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Wideband Spectrum Sensing for Cognitive Radios
With Correlated Subband Occupancy
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Abstract—In this letter, we consider wideband spectrum
sensing in the presence of correlation between the occupancies
of frequency subbands. We begin by formulating the maximum
a posteriori (MAP) estimator of channel occupancy based on
measurements from multiple frequency subbands. Since the MAP
estimator’s complexity grows exponentially with the number
of subbands, we propose an alternative structure, in which the
subband energy measurements are linearly combined according
to a minimum mean-square error (MMSE) criterion to form a
sufficient statistic for binary detection in each subband. Through
analysis and numerical simulations, we show that the proposed
frequency-coupled detector can significantly outperform the
traditional decoupled one.

Index Terms—Channel occupancy estimation, cognitive radio,
hypothesis-testing, spectrum sensing.

I. INTRODUCTION

I N a cognitive radio (CR) system, secondary users (SU)
must have the capability to detect and opportunistically

use spectrum holes allocated to other, primary users (PU).
Spectrum sensing has gained further importance as CR is an
integral component of the IEEE 802.22 standard. To maximize
the opportunistic throughput, without interfering with existing
users (EU), including the PU or other SUs, spectrum sensing
must be reasonably fast and accurate.

Different approaches have been proposed to perform spec-
trum sensing in a CR context. Matched filtering, which requires
detailed knowledge of the PU signal, is discussed in [1]. The use
of special signal features (e.g., cyclostationarity) to detect and
classify PU signals has been studied in [2], [3]. Many studies ad-
vocate the use of energy detection for spectrum sensing [4], [5],
since it can meet the basic requirements of CR systems while of-
fering flexibility and robustness in implementation. In this con-
text, multiband energy detection is of particular interest as it
can significantly improve the opportunistic throughput [6]. To
overcome blockage effects in wireless transmissions, spectrum
sensing may also be carried out by a cluster of collaborating
CRs. This approach, considered in [7]–[9], is generally expected
to outperform single-user detection.
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The current literature on wideband energy detection for
spectrum sensing focuses on a decoupled multiband processing
structure in which energy detection in any given subband is
based on a sufficient statistic computed from observed data in
that subband, i.e., independently of other subbands’ data. Even
sophisticated multiband detection schemes such as [6], while
jointly optimizing the detection thresholds used in individual
subbands from a wideband perspective, make use of this de-
coupled structure. Although the latter is indeed optimal under
the assumption that the occupancies of the frequency subbands
are independent of each other, this assumption is generally not
true, especially in the presence of wideband PU/EU signals,
e.g., WLAN and broadcast television [10]. Hence, more re-
cently, spectrum sensing in the presence of correlated subband
occupancy has been gaining attention [11].

In this letter, we investigate the problem of joint multiband
spectrum sensing in the presence of correlation between sub-
band occupancies. We introduce a vector of binary random vari-
ables to model the multiple subband occupancy. Considering a
Bayesian framework, we formulate the MAP estimator of the
wideband channel occupancy vector based on measurements
from multiple subbands. The MAP estimator reduces to a decou-
pled structure when the subband occupancies are independent of
each other, but, in the general case, its complexity grows expo-
nentially with the number of subbands. We therefore propose an
alternative structure in which energy measurements from mul-
tiple subbands are linearly combined, with weights derived from
a minimum mean-square error (MMSE) criterion, to form a suf-
ficient statistic for binary detection in each subband. Through
both analysis and numerical simulations, we show that the pro-
posed detector can significantly outperform the traditional de-
coupled detector.

II. PROBLEM FORMULATION

Let denote the wideband signal observed by the SU (i.e.,
CR detector) after down-conversion and uniform sampling. This
signal can be expressed as

(1)

where is the EU signal, is the impulse response of
the wireless channel between the EU and SU (assumed to be
time-invariant), is the length of and is an additive
noise term. We consider a frequency-domain detector structure
in which a -point discrete Fourier Transform (DFT) is used to
decompose successive frames of into narrow-band discrete
frequency components, i.e.:

(2)
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where is the frequency index, is the
frame index and is the number of frames available. In a
similar fashion, we let , and denote the th
DFT coefficients of , and , respec-
tively. Under the assumption of a large time-bandwidth product

, the convolution in (1) can be approximated by the
product of the corresponding DFT coefficients. The th sample
of the observed signal in the th subband can be represented as

(3)

The EU signal samples, , and noise samples,
, are modeled as independent random processes.

Given a particular state of occupancy of the wideband channel,
samples from each process are assumed to be independent
across frequency and frame indices and to obey a zero-mean
complex circular symmetric Gaussian distribution. The noise
variance, , and the channel squared magni-
tude response, , are assumed to be known from a
priori estimation. We set , if the th subband
is occupied and 0 otherwise. Note that this corresponds to the
occupancy model currently being used in literature, e.g., [4],
[6], and [8]. Indeed, in the absence of an EU,
and (3) reduces to .

In this work, we adopt a Bayesian framework and model the
occupancy of the th subband as a binary random variable, ,
with realization . As above, 0 and 1 respectively
indicate an empty and occupied subband; accordingly, we have

. The wideband spectrum occupancy may
then be described by the random vector

(4)

with realizations . We
denote the joint probability mass function (PMF) of by

. We also define
the mean vector , with entries , and the
correlation matrix , with entries .
The occupancy vector is assumed to be independent of

and to remain unchanged during the detection
interval.

Given the above signal model, we seek an efficient detector
structure that will enable the SU to determine the state of occu-
pancy of the wideband channel, as represented by the unknown
vector . We consider the general situation in which the occu-
pancy variables and may not be independent for .
For instance, because of spectral allocation plan, an EU (such
as WLAN or broadcast television) may be transmitting over a
wideband spectrum, which maps to multiple subbands for the
SU; or, as discussed in [11], a contiguous section of the wireless
spectrum licensed to the EU may be deeply faded due to multi-
path fading effects. In this situation, EU detection in the faded
subbands is difficult, but there exists a correlation between the
occupancies of the faded and unfaded subbands. We show that
by exploiting such a priori knowledge of correlation, significant
gain in detection performance can be achieved.

III. ESTIMATORS FOR THE CHANNEL OCCUPANCY

A. Bayesian Estimation of Channel Occupancy Vector

Given the probability model in Section II, the mean and vari-
ance of conditioned on are given by

(5)

(6)

Let us denote by a random vector containing the complete
set of observed data in (3), i.e.: , where

, with corresponding realiza-
tions , where

. Consequently, the conditional probability density function
(PDF) of given can be written as

(7)
Using (7), the MAP estimator of given the observation
can be formulated as

(8)

The associated log-likelihood function is given by

(9)

where is the energy measured in the th
subband over frames.

It is interesting to consider the special case where the sub-
band occupancies are independent of each other, i.e.,

where denotes the
marginal probability of occupancy of the th subband. The max-
imization in (9) can then be done independently for each , i.e.,

where

This leads to an independent binary hypothesis test for each
subband. Present literature largely deals with this special case
where the optimal multiband detector decouples into parallel
narrowband ones.

However, in the general case where the subband occupancies
are not independent of each other, (9) leads to a non-linear

integer optimization in -dimensional space. This is a compu-
tationally challenging problem with intricate decision regions
whose complexity grows exponentially with the number of
subbands . To solve the multiband energy detection problem
within reasonable limits of processing time and implementation
complexity, therefore, necessitates a simpler detector structure,
which is addressed below.

B. Optimum Linear Energy Combiner

From (9), we note that the set of measured energies
define a sufficient statistics for the MAP estimator and that only
linear processing of these quantities is needed. However, the
weights applied to the energies depend on the hypothesis
being tested so that, in theory, different linear combiners
are needed to obtain the MAP estimator. Here, driven by these
considerations, we propose to investigate a simplified detector
structure in which the subband energies are linearly combined,
with a single combiner per subband, before being fed to a binary
hypothesis test. Specifically, let

(10)
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Fig. 1. Single block of the multiband detector using information from adjacent
subbands.

denote an estimate of the unknown occupancy of the th
subband, as obtained by an affine transformation on the random
energy vector , where

(11)

We propose to obtain the weight vector and constant in
(10) as the minimizer of the MSE:

(12)

The MMSE weight vector solution is obtained as

(13)

where we define the centered quantities and
. The optimum value of , given by

, is needed in the MMSE estimation of since
the latter has nonzero mean.

Substituting (3) into (11) and making use of the modeling
assumptions in Section II, we can show that:1

(14)

(15)

where if and 0 otherwise. The resulting joint
multiband detector structure, illustrated in Fig. 1 for the th sub-
band, can be summarized as

(16)

We note that the bias term is not shown in Fig. 1 as it is ab-
sorbed in the detection threshold . Also, can be normalized
such that .

To exploit spatial diversity, linear combination of energies
measured within a given subband by spatially distributed CRs
has been applied to distributed sensing, e.g., in [8]. The pro-
posed approach here is different in that it attempts to optimally
combine the energies measured by a single CR across multiple
subbands based on the correlation between the subband occu-
pancies of EUs. In fact, our experimental results show that the
detector in (16) can be used to improve the performance of the
collaborative detection scheme shown in [6] and [8]. These re-
sults, however, will be reported separately.

1The derivation of (15) makes use of a standard formula for the 4th moment
of jointly Gaussian complex circular random variables [12]. Further details can
be found in [13].

For models of subband occupancies where the degree of cor-
relation between and decreases as the frequency sepa-
ration increases, e.g., in [11], we generally find that the
relative weights given to in the computation of de-
creases in a similar way. That is, the greatest amount of weight is
placed on the current and adjacent subbands, with indices and

. This suggests the consideration of a simplified, sub-op-
timal linear combiner structure in which the sufficient statistic
used by the binary detector in the th subband is obtained from:2

(17)

where the gains can be chosen in different ways, such as
truncation of the optimum solution (13), solution of a simpli-
fied (3-dimensional) version of the MMSE problem, or through
minimization of the probability of missed detection for a given
probability of false alarm.

C. Performance of the Multiband Energy Detector

Conditioned on , the mean and variance of the test
statistic (16) can be expressed as

(18)

(19)

It can be shown that

(20)

(21)

where notations and
are used. According to the central limit

theorem, for sufficiently large, it is reasonable to assume that
is normally distributed under each one of the hypotheses.

Consequently, the probability of false alarm and the probability
of missed detection associated with the test in (16) are given by

(22)

(23)

where the conditional mean and variance are as calculated in
(18)–(19). Note that the above expressions hold true for hypoth-
esis tests carried out on defined in (17) if is replaced by

. To evaluate the probabil-
ities in (22) and (23), knowledge of the conditional moments

and is needed. These quantities can be obtained from
measurements of subband occupancies by EUs, or from a suit-
able occupancy model (see below).

IV. NUMERICAL RESULTS

In this section, selected results based on analysis and Monte
Carlo simulation experiments are presented to support the de-
velopments in Section III-B. In the simulations, instances of
the random occupancy vector are generated using a homoge-
neous Markov chain defined over the discrete frequency index

. The initial state of the chain, , is set to 1 with probability

2With obvious modifications for edge frequencies � � � and � � �.
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Fig. 2. � versus � for � � ��� (� � �, � � ����).

Fig. 3. � versus � for � � ���� �� � ��.

, while the states at frequencies
are generated by means of a binary symmetric transition model
with parameter denoting the probability of a change in occu-
pancy, that is: . Use of
this model allows the computation of the moments , ,
and introduced in Section III. In particular, the correlation
coefficient between random variables and can be cal-
culated exactly as .

The noise samples, , and EU signal samples, ,
are independently generated complex circular Gaussian random
variables with variances and . For
each realization of , data frames, , are generated
as per (3). Here, we set , and use:

.
For this set of parameters, and focusing our evaluation on
subband , the optimum weight vector is found to be

For the sub-optimal linear combiner in (17), a simplified (3-di-
mensional) version of the MMSE problem for gives

and . Detection is performed on the simulated
data samples using hypothesis tests based on the var-
ious choices of test statistics, i.e., (11), (16)
and (17). In order to obtain reliable estimates of the proba-
bilities of false alarm and missed detection, trials are used
for each choice of threshold value.

Fig. 2 shows the receiver operating characteristic (ROC)
curve of the detectors, obtained by plotting
against over a range of threshold param-
eter values , for subband in the case ,
corresponding to a correlation of . For all values of

, use of the proposed as a test statistic, instead of the

conventional , significantly reduces . In this case, the

use of the simplified test statistic also provides significant
improvement, but in general its performance is not as good as
that of . The trend seen in Fig. 2 holds true for other choices
of the transition probability . To illustrate this point, we show
in Fig. 3 the analytically computed probability of missed de-
tection, as a function of the angle between
random variables and , under the (Neyman–Pearson)
constraint . The curves clearly demonstrate the
potential advantages of exploiting a priori knowledge of corre-
lation across subband occupancies in the design of a detector
structure for spectrum sensing.

V. CONCLUSION

We presented new DFT-based energy detectors for wideband
channel occupancy estimation in spectrum sensing applications.
In contrast to previous works, which assume a frequency-de-
coupled detector structure, the proposed detectors exploit the
correlation between adjacent subband occupancies within a
Bayesian framework to improve the quality of the estimation.
In particular, through analysis and simulations, we showed
that the new detectors significantly outperform the traditional
decoupled structure. They can also be used in conjunction with
existing distributed detection schemes, such as [6], to obtain
further performance gains. Finally, although the problem at
hand differs from classical linear detection due to the squaring
operation in (11), the Bayesian formalism adopted in this work
enables the introduction of modern ideas from the field of
digital communications (e.g., multi-user detection and decision
feedback), in wideband channel sensing.
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