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Discriminative Training of NMF Model Based on
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Abstract—In this letter, we introduce a discriminative training
algorithm of the basis vectors in the nonnegative matrix fac-
torization (NMF) model for single-channel speech enhancement.
The basis vectors for the clean speech and noises are estimated
simultaneously during the training stage by incorporating the
concept of classification from machine learning. Specifically, we
consider the probabilistic generative model (PGM) of classifica-
tion, which is specified by class-conditional densities, along with
the NMF model. The update rules of the NMF are jointly obtained
with the parameters of the class-conditional densities using the
expectation–maximization (EM) algorithm, which guarantees con-
vergence. Experimental results show that the proposed algorithm
provides better performance in speech enhancement than the
benchmark algorithms.

Index Terms—Classification, discriminative training,
expectation–maximization (EM), nonnegative matrix factoriza-
tion (NMF), probabilistic generative model (PGM), single-channel
speech enhancement.

I. INTRODUCTION

N UMEROUS algorithms for single-channel speech
enhancement have been proposed such as spectral

subtraction [1], minimum mean-square error (MMSE) esti-
mation [2], and subspace decomposition [3]. However, these
algorithms use a minimal amount of a priori information about
the speech and noise and, consequently, tend to provide limited
performances, especially when the speech is contaminated
by adverse noise such as under low input signal-to-noise
ratio (SNR) or nonstationary noise conditions. Recently, the
nonnegative matrix factorization (NMF) approach has been
successfully applied to various problems, such as source sepa-
ration [4], speech enhancement [5], and image representation
[6]. In general, NMF is a dimensionality reduction tool, which
decomposes a given matrix into basis and activation matrices
with non-negative elements constraint [7], [8]. In audio and
speech applications, the magnitude or power spectrum is
interpreted as a linear combination of the basis vectors, which
play a key role in the enhancement or separation process.

In a supervised NMF-based framework, the basis vectors
are obtained for each source independently during the training
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stage, and later used during the separation stage. However, one
of the main problems is that the basis vectors of the different
signal sources may share similar characteristics. For example,
the basis vectors of the speech spectrum can represent the noise
spectrum and hence, the enhanced speech may contain noise
components that have similar features. Considering a specific
application, [9] aims to enhance the speech contaminated with
highly correlated babble noise, by exploiting a statistical model
based on hidden Markov model for the babble noise. More gen-
erally, one possible remedy to the aforementioned problem is to
use discriminative training criteria, in which the goal is to train
the basis vectors of each source in a way that prevents them
from representing other sources. In [10], the cross-coherence
of the basis vectors is added as a penalty term to the NMF
cost function. The authors in [11] and [12] propose to use addi-
tional training data which are generated by mixing, e.g., adding
or concatenating, the isolated training data of each source.
However, these approaches are based on heuristic multiplicative
update (MU) rules which do not guarantee the convergence of
the NMF in general [8]. Although the NMF update in [13] guar-
antees local convergence by using a stochastic gradient descent
method, the resulting algorithm is limited to pairwise training,
i.e., combination of the clean speech with each different type
of noise. Moreover, in [12] and [13], the discriminative bases
are obtained indirectly by means of the activation matrix esti-
mated from the mixed training data, and hence lacks in a precise
interpretation in terms of discrimination.

In this letter, we propose a new algorithm for the dis-
criminative training of the basis vectors in the NMF model.
Specifically, the basis vectors for all the clean speech and
noise sources are estimated simultaneously during the train-
ing stage by incorporating the concept of classification. To this
end, we consider the probabilistic generative model (PGM) of
classification specified by class-conditional densities [14], [15],
along with the NMF model [16]. The main idea is to estimate
the basis matrices, during the training stage, by constraining
them to belong to one of several speech and noise classes.
Within this extended statistical framework, the update rules of
the NMF model are jointly obtained along with the param-
eters of the class-conditional densities via the expectation–
maximization (EM) algorithm. Convergence to a stationary
point is guaranteed by the properties of the EM algorithm [8],
[16]. Experimental results of perceptual evaluation of speech
quality (PESQ) [29], source-to-distortion ratio (SDR) [30],
and segmental SNR (SSNR) show that the proposed algorithm
provides better enhancement performance than the benchmark
algorithms.

II. NMF-BASED SPEECH ENHANCEMENT

For a given matrix V = [vkl] ∈ R
K×L
+ , NMF finds a local

optimal decomposition of V = WH, where W = [wkm] ∈
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R
K×M
+ is a basis matrix, H = [hml] ∈ R

M×L
+ is an activation

matrix, R+ denotes the set of nonnegative real numbers, and
M is the number of basis vectors. The factorization is obtained
by minimizing a cost function, such as the Kullback-Leibler
(KL) divergence. In this case, the solutions can be obtained
iteratively using the following MU rules [7]

W←W ⊗ (V/(WH))HT

1HT
, H← H⊗WT (V/(WH))

WT1
(1)

where the operation ⊗ denotes element-wise multiplication, /
and the quotient line are element-wise division, 1 is a K × L
matrix with ones, and the superscript T is the matrix transpose.

In NMF-based single-channel speech enhancement, we
assume in practice that the magnitude spectrum of the noisy
speech, obtained via short-time Fourier transform (STFT),
can be approximated by the sum of the clean speech and
noise magnitude spectra, i.e., |Ykl| ≈ |Skl|+ |Nkl|, where k ∈
{1, . . . ,K} and l ∈ {1, . . . , L} are the frequency bin and time
frame indices [4], [5], [17]. Hence, in this work, V = [vkl] con-
tains the magnitude spectrum values of either one of the noisy
speech, clean speech and noise, as indicated by subscripts or
superscripts Y , S, and N , respectively. In a supervised frame-
work, WS and WN are obtained first during the training stage,
by applying (1) to the training data VS and VN . In the enhance-
ment stage, the activation matrix HY = [HT

SH
T
N ]T is estimated

by applying the activation update to VY , while fixing WY =
[WSWN ]. Then, the clean speech spectrum can be estimated
using a Wiener filter as [8], [17]

Ŝkl =
p̂Skl

p̂Skl + p̂Nkl
Ykl (2)

where p̂Skl and p̂Nkl denote the estimated power spectral densities
(PSD) of the clean speech and noise. The latter are obtained via
temporal smoothing of the NMF-based periodograms as [18]

p̂Skl = τS p̂
S
k,l−1 + (1− τS)([WSHS ]kl)

2 (3)

p̂Nkl = τN p̂Nk,l−1 + (1− τN )([WNHN ]kl)
2 (4)

where τS and τN are the smoothing factors for the speech and
noise, and [·]kl denotes the (k, l)th entry of its matrix argu-
ment. The time-domain enhanced speech signal is obtained via
inverse STFT followed by the overlap-add method.

III. PROBABILISTIC GENERATIVE MODELS

A. NMF Model With KL-Divergence

In [16], [19], the NMF model with KL-divergence is
described within a statistical framework as summarized below.
Each entry of a non-negative matrix V = [vkl] is assumed to be
a sum of M latent variables as

vkl =

M∑
m=1

cmkl. (5)

The mth latent variable cmkl is assumed to be drawn from a
Poisson distribution1 parameterized by wkm and hml

p(cmkl|wkmhml) = (wkmhml)
cmkle−wkmhml/(cmkl!). (6)

1Note that the approximation of vkl as a sum of integer variables in (5) can
be justified by assuming a large dynamic range for the former quantity, which in
practice can be realized by a proper scaling of the observations, e.g., magnitude
spectra [5], [20].

The maximum likelihood (ML) estimates of the parameters
wkm and hml, given the observation vkl, are obtained via the
EM algorithm. During the expectation step, the posterior dis-
tribution p(cmkl|vkl) is calculated which is shown to follow a
binomial distribution. In the maximization step, the parame-
ters are estimated by maximizing the expected complete-data
log-likelihood function given, up to a constant term, as

LC(W,H)
c
=

K∑
k=1

L∑
l=1

(
M∑

m=1

−wkmhml + cmkl ln(wkmhml)

)

(7)

where cmkl is the conditional expectation of the latent variable
cmkl with respect to the posterior distribution, i.e.,

cmkl � E[cmkl|vkl] = vkl
wkmhml∑
m′ wkm′hm′l

. (8)

Iterative NMF solutions obtained through the EM algorithm
have similar forms as the MU rules in (1). The scale indeter-
minacies in wkm and hml, which appear as a product in the
distribution in (6), can be prevented by normalizing the columns
of W using the l1-norm after estimating W, and computing H
accordingly [6], [21], [22].

B. Classification Model

In the classification problem, the input vector w ∈ R
K under

test is assumed to belong to one of I classes. The goal is to
find a corresponding partition of the observation space RK (i.e.,
decision regions) that will minimize the classification errors,
by using the training data and their class labels. There are two
main approaches to solve this problem: PGM, which models the
joint distribution of the input data and class labels, and discrim-
inative modeling, where the aim is to maximize the posterior
class probability (PCP) [14], [15]. In this work, we consider the
PGM since it can provide the necessary a priori distributions
to be used in the proposed discriminative training of the NMF
models.2

The PGM can be described by a class-conditional den-
sity p(w|di = 1) = N (w|μi,Σ) [15], where N (w|μ,Σ) is
a multivariate Gaussian distribution with mean vector μ and
covariance matrix Σ, and di ∈ {0, 1} is a target class label for
the class i ∈ {0, 1, . . . , I − 1}. For a given training set W =
[w1, . . . ,wM ] and D = [d1, . . . ,dM ], where dm = [dim] is a
I × 1 target class label vector with

∑
i dim = 1, and assuming

that the columns wm are independently drawn, the likelihood
function is given by

p(W,D|θ) =
M∏

m=1

I−1∏
i=0

[piN (wm|μi,Σ)]
dim (9)

where θ = {{pi,μi}I−1
i=0 ,Σ} is a PGM parameter set for clas-

sification and pi � p(di = 1) is the prior class probability. The
set θ can be simply estimated via the ML criterion. Using
Bayes’ theorem, the PCP of class i given the observation w
can be shown as

p(di = 1|w) =
p(w|di = 1)pi∑
j p(w|dj = 1)pj

(10)

which is known as the softmax function [15].
2We emphasize that the concept of discriminative training proposed in this

work is different from the discriminative modeling in [14] and [15].
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IV. PROPOSED ALGORITHM

A. Discriminative Training Stage

In [16], a gamma distribution was used for representing the
a priori information about the basis vectors, as it is shown to
be a conjugate prior to the Poisson distribution. Here, we con-
sider instead the Gaussian distribution in order to incorporate
PGM-based classification into the proposed framework. We use
the class index i = 0 for the speech and i = 1, . . . , I − 1 for
the different noise types. For given training data sets of the
clean speech and noises V = {Vi}I−1

i=0 , our goal is to estimate
W = {Wi}I−1

i=0 ,H = {Hi}I−1
i=0 and θ jointly. For simplicity,

we consider a diagonal covariance matrix for the PGM in (9),
i.e., Σ = diag{σ2

k}. Denoting by Mi the number of basis vec-
tors in class i (such that M =

∑
i Mi), the likelihood function

p(W,D|θ) in (9) can be simply rearranged as

p(W|θ) =
I−1∏
i=0

Mi∏
m=1

piN (wi
m|μi,Σ) (11)

where we omit the dependence on D hereafter for convenience.
For the activations, we employ sparse NMF regularization,
which implies that a restricted number of basis vectors will
represent the spectrum dominantly. This type of approach is
shown to be efficient in the training of the so-called parts-based
features of the spectrum [23], as well as for discriminative train-
ing [13]. Within the PGM statistical framework, sparsity can be
implemented by modeling the entries of H with an exponential
distribution [24]. Assuming that the entries are independent and
identically distributed, the prior of H can be written as

p(H) =

I−1∏
i=0

λMiLiexp

(
−λ

∑
m

∑
l

hi
ml

)
(12)

where the parameter λ controls the degree of sparsity. The lat-
ter is chosen empirically in this work, as usually performed in
practical implementations, e.g., [24].

The basis and activation matrices are obtained through a
maximum a posteriori (MAP) estimator by maximizing the
following criterion derived after some simplifications:

ln p(V,W,H|θ) = ln p(V|W,H) + ln p(W|θ) + ln p(H).
(13)

Application of the EM algorithm to (13) leads to maximizing
the following criterion in its maximization step [8], [15]:

LC(W,H|θ) =
I−1∑
i=0

LC(W
i,Hi) + ln p(W|θ) + ln p(H)

(14)

where LC(W
i,Hi) is given by (7). The partial derivative of

(14) with respect to wi
km can be shown to be

∂LC

∂wi
km

=−
Li∑
l=1

hi
ml +

1

wi
km

Li∑
l=1

cm,i
kl + (μik − wi

km)σ−2
k (15)

where μik denotes the kth entry of the mean vector μi, c
m,i
kl

is defined as in (8), and Li is the number of frames in class
i. Equation (15) leads to solving the following second-order
polynomial equation:

σ−2
k (wi

km)2 +

(
Li∑
l=1

hi
ml − μikσ

−2
k

)
wi

km −
Li∑
l=1

cm,i
kl = 0.

(16)

Hence, the resulting update rule of wi
km is found to be

(wi
km)(r+1) =

−qi1 +
√

q2i1 + 4q0qi2
2q0

(17)

where the superscript (r) denotes the rth iteration,
q0 = (σ−2

k )(r), qi1 =
∑

l(h
i
ml)

(r) − μ
(r)
ik (σ−2

k )(r), and
qi2 =

∑
l(c

m,i
kl )(r). It is easy to show that (17) takes only

positive values. Since σ2
k and cm,i

kl are positive, the product
term inside the square root q0qi2 is also positive, which implies
that the numerator in (17) is positive. It is worth noting that
employing the Gaussian-distributed a priori model can be
reasonable, since we can justify Pr[W<0]≈0 for the prior
of W with positive means and small variances such that
μik � σ2

k, which is verified through our experiments. As
mentioned in Section III-A, we normalize the columns of W
after computing (17). Following a similar approach as for the
basis estimation, the update rule of hi

ml is obtained as

(hi
ml)

(r+1) =

∑
k(c

m,i
kl )(r)∑

k(w
i
kl)

(r+1) + λ
. (18)

The parameter set θ is estimated by maximizing the following
marginal likelihood, where W is considered as a latent variable
[15], [25]

p(V|H,θ) =

∫
p(V,W|H,θ)dW. (19)

Since this integration cannot be evaluated analytically, we use
the Laplace approximation [15], [26]. Accordingly, the log
marginal likelihood can be written, up to a constant term, as

ln p(V|H,θ)
c≈ ln p(V,Ŵ|H,θ)− 1

2
ln |A| (20)

where Ŵ � W(r+1) denotes the MAP solution from (17), and
A ∈ R

KM×KM is a Hessian matrix. In particular, we can write
|A| = ∏I−1

i=1

∏Mi

m=1 |Aim| where Aim ∈ R
K×K is defined as

Aim = −∇wi
m
∇wi

m
ln p(Wi|Vi,Hi,θ)|wi

m=ŵi
m
. (21)

For further simplification, we assume that W is well deter-
mined which implies that the MAP solution is close to the
ML estimate for sufficiently large data set, corresponding to
a sharply peaked p(W|V,H,θ) [15], [25]. As a result, the
Hessian term in (20) can be neglected3 since ∂ ln |A|/∂θ ≈ 0,
and estimating θ becomes equivalent to maximizing (13). The
set θ is then simply found by applying the ML criterion to
p(Ŵ|θ), where the resulting estimate in a closed form4 is
interleaved with the EM update, as

pi =
Mi

M
,μ

(r+1)
ik =

1

Mi

Mi∑
m=1

(wi
km)(r+1) (22)

3See [25], [26] and Chap. 12 in [15] for similar applications of this approach.
4Compared to using a gamma-distributed PGM as a prior, which requires

an iterative process for the hyper-parameter estimation [16], we verified that
employing a Gaussian-distributed PGM is more efficient both in terms of
computation and enhancement performance.
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(σ2
k)

(r+1) =
1

M

I−1∑
i=0

Mi∑
m=1

[
(wi

km)(r+1) − μ
(r+1)
ik

]2
. (23)

As for the initialization, we generate positive random num-
bers for Wi and Hi, and subsequently apply (22)–(23) for
θ. The proposed discriminative NMF algorithm with class
probabilities will be referred to as DCP.

B. Enhancement Stage

The enhancement stage is similar to the standard method
described in Section II. Upon fixing WY = [WSWN ], the
activation matrix HY = [HT

S HT
N ]T is estimated by applying

the activation update rule to VY with sparse regularization as
in (18). Note that, since WY is fixed, we can simply use the
activation update given in (1) by adding λ1 to the denominator.
Moreover, θ can be used for the noise classification based on
(10) in advance to the enhancement. In this case, the additional
noise basis vector w needed for the purpose of classification is
obtained through [WS w] by applying (1) to VY . However, we
simply assume that the noise type is known in this letter.

V. EXPERIMENTS

We used clean speech from the TSP database [27] and noise
from the NOISEX database [28], where the sampling rate of
all signals was set to 16 kHz. The magnitude spectrum of
each signal was obtained by using a Hanning window of 512
samples with 75% overlap. For the clean speech (i=0), 20
speakers (10 males and 10 females) were considered, whereas
the factory 1 (i=1), buccaneer 1 (i=2), and HF Channel (i=3)
noises were selected. We examined both the speaker-dependent
(SD) and speaker-independent (SI) cases, i.e., one basis matrix
per speaker for the SD and one universal basis matrix covering
all speakers for the SI. For the SD, the training data consisted
of 20 sentences (45 s) for each speaker, whereas for the SI, one
sentence from each speaker was selected for a total of 20 sen-
tences (50 s). For each noise type, 30-s samples were used as
the training data. The test speech signals consisted of two sen-
tences (6 s) which were not included in the training data. The
noisy speech was generated from the test signals by adding the
noise to the clean speech to obtain input SNR of 0, 5, and 10 dB.
We used Mi = 80 basis vectors for all i ∈ {0, 1, 2, 3}. Sparsity
and temporal smoothing factors were selected as λ = 0.5 and
(τS , τN ) = (0.4, 0.9).

Fig. 1 shows the PCPs of the basis vectors for the speech
class i = 0, i.e., p(d0 = 1|wm), computed by (10) based on the
estimated set θ. The interval 1≤m≤80 corresponds to the uni-
versal speech basis vectors where the PCPs should be close to
one, whereas the interval 81≤m≤320 corresponds to the noise
basis vectors, i.e., 1≤ i≤3 (80 vectors for each i), where the
PCPs should be close to zero. We can see that the basis vectors
obtained from the DCP method lead to a more precise classifi-
cation. In turn, this implies that the basis vectors of each source
will be less likely to represent each other. Similar results were
found for the other classes and even better results were observed
for the SD basis vectors.

We used PESQ [29], SDR [30], and SSNR as the objective
measures, where a higher value indicates a better result. To
compare the proposed approach, we implemented the standard
NMF method described in Section II, and several discrimina-
tive NMF (DNMF) algorithms, where we will refer to each
algorithm using its reference number. We used α = 1, λ = 200

Fig. 1. Posterior class probabilities p(d0 = 1|wm). Red-solid indicates the
proposed DCP method, whereas blue-dashed denotes the standard NMF.

TABLE I
AVERAGE RESULTS FOR BUCCANEER 1 AND HF CHANNEL NOISES (SD)

TABLE II
AVERAGE RESULTS FOR BUCCANEER 1 AND HF CHANNEL NOISES (SI)

for [10], λ = 0.01 for [11], and μ = 0.1, KL objective for [12]
(see the references for the parameter description). Note that [10]
and [12] are based on a pairwise training, where the bases are
estimated from V = {V0,Vi} for each i = {1, 2, 3}, i.e., dif-
ferent WS for each noise type. On the contrary, [11] and the
DCP method estimate all basis matrices simultaneously from
V = {Vi}3i=0. Tables I and II show the average results of the
buccaneer 1 and HF Channel noises for the SD and SI. We can
see that the best values were obtained with the DCP method.
Similar results were observed for the factory 1 noise and 10-dB
input SNR.

VI. CONCLUSION

A discriminative training algorithm of the basis vectors in
the NMF model for single-channel speech enhancement has
been proposed. The basis matrices of the clean speech and
noises were estimated during the training stage by constraining
them to belong to different classes. To this end, we considered
the PGM with class-conditional densities along with the NMF
model. The update rules of the extended NMF model were
jointly obtained with PGM parameters via the EM algorithm.
Experiments showed that the proposed algorithm provided
better results than the benchmark algorithms.
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