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Localization of Wideband Signals Using
Least-Squares and Total Least-Squares Approaches

Shahrokh Valaee, Benoit ChampagmMember, IEEE and Peter Kabalyember, IEEE

Abstract—n this paper, we introduce a new focusing technique matrix that is a sufficient statistic for the observation vectors
for localization of wideband signals. Relaxing the unitary as- [4]. A high-resolution algorithm, such as MUSIC [5], is
sumption for the focusing matrices, we formulate th_e least-square applied to this sufficient statistic to estimate the DOA’s. In
(LS) and the total least-square (TLS) coherent signal-subspace cs h binati fth band si Is i f d
methods. The TLS is an alternative to the conventional LS and M, t ? combination o t € narrowban S'g_nas IS per Ormef
uses the fact that the errors can exist both in the focusing location through linear transformation of the observation vectors; this is
matrix as well as in the estimated location matrix at a given calledfocusing The focusing operator at a given frequency is
frequency bin. To prevent the focusing loss, we use a class ofg matrix that transforms the location matrix of the array at that
focusing matrices that are constant under multiplication by their frequency to the location matrix at the focusing frequency. It
Hermitian transpose. The class of unitary matrices comports : ’
with this property. We then develop a new focusing technique has been shown that the CSM algorithm can resolve coherent
based on a modification to the TLS (MTLS). It is shown that the Sources [3]. Furthermore, it has a lower detection threshold as
computational complexity of the new technique is significantly compared with ISM.

The focusing gain of the new technique is also larger than the : : : : .
focusing gain of the RSS algorithm. The simulation study shows matrices [6]. This technique is referred to as the rotational

that, compared with the RSS, the new algorithm has a smaller signal-subspace (RSS) method. The unitary transformation

resolution signal-to-noise ratio (SNR). does not create fcusing lossThe focusing loss is a perfor-
mance measure proposed in [6] to motivate the use of unitary
|. INTRODUCTION matrices. In [6], the unitary focusing matrices are determined

based on a least-squares (LS) minimization of the norm of the

:(D)ESBA;T]?ha;rsy 2;2?\/8:5'52?15”521:2 ?::g :rprpahca;aiﬁerence between the transformed location matrix at each

. P ’ phone array ﬁequency bin and the focusing location matrix. In [7], it has

teleconferencing, and spread spectrum communications. S g_n shown that if the multiplication of the focusing matrix

eral approaches have been proposed in the literature to de St . P 9

and estimate the directions-of-arrival (DOA’s) of wideban y Its Hermitian transpose is independent of the frequency of
operation, the focusing is lossless. A variant of CSM is also

signals. In the most basic approach, the output signal of each. din 18l Th the f . trix h di |
sensor is partitioned into nonoverlapping frames or snapshq glned in [8]. There, € focusing matrix has a diagonal form
8t leads to computational savings. This method, however,

In each snapshot, a discrete Fourier transform (DFT) is useot f f ina |
sample the spectrum. For each frequency bin, a narrowb ers from 1ocusing '0ss. . . .
he objective of this paper is twofold. First, using the

array output signal, with the same DOA’s as the wideban . . :
Y p g )servations of [7], we generalize the technique of [6] to a case

signal, is formed. Each one of these narrowband signals is pP hich the ; b ) | d h |
cessed individually, and the results are combined to estim gvhich the focusing subspace Is selected as the column span

the DOA’s [1]. This approach is referred to as the incohereflf @ transformation of t'he focusiqg location matrix. Although
signal-subspace method (ISM). This method cannot locali?é d9 not expa”‘?' on It h.ere, this ‘?'egree of freedqm can be
completely correlated (coherent) sources; spatial smoothi Ic_"te(_j to acquire certain properties for the solut|.on. to the
might be used to handle correlated sources at a cost of redudffgilization problem. One example can be to optimize the
array effective aperture [2]. focusing subspace so that the resolution threshold or the bias
An alternative to the ISM technique is the coherent signdf! theé DOA estimation are minimized [9]. We use the least-
subspace method (CSM) [3]. In CSM, the correlation matric€9Uares and the total least-squares (TLS) formulation of the
at different frequency bins are combined, based on a p;gpblem and show that under certain constraints, they provide
estimation of the DOA’s. to form a “univérsal” correlationth€ same solution; this is an extension of the equation solution
' method discussed in [10]. We then modify the TLS approach

Manuscript received August 28, 1995; revised May 15, 1997. The associ . . .
editor coordinating the review of this paper and approving it for publicatioWTLS) to arrive at a new technique for the allocation of

was Dr. Ananthram Swami. the focusing matrices. The technique borrows its name from
S. Valaee is with the Department of Electrical Engineering, Tarbiat Modargge TLS solution to linear equations [11] since it permits

University, Tehran, Iran, and the Department of Electrical Engineering, Sharif . . . .
Un:xerszg of Technology, Tehran |r‘;n. ' gineenngd. Shaflarturbations in the location matrix at a measured frequency

B. Champagne is with INRS&ecommunications, Verdun, P.Q., Canade@S wWell as in the location matrix at the focusing frequency.

H3E 1H6. , e _The motivation to use a TLS approach comes from the
P. Kabal is with the Department of Electrical Engineering, McGill Univer- K inh . h dl X . d
sity, Montreal, P.Q., Canada H3A 2A7. uncertainty in erent in t e measure ocation _matrlces due
Publisher Item Identifier S 1053-587X(99)03239-0. to the error in pre-estimation of the DOA’s. Besides sharing

1053-587X/99$10.00] 1999 IEEE



1214 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 1999

this uncertainty between the measured location matrix and fhieis universal correlation matrix has the characteristics of the
focusing matrix, the new technique provides a consideraldgrrelation matrix of a narrowband configuration with the same
simpler implementation, as compared with the RSS approa€yOA’s. The universal correlation matrix can be expressed as
We also define théocusing gain We show that the focusing

gain of the new technique is larger than the focusing gain R=R, + R, (3)

of the RSS method. Computer simulation studies show thgfere R, and R, are the source and the noise universal
the MTLS technique outperforms the RSS by reducing thg rejation matrices, respectively, given by
resolution threshold SNR and the bias of DOA estimation.

The paper is organized as follows. A review of the back-
ground material on CSM is reported in Section Il. The new LS-
CSM and TLS-CSM algorithms are proposed in Section Ill.
In Section IV, the TLS algorithm is modified and the com- ‘L, I
putational complexity of the new technique is discussed. R, = ZUJTJNTJ’ (5)
Section V deals with the comparison of the new technique =t
to the two-sided correlation transformation (TCT) [12] andvhereT’; is thejth focusing matrix. The DOA’s are estimated
the signal-subspace transformation (SST) [7] methods. by performing the eigendecomposition of the matrix pencil

J

J
R, =) T;A;(0)S,A] (0T} (4)
j=1

Section VI, simulation results are presented. (R, R,,) and using the MUSIC algorithm [5].
In practice, the correlation matrix of the array is estimated
[l. COHERENT SIGNAL -SUBSPACE METHOD from the sample correlation matrix

Considerg wideband source signals arriving at an array of . 1K
p sensors from the distinct anglési = 1,---,¢ (¢<p). The Ry = ijkxf{k (6)
output of each sensor is uniformly sampled and decomposed k=1
into nonoverlapping frames or snapshots, each contaitlingThe yniversal sample correlation matrix is then
samples. AJ-point DFT algorithm is used in each snapshot
to sample the spectrum of the corresponding signal at a set
of discrete frequencies;,j = 1,---,J. The array output
vector for a fixed frequencw; is formed by collecting the
corresponding samples of all the sensors in a vector. Let thike eigenvalue decomposition is applied to the matrix pencil
array output vector for frequenay; at the kth snapshot be (R, Rn), where
represented by, ;. A model for this vector is given by

J
R=>"T,R;T}. )

i=1

J
Tk = Aj(0)s;k + 1 ) R, =) &jT;NT] (8)
j=1
wheres; , andn; i are theg x 1 signal vector and the x 1 o o ) 5 ) )
noise vector, andA;(6) = [a;(61)---a;(6,)] is the p x ¢ ands;, which is an estimate af;, is determined by averaging

location matrix at frequencw;. It is assumed tha#; (@) is thep — q smallest eigenvalues of the matrix pend;, NV).
full rank; at eachw;, the location vectors;(6;) anda;(6,)  The focusing matrices in the original CSM algorithm [3]
are linearly independent fat; # 6,. are the solutions to
Let the signal and noise be statistically independent from SN oA (d PR
each other with the correlation matric6s ando3 N, respec- Ao(6) = T;4,(6), J=loend ©)
tively. Furthermore, the samples of the signajs. and the where A,(#) is the focusing location matrix of the array,
n.oisenj,k are independent for different snapshots. Fpr alarge — (él’...’éﬁ) is the vector of focusing DOA's, and
t|mel—bandW|dth productZ samples of the observation vegtgr the number of focusing angles. To determipeand 0, a
at dl_ﬁ‘erent frequency bins are uncorre_lated. The C_O”ela“?)?eprocessing step is required. An ordinary beamformer is
matrix of the array at thgth frequency bin can be written asyppjied to estimate the DOA’s of the sources. If the angular
R, = Aj(a)SjAjH(o) +oIN ) separation between the sources is smaller than the bear_nwidth
of the beamformer, the spatial spectrum will show a single
where the superscripll represents the Hermitian transposipeak in the vicinity of the actual sources. Thus, closely
tion. separated sources may not be resolved at this stage. The
The signal subspace at each frequency bin is definedlasations of the detected peaks serve as the pre-estimated
the column span of the location matrix at that frequencipOA’s for focusing. In practice, a few more focusing angles
For wideband array processing, each frequency bin hasar@ added in the vicinity of the pre-estimated DOA’s [6]. These
different signal subspace. The CSM technique attempts aogles are used to determine e ¢ location matricesAq(9)
transform these subspaces using appropriate matrices in orainxﬂAj(é). In the original version of the CSMAO(é) is the
to align them. This is calledbcusing and the transformation array location matrix at the center frequency of the spectrum
matrices are referred to as tiiecusing matricesAveraging of the source signal. It has been shown in [9] that a better
the transformed correlation matrices gives a “universal” cofecusing frequency can be found by minimizing an appropriate
relation matrix that is used for detection and DOA estimatiowriterion. This results in an improved performance in bias and
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resolution threshold SNR. For simplicity of notation, in théNote thatU; is the closest unitary matrix t@’; [13]. The
sequel, all references tAO(@) andAj(é) will be indicated by minimization problem (13) can, hence, be written as
Ag and A;, respectively.

The matrix7’; that solves (9) is the focusing matrix of the
CSM algorithm at frequency,. The signal subspace at the
jth frequency bin is the column span 4f and is represented
by S.(A;). We will refer to S.(A;) as the “measured” signal- o 4 fixed C satisfying (15).
subspace. Similarly, the focusing signal subspace is the columArhe cost function (17) is bounded by
span of Ay and is denoted bys.(Ay). The multiplication of
T; by A; transforms the measured signal subspace ajtthe |[Ag — CU;A;|| < ||C)| - [|C 4o — U A4]). (19)
frequency bin into the focusing signal subspace. In general, o ] o
the linear equation (9) is underdetermined, and its solutipn e choose to minimize the upper bound (19) since it is
might be singular and nonunique. However, it is possible gignificantly simpler than (17). Furthermore, the upperbound

obtain a nonsingular solution to (9) by increasing the numbe&n be viewed as the error criterion of RSS when the focusing

min |4~ CU AP, G=1-0  (17)

st. ;U =1 (18)

of the focusing angleg to the number of sensoys[3]. location matrix is transformed b@!. I.n.[9.],.the focusing .
In [6], a unitary version of the CSM algorithm is introducedfréquency can be selected based on minimizing an appropriate
which is based on the following minimization problem: cost function. A similar technique might be used to determine
C~!. An alternative is to choose a diagonél~'. Each
H%ijn Ao = T54;11%,  j=1,--,J (10) diagonal element o2~ is considered to be a calibrating

" " factor that is used to correct or modify the response of
st. TyT; =TT =1 (11) the corresponding sensor in the focusing subspace. As a
where || - || is the Frobenius norm of a matrix, anHl is third alternative, consideC""A, = A¢A, where A is a

the identity matrix. It has been shown that the unitary csh x4 diagon_al matri>_<. In this case, the effect of r_nultiplying
; i ; ,ﬁ)"l by Ap is to weight the focusing DOA’s. This can be

does not create focusing loss. This technique has been terred 0 g : i ,

the rotational signal subspace (RSS) focusing method. T#ged whenever the uncertainty in the location of the DOA’s

solution to (10) is given by [6], [13] differs for different angles. Thu_s, an ap|c_)ropria(ﬂ'e_1 can
" be employed to enhance certain properties of the focusing
T;=VoV; (12) technique. We do not pursue this discussion further and

whereV, andV; are the left and the right singular vectorsContlnue W.Ith a gene_:raD’. .
As mentioned earlier, we propose using

of ApAl.
min ||[C Ay — U A,  j=1---,J (20)
lIl. THE LS-CSM AND TLS-CSM ALGORITHMS Us

Lossless focusing is not limited to unitary transformations.

. H . .
In [7], it has been shown that as long’BsT";" is independent g getermine the focusing matrices of the least-squares coher-

of j, focusing is lossless. We use this observation to propos@g signal-subspace method (LS-CSM). The solution to this
least-squares coherent signal-subspace method (LS-CSM) gaghiem is given by [13]

a total least-squares coherent signal-subspace method (TLS-
CSM). U; =V (22)

st. U;U =1 (21)

A. LS-CSM whereV, andV; are now the left and the right singular vectors

. : _ __of C7' Ao A", The corresponding’; is
Using [7], the focusing matrices of the coherent signal-

subspace method are selected as the solutions to T; = OVon. (23)

; 2 ;= . .
Hil}jn 140 — T A4, j=1d (13)  Note that forC = 1, the focusing matrix of the LS-CSM
pH method is identical to the focusing matrix of RSS, which is a
st 1,17 =D (14) special case of the SST technique [7].
where D is a Hermitian, positive definite matrix independent An alternative interpretation to the LS-CSM algorithm
of j. might be obtained by investigating the error of transformation.
Let the square root of? be represented by a HermitianDefine

matrix C Eo=U;A; — C ' A,. (24)

C?=D. (15)
The LS-CSM problem can be rearranged as
Let the singular value decomposition bf be represented by

T; = V;3;WH. Then, 7,7 = v,V = D = ¢?, and min || Eol|” (25)
H ; H ’
C=V,;X;V;. Thus, ifU; = V;W;, then st. Ay + CE, =T;A; (26)

T, = CU;. (16) T, = C*. (27)
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The constraints in this minimization problem show that the lo-  Proof: For any fixedF';, using Lemma 1, it is seen that
cation matrixA4g is perturbed such that; can be transformed the perturbation matri¥”y, which has the smallest Frobenius
onto it using the focusing matri¥’;. The minimization (25) norm, is in the subspace spanned by the column vectors of
guarantees that the perturbation matfiy has the smallest C~'Ay. Thus, S.(Fy) C S.(C™Ay).
Frobenius norm. Now, fix Fy, and let?T’; = CU;. The constraint (33) can
Here, we introduce a lemma that will be used in thbe written as
following section. This lemma states that the perturbation " 1
matrix Ey lies in the same subspace as the maffix Ay. Uil (Fo+C *Ao) = A; + F;. (37)
Lemma 1: Let £, be the solution to (25). The column sparote that the solution to the minimization (¢ ||2 is obtained
of the perturbation matri¥s, belongs to the column span off.q, (25) withC = I. Using Lemma 1 completes the prddf.

C Ao, e, Lemmas 1 and 2 are used to solve the TLS-CSM problem
(32), as indicated in the following theorem.
Se(Eo) € S.(C™ Ay). (28)  Theorem 1:Let the matrices of the left and the right

singular vectors ofC_lAOAJH be given byV, and V,

Proof: Using (22), the perturbation matriE, can be respectively. Then, the perturbation matrices
written as Fo=1(UA; - 1 Ao) (38)
Eo=VoViA; —C 4. (29) Fi=3Uj'C" 4 — 4;) (39)
solve (32) with the transformation matrix
Assume that the singular values 6f ' A,AY are arranged T —CU. (40)
in nonincreasing order. Decompose the matritgsand V; 7 J
into two submatriced o = [Vo1 Vo] andV; = [V,;1V 2] SO where
that thep x ¢ matricesVy; and V;; correspond to nonzero n
singular values. Sinc€ is nonsingular andi; is full rank U; =VoVy. (41)
(by assumption)C* Ao A} spans the same spaceGis' Ao.
Thus, V; forms an orthonormal basis for the column span
of C™'Ap. A similar argument indicates thdt ;; forms an
orthonormal basis for the column span 4f. SinceV; is
a unitary matrix,V ;o will be orthogonal toA;. Using these
results in (29), we have

Proof. See the Appendix.
Note that the focusing matrices for the LS-CSM and TLS-
CSM techniques are identical. This might be considered to be
an extension to the results of [10]. There, it has been shown
that if the solution of a set of linear equations is confined to be
a unitary matrix, the LS and TLS techniques produce the same
I results. Here, we have shown that the similarity of the LS and
Ey=[VoiVoo] [I‘iﬁ}A’ —CctA, (30) TLS solutions can be extended to the cases where the product
32 of the matrix by its Hermitian transpose is a fixed matrix.
=VauViiA; —C A, (31)
V. A COMPUTATIONALLY EFFICIENT TLS-CSM ALGORITHM
Note thatV,; andC~' A, span the same subspace. Thidg, Lemmas 1 and 2 indicate

is in the column span of *A,.
Se(Ao) = S(T;A;) (42)

B. TLS-CSM where T'; can be the transformation matrix for either LS-

The total least-squares coherent signal-subspace metf@M or TLS-CSM. Thus, the column span 4f; is exactly
(TLS-CSM) is based on perturbing botd, and A;. The transformed to the column span df,. This property holds

TLS-CSM transformation matrix is the solution to for all signal-subspace transformation techniques used for
localization of wideband signals.
min  (||1Foll? + ||F;|?) (32) The objective of subspace transformation is to transform the
j array manifold at the measured frequency to the array manifold
st. Ag+CFy=T;(A; + F;) (33) at the focusing frequency. Since this transformation might not
TjTJH — 2 (34) be possible for all angles, if the focusing matrix is confined

to a certain class—say, being unitary—the transformation is
usually performed in a neighborhood of the estimated DOA's.
Thus, ifT';A; is close toAy, a good estimate of the DOA’s
might be expected, provided the true DOA’s are in the vicinity
of the focusing DOA’s. Note that the location matricgésand

Aq are determined by a preprocessing step (pre-estimation of
DOA's) and, hence, contain an error of estimation. Because of
Se(Fo) C Sc(C_lAO) (35)  uncertainties indy and A;, minimizing the errord’y and F';
S.(F;) CS.(A)). (36) does not necessarily lead to appropriate results. Here, we relax

where F'y and F; are the perturbation matrices.

Lemma 2: Let Fy and F'; be the solutions to (32). In
the TLS approach, the column span Bf and F'; belong,
respectively, to the column span 6F* 4, and 4, i.e.,
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the error constraint in the hope of arriving at a reduction in
computation. Based on these arguments, we modify the TLS
transformation technique as follows.

If the number of focusing angles is smaller than the number
of sensorg§ < p), the rank of4; and A; is smaller tharp,
and the unitary solution (41) is not unique. Let the matrices
Vi, and V; be decomposed into the form&, = [V V2]
and V; = [V, V2] so that thep x § matricesVy; and
V ;1 collect the singular vectors corresponding to the nonzero
singular values. In such a caslégAj = 0, and we have

Csia) L sA)

VH

T;A; = ClVo1 Vo] [V% } A;=CVy VA, (43)
J

Fig. 1. Geometric interpretation of the MTLS algorithm.

Thus, for DOA estimation, we could choobg = vaﬁ. In
this caseU; is no longer unitary but hag nonzero singular
values equal to 1. Le¥,(C) be the set of alp x p matrices
defined as

As shown in the figure, the location matricéds and A;
are projected ontd@;(I). In the set ofp x ¢ matrices with
orthonormal columnsi¥, andW ; are the closest matrices to
Ay and A;, respectively [13]. A modified total least-squares
) coherent signal-subspace method (MTLS) can be obtained by
T,(C) ={CM|M € Cpxp,0i(M) =1,fori=1,--- ¢ choosing the focusing matrig’; as
ando;(M)=0,fori=¢+1,---,p} (44)
T; =WW. (46)
whereC,,«,, is the space of x p complex matrices, angl;(M)
is theith singular value ofM. Based on (43), the constraintThe focusing matrix transferd¥; to Wy. In fact, since
TjTJH = D = C? in (32) might be replaced b¥; € T(C). Ao and A; are erroneous, they have been replaced by the
Using a technique similar to the proof of Theorem 1, it igpproximationsW, and W .
possible to show that the solution to (32) is given by The computation of the focusing matrix (46) can further be
simplified to

T, =CVy V. 45
J or¥ 51 ( ) TJ _ AOQEIQ;IAf (47)

Study of the TLS-CSM technique indicates that the process . .
. . ; sing the second property of the polar decomposition, the

of focusing can be decomposed into two steps. First, tEJ)Zcusin matrix in the MTLS algorithm is
measured signal-subspaISQAj) is rotated, usind/;, to the 9 9
subspace spanned Wy - Ay. Then, usingC, the result is o H g N\—(1/2) gH g \—(1/2) 2 H
transformed into the focusing subspace. We use this view to Tj = Aoy Ao) (47°4;) Ay (48)
develop a new technique for wideband signal localization. e will discuss shortly the computation of the focusing matrix

Let matrixC be a full-rank transformation that mags(A4o) T; from (48).
to itself [S.(Ao) is invariant undeC)]; an example would be
the identity matrix(C' = I, which we use in the sequel. Witha_ Focusing Gain
this assumption)|4o — CU;A;|| = ||C™' 4o — U;A;|| =
|40 — U, A;||. The matrixU; = Vo V] transformsS,(4;)
and overlaps it withS.(Ag). We choose two orthonormal
bases inS.(Ay) andS.(4;) and determine a focusing matrix
that transforms the basis &f.(4;) onto the basis 08.(Ay).
Let the polar decomposition of the matrices and A; be
represented by oQ, and W;Q;, respectively, where, J J
and Q; are g x ¢ Hermitian, positive-definite matrices, and Y Al H 2 pH
W, and W, are p x ¢ matrices that satishWi W, = m ;TJAJ(Q)SJA] ()T / i Za] it
I, W]HW]» = I [13], [14]. The polar decomposition has theGy =

The focusing gainis defined as the ratio of SNR at the
output of the focusing process to the SNR at the input. The
definition of the focusing gain is analogous to the definition
of the array gain in beamforming [15]. Using (4) and (5), and
assumingN = I, the focusing gain is given by

i=L

. ; J J
following properties:
g propertes. - , Tr | S"a50)8,450) | /T [ S0
1) The matrixW is the closest matrix (in Frobenius norm) = =
in the set ofp x ¢ matrices with orthonormal columns (49)
to Ao. A similar argument holds fol; and 4;. where Tr(.) is the trace operator. The focusing gain of the

2) Sinced is full cg{lumn rank, the positive—def?ite matrixRSS technique for the true values of the DOA’s is equal to
Q, is equal to( A Ao)'/?. Similarly, Q; = (A7 A;)'2.  one sinceT’; is unitary—the same as the focusing loss. The
See Fig. 1 for an illustration of the first property. focusing gain of MTLS for the true values of the DOA'’s is



1218 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 1999

given by(T’; = WOWf) in (50), shown at the bottom of the The bulk of the computational complexity of the new
page. For true DOA’sW]HAj(o) = Q,. Using the properties focusing method is due to Step 4 in the above algorithm. To

of trace find the square root of the Hermitiagx ¢ matricesAJHAj,j =
0,---,.J, we can use the eigenvalue decomposition or apply
J . . - an iterative Newton method [14]. It is possible to show that
Tr | > WoWi A;(0)S,A] (0)W,; W for the Hermitian, positive-definite matri®, if X, = I and
j=1
J
X1 = 2 (X +BX;Y 55
j=1

J then X, — /B quadratically, where/B denotes the square
=Tr | Y A;(0)S;47(0) |. (51) root of B. To computeA; (A}’ A;)~(1/2), we use (55) or the
j=1 eigenvalue decomposition to find the square rootAﬁ‘fAj
and then multiplyA; by the inverse of(Al'A;)}/2. Since
A; and A, are simply the estimates of the true location
matrix, andg is usually larger thag, a thorough computation
L, o P A of (A A;)~(/2 may not be necessary; a small number of
i Zgj WoW;iW,Wo | = ngj' (52) iterations of (55) may suffice.
=t We compare the MTLS and the RSS techniques based
on the number of real flops for computing the focusing
matrices. To form the matriceﬂf’Aj, O(pg?) flops are
required. Assume that the eigenvalue decomposition is used
to determing(A* A;)=(1/2). An eigenvalue decomposition of
AT A; can be performed i©(¢®) flops. Again,0(¢%) flops
¥ire required to buildA A;)=(1/?). The multiplication ofA,
and (A" A;)~(/2 needsO(pg?) flops. Adding these values,
) the total number of flops in computing each matk; in the
B. The Algorithm MTLS algorithm amounts t@(pg?).
The MTLS algorithm is summarized as follows. In RSS,0(p?q) flops are needed to buiIAOA]H. Then, a
1) Apply an ordinary beamformer to pre-estimate thg X p Singular value decomposition is performed to acquire
DOA’s; add a few more angles in the vicinity of thethe left and right singular vectors cmoA]H. This requires
pre-estimated DOA’s, and for = (6;, - -, 8,). O(p®) flops. The multiplication of the left and the right
2) Decompose the output of the sensors into nonoverlagtgular vectors is also performed ®(p®) flops. Thus, in
p|ng snapshotS, and app|y a DFT a|gorithm in eaaﬁtal, the Computational load in RSS is on the OrdeO(QfJ?’).

Snapshot to Sample the Spectrum of data. If (_? < P, the MTLS algorithm iS Signiﬁcantly faSter than
3) Form the location matriced;,j = 1,---,.J, and Ao. RSS. Note that sinc#’; is not explicitly formed in the MTLS

4) Compute(A,HAj)—(l/?), andW; = Aj(A,HAj)—(l/Q) algorithm, a computation on the order 6f(p?3) is saved
for j = ()’..J.’J_ ! in the multiplication of the focusing matrices by the sample
5) Determine the universal sample correlation matrix ~ correlation matrices [see Step 5)].

Now, note that

j=1
Thus, the focusing gain for the MTLS is

GYTES = P s g = GRS, (53)
q

Intuitively, the MTLS algorithm reduces the noise effect b
annihilating the noise components in the noise subspace.

J
D _ Hip . H
R=Wo Zle BW; | Wy (54) V. RELATIONSHIP TO OTHER TECHNIQUES
=
Recently, two alternatives to the RSS have been proposed

6) Use AIC or MDL to determine the true number ofin the literature. In this section, we review the two-sided

sources [16]. correlation transformation (TCT) [12] and the signal-subspace
7) Apply the MUSIC algorithm to estimate the DOAs. transformation (SST) [7] techniques and show their relation-

8) To improve the performance, iterate Steps 3)-8). ship to the MTLS algorithm.

i=1 =1

Tr (iAj(o)sjAf (o)) / Tr (ia?l)

J J
Tr (Zwowf A;(0)S, AT o)W ;W ) / Tr (Zafwowf wwl )
GMTT,S —
f

(50)
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A. Two-Sided Correlation Transformation Proof: The solution of (63) is given byl’; = VoV,

In [12], we have introduced the unitary TCT algorithmivhereVo andV; are the eigenvectors oA and A;A7
for wideband array processing. The focusing transformati¢h2]. Noting that the eigenvectors ofoA) and A, A} are

matrices in the TCT method are the solutions to identical to the left singular vectors of, and A;, the proof
is complete. O

min |[Py — UijU]HH j=1,---.J (56) This theorem indicates that unlike MTLS, the SST method
Us only uses the left singular vectors 4f andA;. Exploiting the

s.t. U]HU]' = UjU]H =1 (57) right singular vectors in MTLS results in a better performance.

That is because in MTLS, the transformation matrix is formed
where P; is the noise-reduced array correlation matrix at they multiplying W, and W;, which are, respectively, the
jth frequency bin and is computed from closest matrices with orthonormal columnsAg and A; (see

Fig. 1).

A

P;=R; - 5N (58)

P ) . . . . C. Discussion
whereR; is defined in (6), and‘rf is an estimate of the noise

power at thejth frequency bin;P, is the focusing correlation  We note that for the RSS, SST, TCT, and MTLS techniques,
matrix defined byPy = AoSo AL, whereS,, is the average of Sc(4o) = Sc(T';A;), whereT’; is the corresponding focus-
the estimated source COI’re'ation matrices |ng matl’ix. We dIStInngh these teChniques by the methOd
they compose: the unitary focusing matrices. In general, se-
1A lecting the focusing matrices in any unitary transformation
So = 7 ZSJ" (59)  coherent signal-subspace technique comprises two steps. First,
i=l1 some orthonormal bases are found for the measured subspace
S.(A;) as well as for the focusing subspa&g(Ao). Then,
a unitary matrix (or a matrix with orthonormal columns) is
formed, which transforms basis &.(A,) onto the basis of
Se(Ao).
i In RSS, the two bases are the left and the right singular
where X, and X ; are the eigenvectors d?y and P;. vectors of AgAY. The left singular vectors form an or-

A _umtary tran_sformanqn matrix I c_hosen in _the _TC-IEhonormaI basis foiS.(4o), and similarly, the right singular
algorithm to avoid focu5|lr}g' loss. I%X; is aHmatnx.wnh vectors form an orthonormal basis f6r(A;). In MTLS, the
orthonormal columns{/;U;" is equal t0.Xo Xy and inde- o honormal base#, and W; are the unitary matrices of
pendent ofj, and thus, there is no focusmg loss [7]. We mgipne polar decomposition o, and A;. The basisW, is the
assume thaiX, and X; are the eigenvectors corresponding, ,injication of the left and the right singular vectors 4
to the nonzero eigenvalues &% and P;. In such a case, the 13]. The same argument holds f#; and A,;. W, and W,
focusing matrix is not unitary; however, its nonzero singulggspectively, are the closest unita;y matrijcesm@ and f{j

A solution to (56) is given by

U; = XoX]' (60)

values are unity, i.ed/; € 7(I). in the Frobenius norm sense [13]. In SST, the orthonormal
bases for the measured and the focusing subspaces are the left
B. Signal-Subspace Transformation singular vectors ofd, and A;. In TCT, the transformation
Recently, Doron and Weiss [7] proposed a signal-subspd®B@lrix is XoX ', where X, and X; are the eigenvectors
transformation (SST) by solving of the noise-reduced correlation matricEs and P;. Since
P; is measured directly from data by simply subtracting the
min  |[AgDo Al —TjAijAfT]HH? (61) noise power, it does not contain DOA pre-estimation error.
T; This fact fortifies the TCT with the possibility of producing
s.t. TJHT]» = TjTJH =1 (62) unbiased estimates of the DOA’s in an asymptotic sense; the

other techniques discussed here do not have this property.
where Dy and D; are any Hermitian, positive-definite matri- The computational complexity of SST is on the order of
ces. In their simulations, they chose the identity matrices f6}(p°¢), and its performance is almost similar to RSS [7].

Dy and D;. This results in TCT has a modest computational complexity relative to RSS,
but its capability to generate asymptotically unbiased estimates
min ||AoAY — T;A; AT |2 (63) and its smaller resolution threshold SNR favor its use for
T wideband array processing. The MTLS algorithm has the
st. T/T; =T,/ =1. (64) smallest computational complexity [on the order@fpg?)].
The performance of SST is comparable to RSS (see [7]). TCT
Theorem 2: The solution to (63) is given by outperforms all the others, however, with an increase in the
computational complexity [12]. The performance of MTLS is
T; =VoVi. (65) better than that for the RSS as shown in the following section.

In Fig. 2, the four techniques are roughly compared in terms
whereV, andV; are the left singular vectors ofy andA;. of their computational complexity and performance (bias).
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PERFORMANCE TABLE 1l
AVERAGE STANDARD DEVIATION (IN DEGREE9 FOR 100
INDEPENDENT RUNS FOR A SCENARIO WITH TWO CLOSELY SEPARATED

good SOURCES AT 10 AND 14° ARRIVING AT A UNIFORM LINEAR ARRAY

OF EIGHT SENSORSUSING THE RSSAND MTLS ALGORITHMS
et RSS MTLS
SNR 10 14 10 14
10 0.168 0.163 0.141 0.138
MTLS SST RSS 20 0.048 0.045 0.042 0.041
° . . 30 0.017 0.016 0.015 0.015
40 0.009 0.010 0.008 0.009

50 0.007 0.008 0.005 0.009

poor

COMPLEXITY
low high 45 T T T T T T T T T

Fig. 2. Comparison of the four techniques: MTLS, SST, RSS, and TCT. 40

TABLE |
AVERAGE BIAs (IN DEGREE9 FOR 100 INDEPENDENTRUNS FOR A SCENARIO WITH
Two CLOSELY SEPARATED SOURCES AT 10 AND 14° ARRIVING AT A UNIFORM
LINEAR ARRAY OF EIGHT SENSORSUSING THE RSSAND MTLS ALGORITHMS

RSS MTLS
SNR 10 14 10 14 20
10 —0.271 0.281 —0.150  0.151
20 —0.205 0.212 —~0.144 0.147 15} ]
30 —0.200 0.205 —0.142 0.146
40 —0.199 0.204 —0.143 0.146 1or
50 —~0.199 0.203 —0.141 0.145 o
00 5 10 15 20 25 30 35 40 45 50

VI. SIMULATION RESULTS

3. Peak-to-valley measure of the RSS and MTLS methods averaged

. . . . Figl.
In this section, we present the computer simulations tht#er 100 independent runs for a scenario with two closely separated sources
were performed to compare the LS (RSS) and the MTLs 10 and 12 arriving at a uniform linear array of eight sensors.

approaches to the CSM algorithm with = I. In the first

example, we consider a configuration with two equipoweﬂ[I i betw th f th tial t
coherent wideband sources at the DOA®® and 14° in € difierence between the average of the spatial spectrum

the far-field of a uniform linear array of eight sensors. Tht the peak points in the MUSIC algorithm and the spatial

spacing between each two consecutive sensors is half ghectrum in the valley [17]. The result_ is shown in F'g'_ 3 Note
wavelength at the center frequency of the spectrum of tfféft for small SNR, the MTLS algorithm has a significantly
wideband signals. The signal of source r is delayed Peler peak-to-valley measure than the RSS.
one sample and introduced as the signal of sourcé4at To find the probablhty of res_olut|on threshold, we count
The sources have a flat complex frequency spectrum ovethg number of times each algorithm resolves the sources. The
40% relative bandwidth. The center frequency of the spectriurces are assumed to be resolved when two peaks in the
is selected as the focusing frequency. The output of eagPatial spectrum of the MUSIC algorithm are in the vicinity
sensor is decomposed into 100 snapshots of 32 samples effihin 1°) of the true DOA. Fig. 4 shows the probability
An FFT algorithm is used in each snapshot to sample tg& the resolution for the two methods. It is seen that the
spectrum of signals. A Monte Carlo simulation is performedgsolution threshold (defined as the SNR for a fixed probability
and the bias, the standard deviation, and the resolution &fgesolution) for the MTLS algorithm is smaller than that for
averaged over 100 independent runs. At each run, a deléﬂﬁ RSS.
and-sum beamformer is used to estimate the DOA’s. Then/Fig. 5 illustrates the focusing gain as a function of the
two extra angles are added &tftom the estimated DOA. This perturbation on the DOA’s. As noticed, the maximum focusing
simulation was performed for different SNR’s. The focusingain is obtained for true DOA's.
matrices in the RSS and MTLS algorithms are computed fromTo study the performance of the MTLS algorithm for
(12) and (46), respectively. The average bias and the averagdtigroup sources, we add two more source8xitand37°
standard deviation are reported in Tables | and 1l. Note thaith the same power and increase the number of sensors to 20.
bias of the MTLS is smaller than the bias of the RSS farable Il presents the averaged bias for 100 independent runs.
all SNR’s. The difference is significant for small SNR'’s. Thé\s it is seen, the RSS and the MTLS algorithms both have a
standard deviations of the two techniques are almost identicgthall bias. To compare the computational complexity of the
We also compare the peak-to-valley measure of the RSS awd methods, we count the number of flops in the MATLAB
the MTLS methods. The peak-to-valley measure is defined sftware. The location matriced andA; are 20x 6 matrices
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1 and the total least-squares coherent signal-subspace methods
0sl are formulated in a general structure, and it is shown that under
certain constraints, the two techniques provide an identical
081 ] solution. The method can be viewed as an extension to
o7k _ nonunitary focusing techniques in the CSM algorithm. We then
use this formulation to derive a new focusing algorithm. The
0.6 focusing matrices in the new algorithm are determined based
sl on a modification to the total least-squares method (MTLS).
We show that the new technique can increase the focusing
04r 1 gain achieved by a unitary coherent signal-subspace method.
03k The computer simulations verify that the new technique has a
better than or equal to performance than RSS and a smaller
o.2r computational cost. In particular, it is shown that the new
oqh method has a smaller resolution signal-to-noise ratio and
a smaller bias than RSS. The computational complexity of

0

0 15 MTLS is smaller than that for the RSS.

Fig. 4. Probability of resolution for the RSS and MTLS methods for a
scenario with two closely separated sources at 10 arfd éidiving at a
uniform linear array of eight sensors.

APPENDIX
PROOF OF THEOREM 1

We use the Lagrange multipliers method to solve (32). The
Lagrangian is defined as

/o';i\

3 AT I\ L =||Fol]? + ||F;||? + 1% [ ® (Ag + CF

2 &%ﬁmwmﬁk —T;(A; + F))]1; + 1; [B o (T,T5 — C)]1;  (66)
Se% e8! 0\\\ . T .
‘t{{ﬁ\‘“&\\‘“’l"f\\\\{}‘ wherea and# are the matrices of Lagrange multipliets; is

b ",;\‘ \‘:&0’ 7 \\&\‘\:{ a g x 1 vector with all components equal to 1, the supersdipt

denotes transposition, arwlis the Hadamard product defined

[A© Blij = aijbi; (67)

for two matricesA = [a;;] and B = [b;;]. The derivative o/
with respect to a complex variableis defined as

Fig. 5. Focusing gain as a function of perturbation on the DOA's for a
scenario with two closely separated sources at 10 arfd érdving at a o 1 o L of
=3 —-J (68)
Oz dzgr dxr

uniform linear array of eight sensors.

TABLE 111
AVERAGE BiAs (IN DEGREEY FOR 100 INDEPENDENT RUNS
FOR A SCENARIO WITH FOUR CLOSELY SEPARATED SOURCES
AT 10, 14, 33,AND 37° ARRIVING AT A UNIFORM LINEAR ARRAY
OF 20 SENSORSUSING THE RSSAND MTLS ALGORITHMS

RSS MTLS
SNR 10 14 33 37 10 14 33 37
0 -0.03 0.04 -0.03 0.03 —0.03 0.03 -0.0t 0.04
10 -0.03 0.04 -0.03 0.03 -0.04 0.03 -0.01 0.04
20 —-0.03 0.04 -0.03 0.03 -0.04 0.03 -0.01 0.04
30 ~0.03 0.04 -0.03 0.03 ~-0.03 0.03 -0.01 0.04
40 -0.03 0.04 -0.03 0.03 ~0.04 0.03 -0.01 0.04
50 -0.03 0.04 -0.03 0.03 -0.03 003 -0.01 0.04

where zg and z; are the real and imaginary parts of the
complex variablez. We also define the derivative with respect
to a matrix B = [b;;] as

¢ ¢
OB ~ {abij] (69)
Using these definitions, we have
ar " .
ar " I
| =F;, —-THa* =
{BFJ ; ot =0 (71)

(corresponding tg = 20 and ¢ = 6). MATLAB uses about \here[.]* denotes the complex conjugation. These equations
12.9 mega flops to compute all the focusing matrices in thge solved along with

RSS technique. MTLS requires about 1.8 mega flops, which

is smaller than that for the RSS by a factor of 7.

VII. CONCLUSION

This paper introduces a new focusing technique for the

Ao +CFo =T;(A; + F) (72)
T,V =C* (73)

to getF, and F';. (70) and (71) give

coherent signal-subspace processing method. The least-squares F; = —TJH C'Fy. (74)
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From (73) [14] N.J. Higham, “Computing the polar decomposition—with applications,”

WhererUf = I. Substituting these matrices in (72) gives [16]

SIAM J. Sci. Stat. Computvol. 7, pp. 1160-1174, Oct. 1986.
Tj = CUj (75) [15] D. H. Johnson and D. E. Dudgeofirray Signal Processing: Concepts
and Techniques Englewood Cliffs, NJ: Prentice-Hall, 1993.
M. Wax, “Detection of coherent and noncoherent signals via the
stochastic signal model,” iRroc. IEEE Int. Conf. Acoust., Speech, Signal
_ Process. May 1991, pp. 3541-3544.
Fy= % (UjAj -C lAO)- (76) [17] C. Zhou, F.yHabre, apr?d D. L. Jaggard, “A resolution measure for the
MUSIC algorithm and its application to plane wave arrivals contam-

Use Fy in (74) to get inated by coherent interferencelZEE Trans. Signal Processingol.

- L 39, pp. 454-463, Feb. 1991.
Fj=LWlica, - a). 77)

The error is given by

The matrixU; should be selected to minimize the error. Let th
left and the right singular vectors &' A, A}’ are given by
Vo and V;, respectively. The unitary matrix that minimizes
(78) is then given by [13]
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