observed data
[48]. Additional knowledge of the eigenvectors can be used
in a high-resolution procedure such as MUSIC to estimate
unknown parameters of these dominant sources [3], [40].
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In on-line applications of subspace-based methods to non-
stationary signals, it is desirable to continually update the EVD
estimates in real time as new data vectors become available
in order to permit the detection of abrupt changes and/or
the tracking of nonstationarities in the signal environment. In
recent years, several computationally efficient techniques in
the form of recursive algorithms have thus been proposed for
sequential estimation and tracking of some, or all, of the EVD
components of a time-varying data covariance matrix. These
algorithms, which are collectively referred to here as subspace
trackers, rely on different approaches for their derivations and,
accordingly, may differ considerably in terms of complexity
and performance.

A commonly used approach for the derivation of subspace
trackers is to formulate the determination of the desired EVD
components as the optimization (possibly constrained) of a
specific cost function involving the unknown data covariance
matrix. To arrive at a recursive algorithm, the optimiza-
tion is accomplished adaptively via an appropriate stochastic
search procedure. Algorithms of this type have been derived
based on the constrained gradient search [16], [20], [33],
[37], [46], [52], the conjugate gradient iteration [10], [20],
[19], [43], the Gauss-Newton search [27], [28], [36], and
the recursive least-squares [51]. Another type of approach
consists of using classical algorithms from numerical analysis
to compute exactly, at regular intervals, the EVD of a time-
varying sample covariance matrix or, equivalently, the singular
value decomposition (SVD) of a corresponding data matrix.
Such a technique based on orthogonal iterations is proposed
in [33]. Within this framework, specific attempts have been
made to exploit the low-rank nature of practical recursive
covariance matrix estimates. In [23], a classical algorithm
for SVD computation [21] is tailored to the rank-one update
situation; noise eigenvalue smoothing (i.e., noise subspace
sphericalization) is also introduced to reduce the computational
load and the estimation variance. In [41], a similar solution is
proposed based on an algorithm for exact rank-one updating of
the EVD [5]. Further related contributions include numerical
stabilization techniques [12], [30], extension to rank-updates

[53], SVD and forward-backward versions [32], and
joint signal and noise subspaces sphericalization [13], [14].
Another, closely related approach consists of interlacing the
recursive update of a sample covariance or data matrix with
only a few steps of certain standard iterations for EVD or
SVD computation so that the desired EVD information is only
updated approximately. Subspace trackers of this type have
been derived based on the inverse power method [47], the
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orthogonal iteration [24], [45], the QR iteration [17], [39],
the Lanczos method [11], [49], and the Jacobi-type SVD
iterations [18], [25], [31]. Specific algorithms have also been
developed that track only basis vectors of the signal and/or
noise subspaces based on the URV decomposition [35], [44],
the rank-revealing QR factorization [4], and classical invariant
subspace updating techniques [26].

Recently, efficient EVD trackers have been obtained based
on the application of classical perturbation methods to the
rank-one update for the sample covariance matrix [6]. One
of these algorithms (PC) can track the-dimensional signal
subspace (eigenvalues and eigenvectors) of an-dimensional
data vector in only operations while achieving a
performance comparable with an exact EVD approach. The
main limitation of this approach, which is common to many of
the above subspace trackers, is its inability to directly produce
perfectly orthonormal eigenvector estimates. Yet, several of
the most popular subspace-based signal analysis methods
assume or require the use of an orthonormal basis. For
instance, random deviations from orthonormality ultimately
limits the resolution capability and estimation accuracy of
the root-MUSIC method [1]. Some form of orthonormality
is also important in maintaining long-term numerical stability
of the perturbation algorithms of [6] as well as of other
subspace trackers [12], [31]. In all these situations, further
orthonormalization of the dominant eigenvectors is necessary.
This entails additional computational costs of that
set a lower bound on reachable operation counts.

In this paper, we derive and evaluate new EVD tracking
algorithms that overcome this limitation by directly producing
eigenvector estimates that are orthonormal at all times. The
derivation involves two steps: First, a new kind of improved,
parametricperturbation approach is used to express the eigen-
vector update as a unimodular orthogonal transformation that
is represented in exponential matrix form in terms of a
reduced set of small, unconstrained parameters. Second, two
approximate decompositions of this exponential matrix into
products of plane (or Givens) rotations are derived, one
of which being previously unknown. These decompositions
then lead to new plane rotation-based EVD-updating schemes
(PROTEUS) for the rank-one problem. These schemes, which
are noniterative (i.e., close form), use specific sequences of
plane rotations to update the eigenvectors, thereby preserving
orthonormality. In the paper, the PROTEUS schemes are used
to derive various subspace trackers whose convergence and
numerical stability are investigated via computer experiments.
One particular algorithm (PROTEUS-2) can track all the signal
subspace EVD components in only operations while
achieving a performance comparable with an exact approach
and maintaining perfect orthonormality of the eigenvectors.
Furthermore, the new algorithms show no sign of numerical
instability or error buildup.

The paper is organized as follows. In Section II, a mathemat-
ical formulation of subspace tracking is provided, and a series
of preprocessing steps are described to put the problem in a
normalized form. In Section III, the parametric perturbation
approach is exposed, and the decompositions of the associated
exponential matrix into products of plane rotations are derived,

thus leading to the formulation of the PROTEUS schemes. The
new subspace trackers based on these schemes are presented in
Section IV, where convergence and numerical stability issues
are discussed briefly. The comparative performance of these
new algorithms is investigated via computer experiments in
Section V. Some final remarks are provided in Section VI.

The following notations are used:

set of real numbers;
set of complex numbers;
mathematical expectation;
plain conjugate transpositions;
complex conjugate transpositions;

diag diagonal matrix with entries given by the argu-
ments;

identity matrix;
zero vectors and matrices of appropriate dimen-
sions;

det determinant;
matrix-2 norm of its argument
overwriting.

II. PRELIMINARY NOTIONS

A. Problem Formulation

In a typical application of subspace-based signal processing,
an -dimensional complex data vector is observed
at the th sampling instant, where . The sequence

is modeled as a zero-mean, random vector process whose
covariance matrix at time is shown by

(1)

where it is implicitly assumed that the process can be
nonstationary. The eigenvalues and corresponding orthonor-
malized eigenvectors of the matrix are denoted by
and , respectively. That is, the matrices

diag (2)

(3)

satisfy

(4)

(5)

Equation (4) is known as the eigenvalue decomposition (EVD)
of . Without loss of generality, it is convenient to assume
that .

Within this framework, the most exhaustive form of sub-
space tracking consists of performing sequential estimation
of all the EVD parameters of as new observations
become available. To this end, recursive algorithms are needed
that can compute the EVD estimates at time, i.e., estimates
of and in (4), given estimates of and

and the new data vector . To be of practical
value, these algorithms must have low complexity so that
their real-time implementation is conceivable. In addition,
they must possess the following statistical properties: In a
stationary environment, the EVD estimates converge to the
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true EVD for sufficiently large; whereas in a nonstationary
environment, the estimates have the ability to track variations
in the true EVD. Finally, numerical stability over long periods
of operation is also a practical necessity.

While in certain specific applications it may be necessary
to track all the EVD information, very often, only a subset
thereof is required, such as, for example, the largest or

smallest eigenvalues and corresponding eigenvectors
of , for some integer , or only a basis of one
of the corresponding eigensubspaces. We refer to the first
class of problems ascompleteand to the second, larger class
of problems aspartial subspace tracking. In this paper, we
shall be concerned at first with deriving efficient algorithms
for the complete problem. Later, in Section IV, we describe
some further simplifications that result for partial problems of
particular interest.

Let the sequential estimates of of in (4) be
represented by

diag (6)

(7)

respectively, where . In
this work, we seek computationally efficient recursions for
updating these estimates so that within a good degree of
approximation

(8)

where is a constant parameter with , subject to
the constraint

(9)

which must be enforced exactly at all time. The underlying
motivations are discussed below.

When (8) is satisfied exactly for all , the factors of
indeed provide the EVD of a sample covari-

ance matrix with exponential window, i.e., defined through
the recursion

(10)

which is the basis of several subspace trackers. Note that
in (10) is a forgetting parameter that determines the effective
length of the exponential window (namely, ). In nonstation-
ary environments, a larger value oftypically results in better
tracking capabilities at the expense of increased estimator
variance. In practical applications of (10),is usually much
smaller than one.

In the area of matrix analysis, the computational problem
specified by (8) and (9) is known as a rank-one EVD update.
Several subspace trackers have been proposed that seek an
exactsolution to this problem, e.g., [12], [41], [53]). However,
sequential EVD estimates obtained in this way are still subject
to statistical errors and are generally not optimal in a nonsta-
tionary environment. For this reason, we do not require that (8)
be satisfied exactly. Our intent is to allow for approximations

that can significantly reduce the computational complexity
of the resulting subspace trackers without adversely affecting
their statistical performance. Clearly, such approximations will
be legitimate if they are masked by the estimation errors in

(10).
A fundamental limitation common to many of the existing

subspace tracking algorithms is their inability to produce
perfectly orthonormal eigenvector estimates. Thus, if such a
basis of eigenvectors is required by the postprocessing method,
further orthonormalization is necessary, adding a significant
computational load to the overall process. Here, to overcome
this limitation, we further require that the orthonormality
constraint (9) be strictly enforced for all .

B. Preprocessing and Normalization

We next describe a series of preprocessing steps that are
used to put the rank-one EVD update (8) into a normalized
form. This will not only simplify subsequent analysis but also
result in important computational savings in various situations
of practical interest, e.g., complex data and/or repeated eigen-
values. For brevity, let and

denote the information available at time, prior
to the update, and let and denote
the updated EVD estimates. Preprocessing consists of the
following four steps, in which , and are transformed
so that (8) is gradually brought into the desired form:

1) Diagonalization: Rank-one EVD update of a diagonal
matrix is obtained by setting

(11)

2) Mapping into Real Vector Space[41]: To modify the up-
dating problem so that only real quantities are involved,
define the diagonal unitary matrix

diag (12)

where denotes theth entry of , and let

i.e., (13)

3) Deflation[5]: The dimensionality of the problem can be
reduced whenever some of the diagonal elements of
are repeated.1 Specifically, suppose that there are
distinct eigenvalues among the .
Then, by using an appropriate block Householder matrix

diag (see [5] for a definition of the
block matrices ), it is possible to zero out
entries of the vector . Thus, we have

(14)

4) Reordering: Using an appropriate permutation matrix
(see [22]), reorder the entries of, the columns of ,
and the diagonal entries of so that the last
entries of are zero and the first diagonal entries of

are in decreasing order

(15)
1Deflation is also possible when a particular entry ofis zero [5].

However, due to background noise, the probability of this event is null in
most applications. This type of deflation is not given further consideration.
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TABLE I
SUMMARY OF PREPROCESSINGSTEPS

These steps are summarized in Table I for future reference.
Their practical realization and computational complexity ac-
tually depend on the particular type of subspace tracking
problem under consideration; additional explanations are pro-
vided in Section IV.

Following these steps, and can be partitionned as

diag (16)

where with
diag with and

diag with for .
Furthermore, (8) can be expressed in the form

(17)

According to (17), the original rank-one EVD update problem
(8), (9) over has been simplified to the rank-one EVD
update of a diagonal matrix over , i.e.,

(18)

(19)

where is diagonal. Once the solutions and of the
normalized problem(18), (19) have been found, and
can be obtained from

(20)

III. N EW EVD UPDATING SCHEMES

BASED ON PLANE ROTATIONS

As explained in Section II-A, in subspace tracking applica-
tions, (18) needs not be satisfied exactly, but it is generally
desirable to enforce the constraint (19). In this section, a new
kind of improved parametric perturbationapproach is first
used to derive an approximate solution to (18), which satisfies
(19) exactly. Two approximate decompositions of the resulting
matrix into a product of plane rotations are then obtained.
When used in connection with (20), these decompositions
lead to new algorithms for the rank-one EVD update. The
algorithms are particularly attractive for subspace tracking
applications: The eigenvalues are obtained in close form (no
iterative search), the eigenvector update (20) is achieved effi-
ciently via sequences of plane rotations (complexity ranging

from to ), and, as a result, the eigenvectors
remain orthonormal during the update.

The parametric perturbation approach is presented in Sec-
tion III-A. The two decompositions of the matrix into
products of plane rotations along with the corresponding EVD
updating algorithms are derived individually in Sections III-B
and III-C. We refer to these algorithms as PROTEUS-1 and
-2, where PROTEUS stands for “plane rotation-based EVD
updating scheme.”

A. Parametric Perturbation of the Rank-One EVD Update

In essence, the parametric perturbation approach consists
of applying perturbation methods in a lower dimensional
parameter space associated with the constraint of interest, i.e.,
(19). Here, only first-order perturbation series are used so that
it can also be viewed as a form of constrained linearization [7].
Its application to subspace tracking is based on the assumption
that the memory parameterin (18) is small compared with 1,
which is verified in most situations of interest. For example,
to obtain an effective exponential window length greater than
20 samples, we need .

We begin by observing that for in the neighborhood of
0, the modified EVD components and in (18) and (19)
can be analytically connected to and , respectively, so
that and in the limit [38]. Thus,
for sufficiently small, the EVD modifications resulting from
the update (18) are small, that is, and

. To emphasize this point, let us first write
in the form

(21)

diag (22)

where the unknown parameter , represents
the modification in theth eigenvalue. According to the above
discussion, , provided is sufficiently small.

The introduction of a similar representation forin terms
of small parameters requires additional care because of the
orthogonality constraint (19). To derive such a representation,
we first note that as a consequence of (19).
Without loss of generality, we shall assume that ;
this amounts to multiplying one of the modified eigenvectors
(i.e., any column of ) by . With this additional restriction,

now belongs to the special orthogonal group [42],
i.e., the group of all unimodular orthogonal matrices,
which is also known as proper rotations. As a member of

, automatically admits an exponential representation
of the form

(23)

where is a skew-symmetric matrix in (i.e.,
, or equivalently, ), and is the

matrix exponential function, which is defined as

(24)

The above representation of in terms of the
real parameters for is of particular
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interest to us. Indeed, we have seen that forsufficiently
small, ; in light of (23), this in turns implies

.
The remaining steps of the proposed parametric perturbation

approach can be summarized as follows:

i) Substitute (21) and (23) into (18), and use (24) to
expand the exponential function (i.e.,

).
ii) Assuming small, retain only linear terms (i.e., of

degree zero or one) in and .
iii) Solve the resulting equation for and .
iv) Substitute the solutions back into (21) and (23).

The matrices and so obtained are the desired solutions
to the rank-one EVD update problem (18). Since the approx-
imation in step ii) is made at the level, it has no effect on
the orthogonality of , which is kept in via (23); the
orthonormality constraint (19) is thus automatically satisfied.
These steps are carried out below.

Steps i) and ii) lead to

(25)

which is linear in and . To implement step iii), we must
consider independently the diagonal and off-diagonal entries
in (25). Doing so, we arrive at2

(26)

(27)

The remaining entries of are obtained from its skew-
symmetry property (i.e., and for ).
Note that in the normalized EVD update problem (18), the
eigenvalues are distinct so that division
by in (27) is legitimate. For the final step iv), we
first substitute (26) into (21) and (22), yielding the updated
eigenvalue matrix

diag (28)

The updated eigenvector matrixis obtained in the same way
upon substitution of (27) in (23).

It turns out that the exponential function in (23) needs
not be evaluated explicitly. Indeed, two different approximate
decompositions of (23) as a product of plane rotations are
derived in the following subsections. When combined with
(20), each decomposition leads to a new, computationally
efficient algorithm for EVD updating (namely, PROTEUS 1
or 2) in which a specific sequence of plane rotations is used
to update the eigenvectors, thereby preserving orthonormality.

B. PROTEUS-1

The only assumption involved in the following derivation
of PROTEUS-1 is that . As pointed out in Section III-
A, this implies that , which in turn is exploited to
obtain the desired decomposition of (23) into a product of
plane rotations.

2As pointed out by a reviewer, similar equations also occur in the area of
continuous-time matrix differential equations. See [15] for additional detail
and references.

Consider the matrix with entries (27). Let
denote the matrix obtained from by setting all its entries to
zero, except for the and entries (i.e., and ),
which are left unchanged. It is then possible to expressin
terms of the matrices as

(29)

Substituting (29) in (23) and using the definition (24), it can
be verified that

(30)

Thus, can be expressed as a finite product of simpler
orthogonal matrices, namely, , plus an error term of
the order of . Here, the entries of are given by (27)
so that , and the error term in (30) goes to zero
as in the limit . Thus, for small values of, which is
the situation of interest in this work, it is reasonable to neglect
this term. Note that this has no effect on the orthogonality
of the matrix . Furthermore, in light of the linearization
approach used in the previous section, this does not represent
an additional approximation.3

Now, consider the matrix , which is the basic
building block in (30). Using the definition (24) once more,
we can verify that (see Appendix A for details)

(31)

where is the well-known plane (or Givens)
rotation matrix defined as [22]

...
... (32)

with all the unspecified entries equal to zero. Insight into the
signification of the parameters in (27) can be gained from
this result. Indeed, when considered individually, eachcan
be interpreted as a small rotation angle (in radians) in the

-coordinate plane.
Substituting (31) in (30) and neglecting the second-degree

error term, a first decomposition of is obtained, namely

(33)

with given by (27). This result simply states that for
small, the matrix (23) can be expressed as the product of

plane rotation matrices with small rotation angles
. Furthermore, to the first degree of approximation in,

the order in which these rotations appear is immaterial. This
is analogous to the well-known fact that small rotations in
three-dimensional (3-D) Euclidean space almost commute.

3Note that in Section III-A, the parametrizationV = j>i exp(	ij)
might have been used directly instead of (23). However, in light of the
derivation of PROTEUS-2 in Section III-C, we have found it preferable to
use (23).
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TABLE II
PROTEUS-1 ALGORITHM (TOTAL COMPLEXITY:

6LK2 + 1:5K2 + 2:5K RFLOP’S)

Based on the decomposition (33), a complete EVD updating
algorithm is now obtained. For the eigenvector update, sub-
stitute (33) in the place of in (20), which can then be
expressed as

(34)

where now represents a plane rotation matrix in
obtained from (32) by using instead of

as the lower right block diagonal element. According to
(34), the updated eigenvector matrix is obtained from
postmultiplication of by a sequence of plane rotations with
angles given by (27). For the eigenvalue update, simply
substitute (28) into (20). Observing that the last entries
of (16) are zero, it follows that

diag (35)

The complete algorithm is presented in Table II under the
name PROTEUS-1.

The initial values of and used in this algorithm are
those obtained after preprocessing (Section II-B). In Step 1
(Table II), the parameter is incorporated in the data vector
in order to reduce the overall number of computations. Step
2 is a double loop over the rows and the
columns of the matrix that implements the sequence
of plane rotations composing (34). As indicated
earlier, the order in which the rotations are performed might be
modified to better suit a specific processing architecture. Step
3 performs the eigenvalue update via a finite computation, that
is, no iterative search is involved.

In the case of complex data, each plane rotation requires
real floating-point operations (rflops), plus some overhead

to compute the trigonometric functions. The total complexity
of the algorithm in Table II is thus
rflops.4

C. PROTEUS-2

The operation count of the PROTEUS-1 algorithm
may be prohibitive for certain real-time subspace tracking
applications in which large values of and/or are used. In
this section, we present an alternative algorithm PROTEUS-2

4In the literature, complexity is sometimes measured in terms of complex
multiply–add operations (cops). In this paper, we prefer to use the rflops; to
obtain the approximate complexity in cops, simply divide the rflops count
by 8.

with an operation count. Its derivation is based on the
following assumptions: , as in the case of PROTEUS-1,
and . The latter is equivalent to requiring
that the eigenvalues are well separated. However, we point out
immediately that the use of PROTEUS-2 is not restricted to
this situation. Further related observations are provided at the
end of the section.

Recall that after preprocessing (Table I),
. If we further assume that the eigenvalues are well

separated, i.e., for , then the rotation angles
(27) can be approximated as

(36)

In order to preserve the skew symmetry of, we still let
for .

Next, we introduce a particular block representation for
the matrix , with entries now given by (36). Let

, where the dependence on the’s is indicated
explicitly, denote the principal submatrix of corresponding
to its first rows and first columns. Then, we have

(37)

where

(38)

We can see from (37) that as a direct consequence of our
assumption of well-separated eigenvalues, the two
dimensional column vectors occupying the upper-right corner
of are now linearly related. Below, this additional structural
property is exploited to derive a decomposition of as
a product of only plane rotations.

Let

arctan (39)

and

(40)

The plane rotation matrix so defined can be used to
zero the last entry of the data vector .
More specifically, premultiplication of by performs a
clockwise rotation by rad in the coordinate
plane so that

(41)

where

(42)

Thus, premultiplication of (37) by followed by
postmultiplication by will zero the first entries in
the last row and last column of without affecting the other
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entries of the matrix. Equivalently, since is orthogonal,
i.e., , we have

(43)

Using a well-known property of the matrix exponential func-
tion, namely, , it follows that

(44)

with as defined at the beginning of Section III-B.
Now, observing that the two matrices in the argument of the

exponential function in the last line of (44) are , we have

(45)

From our development in Section III-B, we recall that
. Furthermore, we note

that for any coordinate pair and for any rotation angle
and , . Thus, (45) can be

expressed in the form

(46)

where

(47)

Equation (46) indicates that up to an error term of order ,
the matrix can be factorized as a product of two plane
rotations and an orthogonal matrix with only
nonzero rotation parameters.

Clearly (i.e., invoking mathematical induction), this proce-
dure can be repeated until has been entirely
factorized as a product of plane rotations, plus an error term
in . Dropping this term, we finally obtain our second
approximate decomposition of (23), namely

(48)

TABLE III
PROTEUS-2 ALGORITHM (TOTAL COMPLEXITY:

24LK + (2� � 14)K � 2(2� + 7) RFLOP’S)

where

(49)

The rotation angles , , and in (49) are given by

arctan

(50)

where is defined recursively as

(51)

According to (48), the matrix (23) can be approximated by
a product of plane rotation matrices. In contrast to
the decomposition in (33), the order in which the plane
rotations appear in (48) is now important because the rotation
angles and are not small in general. The above procedure
is summarized in the form of the PROTEUS-2 algorithm in
Table III.5 In the complex data case, the total operation count
of this algorithm is rflops,
where is used here as a common flop count for the operations

and arctan .
Some comments are in order about the practical validity

of PROTEUS-2. The latter is based on a sequence of ap-
proximations between the last two rows and columns of the
matrices , starting with down
to . As seen, a particular situation where this can
be justified theoretically is when .
Such a spacing of eigenvalues is sometimes encountered in
frequency and DOA estimation when the dimension of the
signal subspace is small and the SNR is high. Other eigenvalue
configurations may also exist for which such a theoretical
justification of PROTEUS-2 is possible. More generally, we
have found through various experiments that the latter is robust
and can be used essentially without regard for the eigenvalue

5This version of PROTEUS-2 differs slightly from the one originally
presented in [8], where the variable� was computed as�i�0

i+1
=(i+1� i).

We have found that the new way of computing� in Table III is more robust
to rapid changes in the statistics of the observed data.
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TABLE IV
PROTEUS-BASED ALGORITHM FOR TRACKING COMPLETE EVD

configuration at the expense of possibly minor deteriorations in
tracking performance. Additional theoretical and experimental
support for this claim are provided in Sections IV and V.

IV. A PPLICATIONS TO SUBSPACE TRACKING

In this section, we discuss the application of the PROTEUS
algorithms to subspace tracking. Related issues of convergence
and numerical stability are also addressed briefly.

A. Complete Subspace Tracking

In this particular form of the subspace tracking problem,
we are interested in tracking the complete EVD of the data
covariance matrix (4), i.e., updating the full matrix
estimates and in (6) and (7). This can be achieved
easily by repeated application of PROTEUS 1 or 2 at each time
iteration. The procedure, which must also take into account
preprocessing as discussed in Section II-B, is detailed in Table
IV, whose description follows.

In the absence ofa priori knowledge, the algorithm can be
initialized by using and diag
in Step 1, with meaningful choices of eigenvalues(e.g.,
distinct, positive eigenvalues covering the power range of
interest). Other initialization procedures are possible, such as
using the EVD of an initial low-rank estimate of the covariance
matrix . Step 2, i.e., the loop over the time index,
defines the sequential portion of the algorithm. It consists of
four groups of operations:

a) data acquisition;
b) preprocessing as defined in Table I;
c) normalized EVD update with PROTEUS 1 or 2, as

described in Tables II and III, respectively;
d) postprocessing.

Postprocessing is optional and contains additional operations
that may be needed in specific applications. For example, it
may be necessary to permute the EVD components so that the
eigenvalues appear in nonincreasing order after the update.
In other situations involving closely spaced eigenvalues, it
may be advantageous to force these eigenvalues to be equal
by replacing them with their average. This will result in
computational savings and may improve the accuracy of the
estimated EVD. The decision as to whether certain eigenvalues
should be considered identical can either be based ona

priori knowledge, numerical considerations, or on statistical
hypothesis testing.

In the case of distinct eigenvalues, the operation count of
the preprocessing step (Table I) is flops. The
total operation count of the subspace tracker in Table IV is
obtained by adding this figure to the operation count of the
selected PROTEUS algorithm.

B. Partial Subspace Tracking

The eigenvalues of the data covariance matrix in (1)
are often known to satisfy

(52)

with . This occurs, for instance, when
, where is a signal component whose co-

variance matrix has rank , and is an
uncorrelated background noise component with covariance
matrix . In this case, the column span of the matrix

(53)

and its orthogonal complement are, respectively, called the
signal and the noise subspace. In these types of applications,
we are often interested in tracking only the signal-subspace
eigenvectors and the eigenvalues

. Clearly, this information can be obtained
as a by product of the subspace tracking algorithm presented
in Table V. However, it is possible to develop a more efficient
version of this algorithm that does not maintain and update
the noise subspace eigenvectors, thus requiring less memory
and computations.

To this end, suppose that the following information is
available at time :

,6 and . Accordingly, ,
where contains the unknown noise-subspace eigenvectors.
Beginning with preprocessing and referring to Table I, we
note that in Step 1 can be partitionned as ,
with and , where can be computed
explicitly. The transformations in Step 2 can then be applied
to and . Important specializations occur in Step 3.
Indeed, we note that there are only distinct
eigenvalues. The problem can thus be deflated by using the

6To simplify the discussion, we assume that the signal subspace eigenvalues
are distinct, but this is not necessary.
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TABLE V
PROTEUS-BASED ALGORITHM FOR TRACKING RANK -M SIGNAL SUBSPACE AND NOISE EIGENVALUE

block Householder matrix

diag (54)

where (size ) is such that

(55)

and denotes the left-most column of . From (54), it
follows that

(56)

Finally, Step 4 is not necessary here since the eigenvalues are
already in the desired order.

Next, we note that to update the signal subspace eigen-
vectors with PROTEUS-1 or 2, only the first
columns of (56) are needed (see Tables II or III). Since

is already known, it is thus only necessary to compute the
th column, which is given by . From (55), it

follows immediately that

(57)

To compute (57), let be the orthogonal
projection of the data vector on the noise subspace, and note
that and .

Following an EVD update with PROTEUS-1 or 2, we
generally find that . Some
postprocessing is therefore needed to maintain a strict equality
constraint on these eigenvalue estimates, in agreement with
(52). To this end, we use the noise eigenvalue smoothing
technique of [23], which amounts to

(58)

where here, [see (55)]. This technique, which
admits a least-square interpretation, often results in slightly
improved robustness to background noise.

The complete algorithm is presented in Table V. We note
that the size of the matrix in this table is now ,
instead of , as was assumed previously. Thus, when using
PROTEUS-1 or 2 to implement Step 2(c), the size of the plane
rotations matrices in Tables II or III, respectively, must
be adjusted accordingly, i.e., . The total operation count
of the algorithm in Table V is
rflops plus that of the selected PROTEUS algorithm. In
particular, when PROTEUS-2 is used, a tracking algorithm
with total complexity is obtained.

In certain applications, is unknown or may change over
time. In this case, the algorithm can easily be complemented
with a postprocessing function that performs incremental rank
estimation based on the available EVD information and then
makes the necessary adjustments to the algorithm parameters.
One such technique presented in [50] can be applied without
modification to the algorithm of Table V (simply set

), but alternative solutions do exist. Finally, note that
other partial problems of interest have been considered in the
literature, such as spherical [13] and four-level [14] subspace
tracking. Clearly, efficient subspace tracking algorithms based
on PROTEUS-1 and 2 could be derived as well for these
specific situations.

C. Convergence

Computer simulations have shown that the new subspace
trackers in Tables IV and V converge to and track the
desired EVD components under a wide range of operating
conditions (see Section V). Some theoretical justifications for
this behavior are briefly reported below.
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To begin, consider the complete trackers of Table IV, with
distinct eigenvalues. Coarse convergence to the vicinity of the
true EVD can be linked to the ability of the recursive estimate

(10) to converge to the true covariance matrix (1).
Indeed, let denote the approximation error that results
in (8) at time from dropping second-order terms in the
PROTEUS algorithms, and assume that for
some upper bound independent of . It can be verified
easily that the difference
is bounded by

(59)

This shows that can be made arbitrarily small for
large by choosing accordingly. Thus, if is a good
tracker of for small, so must be after
some time.

Under the assumption of stationarity, i.e.,
in (4), local convergence to the true EVD can be

investigated via a mean-value analysis of the error matrices
and , which is defined as7

(60)

(61)

Assuming small errors, i.e., and
, and proceeding as in the analysis of stochastic gradient

algorithms, it can be shown that when PROTEUS-1 is used
in Table IV

(62)

Hence, for , convergence in the mean is geometrical.
When Proteus-2 is used, (62) still holds for but must
be modified as

(63)

(64)

for . Note that although specific assumptions on the
eigenvalues were made in the derivation of PROTEUS-2, the
resulting subspace tracker converges geometrically, regardless
of the particular eigenvalue configuration; only the individual
rates of convergence of the matrix entries are affected.

A more general convergence analysis of the PROTEUS-
based signal subspace trackers in Table V using the ODE
method [2] shows that these algorithms are locally asymp-
totically stable [9] and, under weak additional assumptions,
globally stable.

D. Numerical Stability

In a finite-precision implementation of any recursive sub-
space tracker, buildups of numerical errors may occur if
the algorithm is operated over long periods of time without
reinitialization. Such buildups always represent a potential
treat since they may lead to numerical instability, which in

7A matrix �3(k) = [�3;ij(k)] satisfying (61) can always be found
by forcing det(U(k)) = 1; furthermore,�3(k) is skew-Hermitian, i.e.,
�3;ij(k) = ���3;ji(k) [42].

effects renders the algorithm impractical. In the new subspace
trackers proposed here, the eigenvalue update is numerically
stable due to the presence of the factor in Step 3
of the PROTEUS algorithms (see Tables II and III). For

, this factor limits the buildup of numerical errors
in the eigenvalue computation.

The only other possible source of error buildup is the
eigenvector update via sequences of plane rotations in Step
2 of Tables II and III. It is well known that numerical
errors generated through repeated application of orthogonal
matrices may keep on accumulating beyond limit. In certain
subspace trackers that have been proposed recently, partial
orthogonalization mechanisms [12], [30], [31] are indeed
necessary to avoid such an error buildup. However, we have
found experimentally that the new subspace trackers based on
PROTEUS-1 and 2 are not sensitive to this problem. In all
the simulations that we have done, some involving as many as

iterations, error buildup never occurred (see Section VII).
Thus, partial orthogonalization appears to be unnecessary with
these new algorithms.8 In effect, they have the capability of
correcting small deviations from orthonormality in the eigen-
vector estimates, as we have been able to verify theoretically
by studying their internal dynamics with the ODE method.

V. COMPUTER EXPERIMENTS

In this section, the performance of the PROTEUS-based
subspace trackers is investigated via computer experiments.
The data vector is modeled as

(65)

where

th entry of ;
normalized angular frequencies (possibly time-
varying) of the th exponential signal component;
complex amplitude of this component;
additive noise term.

The temporal sequences and
are mutually independent, strictly white noise

processes, each time sample having a complex, zero-mean
circular Gaussian probability density function. The common
variance of the is set to 1, whereas the variances of
the are specified by the signal-to-noise ratio (SNR)
parameters, SNR , respectively. The above
model is fairly general and can be used for both spatial and
temporal spectral analysis applications.

In the experiments, data generated according to this model
are processed with two different versions of the generic signal-
subspace tracker presented in Table V, respectively, based
on (and simply referred to as) PROTEUS-1 and 2. The data
are also process with Karasalo’s [23] and the NASVD [25]
algorithms for comparison. The former, which is referred to

8As pointed out by a reviewer, parametrizations of orthogonal matrices
apparented to (33) have been used in [37] and [54] to counteract error
accumulations by updating only the associated rotation parameters. In these
works, however, the eigenvectors are not directly available and must be
computed off line [inO(LM2) operations].
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Fig. 1. Initial convergence of KaSVD, PROTEUS-1 and 2, and NASVD
algorithms. Subspace error (top), eigenvalue error (middle), and frequency
estimation error (bottom) versus discrete-time indexk for SNR = 15 dB,
and � = 0:025.

as KaSVD for convenience, is an approach but uses
an exact (iterative) SVD algorithm of complexity for
the deflated problem and is thus of limited practical value for
large . Nevertheless, it provides a useful benchmark since its
performance is almost identical to an exact EVD of the sample
covariance matrix (10). NASVD is also of interest since,
similarly to PROTEUS-2, it is designed to track the complete
signal-subspace EVD (i.e., eigenvalues and eigenvectors) in

operations per iteration. In our implementation of
NASVD, we use a single diagonal sweep made up of
outer and one inner rotations, as suggested in [25], so that both
NASVD and PROTEUS-2 use a total of Givens
rotations.9 In all the algorithms, the correct number of sources

is assumed.
The following performance measures are computed:

i) the subspace error , where
and are the matrices of estimated

and true signal-subspace eigenvectors, respectively,
and denotes the projector on the column span of
its matrix argument;

ii) the eigenvalue error
;

iii) the orthonormality error ,
where denotes the Frobenius norm;

iv) the frequency estimation error
, where denotes the root-MUSIC [1]

estimate of .

Results for initial convergence, numerical stability, and track-
ing behavior are presented below.

A. Initial Convergence

We consider a stationary scenario with
and , and SNR SNR, for

9We have generally found that PROTEUS-2 requires less overhead and
memory space than NASVD due to the need to maintain and update an upper
triangular matrix in the latter.

Fig. 2. Initial convergence of the trackers for various SNR and�. Subspace
error versus discrete-timek for SNR= 15 dB, � = 0:05 (top), SNR= 5 dB,
� = 0:025 (middle) and SNR= 0 dB, � = 0:0125 (bottom).

. In the first series of results, the algorithms
are initialized with the EVD of a low-rank sample covariance
matrix obtained by averaging the outer products of the first

data vectors. Fig. 1 shows the subspace, eigenvalue, and
frequency estimation errors (all averaged over 40 independent
runs) for SNR dB and . The convergence rates
and residual errors of the PROTEUS algorithms are almost
identical to that of KaSVD. Note that in the case of PROTEUS-
2, this is so even though the first true eigenvalues are
not particularly well separated (true eigenvalues: 648, 471,
113, 37.9, 1.0). Regarding NASVD, its initial convergence
rate is significantly lower than the other algorithms, which is
consistent with the results reported in [34] and [35]. Although
it is possible to improve the convergence of NASVD by
making multiple sweeps, this generally results in a significant
increase in its computational complexity [in some of our ex-
periments, sweeps were needed to obtain a performance
comparable to KaSVD, thus making NASVD an
algorithm].

Fig. 2 demonstrates the effects of using different SNR and
(only the subspace error is shown). The top curve was obtained
with SNR dB and , which corresponds to a very
short exponential window of effective length 20 samples. Due
to second-order effects, the convergence of the PROTEUS
algorithms is now slowed down slightly as compared with
KaSVD. The middle curve corresponds to SNR dB and

(true eigenvalues: 65.7, 48.0, 12.2, 4.7, 1.0), and
finally, the bottom curve corresponds to SNR dB and

(true eigenvalues: 21.5, 15.9, 4.5, 2.2, 1.0). At
lower SNR, it is necessary to use a longer exponential window
to average out the effects of the noise; thus, we have the
smaller value of used in the last case.

To investigate convergence in the absence ofa priori
knowledge, another series of experiments was conducted with
the same simulation parameters but this time using random
initial conditions obtained by computing the EVD of the
sample covariance matrix of (scaled) noise-only vectors. Typ-
ical results for the subspace error are shown in Fig. 3 for
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Fig. 3. Initial convergence of the trackers using random initial conditions.
Subspace error versus discrete-timek for SNR = 10 dB, � = 0:025 (top)
and SNR= 0 dB, � = 0:0125 (bottom).

Fig. 4. Investigating numerical stability of the various trackers. Orthogonal-
ity error versus discrete-timek for SNR= 15 dB and� = 0:025.

SNR dB and (top) and for SNR dB
and (bottom). Generally, we have found that
whenever some form of convergence is possible with KaSVD,
the PROTEUS algorithms also converge to the same error
levels but possibly with an extra delay that depends on the
specific simulation scneario.

B. Numerical Stability

To test the numerical stability of the various subspace
trackers, we used the same scenario as above but let the
algorithms run over very long periods of time. Note thatno
additional reorthonormalization mechanisms were used with
the PROTEUS and NASVD algorithms in order to characterize
their intrinsic error buildup properties. In the case of KaSVD,
the situation is different since an exact, costly SVD routine is
used that produces orthonormal eigenvectors at each iteration.

Fig. 4 shows the orthonormality error of the various trackers
versus discrete-time for SNR dB and (single

TABLE VI
SAMPLE MEAN AND STANDARD DEVIATION OF ORTHONORMALITY ERROR

FOR KASVD, PROTEUS-1, PROTEUS 2,AND NASVD TRACKERS

run). The doted horizontal line in each subplot represents
the relative accuracy of numbers on our computer system,
i.e. . The sample mean and standard deviation of the
orthonormality error curves in Fig. 5 appear in Table VI.
The PROTEUS-based trackers show no apparent buildup of
numerical errors with time and maintain a similar level of
orthogonality as the exact KaSVD approach, which uses the
Matlab svd() routine [29]. The other performance measures
(which are not shown) are also stable and remain at the levels
attained after initial convergence. Numerous experiments of
this type generally suggest that in the computer environment
used here (Matlab, 32-bit UNIX workstation), no additional
reorthonormalization mechanism is necessary to ensure the nu-
merical stability of the new algorithms. NASVD also appears
to be numerically stable, although its error level is higher by
an order of magnitude due to some initial buildup.

C. Tracking Capability

To illustrate the tracking capability of the PROTEUS al-
gorithms, we first consider the following scenario: ,

, and time varying according to some simple
trigonometric functions. In Fig. 6, we show the true angular
frequencies and their root-MUSIC estimates (single run)
obtained from the KaSVD, PROTEUS, and NASVD trackers
for and SNR dB. The tracking performance of
the PROTEUS algorithms is seen to be comparable with that
of KaSVD; NASVD is not as good. The subplot in the lower
right corner of Fig. 6 compares the signal subspace errors of
PROTEUS-2 and NASVD.

To evaluate the tracking ability of the PROTEUS algorithms
under severe conditions, we consider a subspace rotation test
similar to that proposed in [11], in which the true signal
subspace undergoes a sudden large change corresponding to a
90 rotation. In our implementation of this test, we use ,

, and sgn for , where
sgn for and for . We also allow
sufficient time for the algorithms to converge prior to the
change at time . Fig. 6 shows the subspace errors of
the various algorithms (10 run average) for SNR dB and

(top) and SNR dB and (bottom).

VI. SUMMARY AND CONCLUSIONS

A parametric perturbation approach was used to derive new
EVD updating schemes for the rank-one modification problem.
Called PROTEUS-1 and 2, these schemes use sequences of
plane rotations to update the eigenvectors so that the latter
remain orthonormal. New subspace trackers based on the PRO-
TEUS schemes were derived, and their properties investigated
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Fig. 5. Illustrating tracking capability of various algorithms. True frequencies versus discrete-timek (top left). Root-MUSIC frequency estimates versusk for
KaSVD subspace (top right). Same for PROTEUS-1 (middle left). Same for PROTEUS-2 (middle right). Same for NASVD (bottom left). Comparison
of subspace errors for PROTEUS-2 and NASVD (bottom right).

via simulations. One particular algorithm based on PROTEUS-
2 can track all the signal subspace EVD components in only

operations while achieving a performance compa-
rable with an exact EVD approach and maintaining perfect
orthonormality in the eigenvectors. Some conclusive remarks
follow.

Although our formulation of the subspace tracking problem
centered around the EVD of the sample covariance matrix
in (10), we point out that the PROTEUS schemes and the
associated trackers of Section IV can be derived using an
SVD formulation based on the data matrix [9]. Indeed, the
PROTEUS trackers are truly data matrix algorithms (i.e.,
squaring operations occur only in the computations of the
rotation angles).

It is interesting to compare the conventional perturbation
approach used in [6] and the parametric one used here. The
former can be viewed as an unconstrained linearization of (18)
and (19) with respect to , where is a small
arbitrary matrix. The latter can be viewed as a constrained
linearization of (18) and (19) within the lower dimensional
space of skew-symmetric matrices , which is the
tangent space of the group at the group identity (i.e.,
the Lie algebra). In addition to preserving orthonormality,
an important advantage of this approach is the existence of
efficient realizations of (23) via plane rotations; this was not
apparent in [6].

Further simplification of PROTEUS-1 into an effective
scheme, as was done in Section III-C to derive

PROTEUS-2, is not a trivial task. For instance, another

Fig. 6. Ability of the various trackers to recover from a sudden, 90�

rotation in the true signal subspace. Subspace error versus discrete-timek

for SNR = 15 dB, � = 0:025 (top) and for SNR= 0 dB, � = 0:0125

(bottom).

scheme can be derived from (34) by setting
to zero for , where is some fixed small integer [8].
However, for small values of, this scheme does not perform
as well as PROTEUS-2.

The structured sequences of plane rotations used in the
PROTEUS algorithms involve a large number of local matrix
operations that exhibit a high degree of modularity and con-
currency. As such, they are potentially well suited for parallel
implementation on special-purpose circuitry (e.g., systolic



CHAMPAGNE AND LIU: PLANE ROTATION-BASED EVD UPDATING SCHEMES FOR EFFICIENT SUBSPACE TRACKING 1899

array implementation using CORDIC processors). Further
significant reductions in processing time could be achieved
in this way.

APPENDIX A
PROOF OF (31)

Without loss of generality, consider the case , and let

(66)

Observe that for

(67)

Therefore, we have

(68)
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