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Abstract—Recently, there has been much interest in the use of
convolutional neural networks (CNN) for mobile user localization
in massive multiple-input multiple-output (MIMO) systems oper-
ating at millimeter wave (mmWave) frequencies. However, cur-
rent CNN-based approaches cannot predict the confidence interval
bounds for the localization accuracy. While the Bayesian neural
network (BNN) method can be employed to estimate the model
uncertainty, it entails a high computational cost. In this letter,
the Monte Carlo (MC) dropout based method is proposed as a
low-complexity approximation to BNN inference for capturing the
uncertainty in a CNN-based mmWave MIMO outdoor localiza-
tion system, without sacrificing accuracy. The proposed method
is evaluated by means of simulations using a ray-tracing model
of urban propagation at 28GHz. Results show that the localization
uncertainty region can be properly determined and that their shape
depends on the maximum power received at the user.

Index Terms—mmWave communications, massive MIMO,
CNN, fingerprint localization.

I. INTRODUCTION

FUTURE generations of mobile wireless networks will
combine transmissions at millimeter wave (mmWave) fre-

quencies with massive MIMO technologies in order to boost
user throughput, spectral/energy efficiency and overall capac-
ity [1]. These networks will be required to provide enhanced
localization accuracy of user devices within sub-meter accuracy
depending on use cases [2]. Nonetheless, mmWave channels
exhibit notable sparsity in the angular and time domains, and
suffer from severe path loss and absorption [3], which pose
significant challenges to the localization task.
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Several studies have addressed the problem of radio localiza-
tion (or positioning) in mmWave bands for both indoor [4], and
outdoor scenarios [5], [6]. Localization in these bands can be
approached from two different perspectives, i.e.: model-based
with the aid of geometry and radio propagation models [7], [8],
and data-based, which emphasizes the use of machine learning
techniques [9]–[13]. In recent years, deep learning in particular
has attracted considerable interest for data-based localization.
In [14], the authors introduce a convolutional neural network
(CNN) to infer the position of a mobile user from channel state
information (CSI) data, and use transfer learning to extend the
acquired knowledge towards other scenarios. In [15], the use of
CNN along with sequence-based deep learning is proposed to
perform user localization at mmWave frequencies. The CNN is
trained using a pre-established codebook of transmit beamform-
ing (BF) vectors at the base station (BS), along with power delay
profiles collected from a known set of user locations. Although
these methods can estimate mobile user locations, they do not
provide crucial information about the uncertainty regions.

The goal of model uncertainty estimation (MUE) is to produce
a measure of confidence for statistical point estimators, which
is of great importance in applications. In the deep learning
literature, the so-called Bayesian Neural Network (BNN) is
generally employed to determine probability that neural network
(NN) predictions fall within a given region [16]. However,
obtaining the posterior distribution needed for application of
BNN is challenging, while providing an analytical expression is
intractable [17]. To circumvent this difficulty, various approxi-
mation techniques have been introduced, including: variational
inference [18], expectation propagation [19], Kalman filter
variants [20], and Monte Carlo (MC) dropout [21]. Besides,
a non-Bayesian method to extract uncertainty information from
NN was proposed in [22].

Among these techniques, MC dropout exhibits important
advantages, including, low-complexity (compared to original
BNN) and high accuracy. MC dropout relies on the fact that as
the layer width grows larger, a BNN reduces to a deep Gaussian
process (GP) that admits a closed-form compositional kernel.
Under this condition, the dropout rate applied before every dense
layer in a NN can be interpreted as providing an approximation to
the posterior distribution for the limiting GP [21]. Hence, GPs
allow predictions from BNNs to be obtained more efficiently,
and provide an analytic framework to understand deep learning
models. Note that in contrast to standard dropout [21] which
is applied only at training time, MC dropout is applied at both
training and testing times, which in effect makes the output of
the NN non-deterministic.

In this letter, we use MC dropout to capture the uncer-
tainty of CNN-based methods for mmWave MIMO localizatin.
Specifically, we employ MC dropout to obtain the second-order
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Fig. 1. Illustrating the different phases of CNN-based mmWave MIMO local-
ization and corresponding exchange of information between the BS and mobile
user.

statistics of the limiting GP for the CNN method in [15]. These
statistics are used in turn to derive confidence intervals or un-
certainty regions for the localization estimates. Thanks to its
regularization effect, MC dropout contributes to reducing the
inherent complexity while preserving a comparable accuracy to
BNN. Employing a ray-tracing model of urban propagation at
28GHz, we show by simulations that the localization uncertainty
regions can be properly determined via the proposed MC dropout
method if sufficient data is available for training. Furthermore,
the shape of such region depends on the maximum power
received at the mobile user. While many studies have addressed
wireless localization from the perspective of machine learning,
none could be found that specifically investigate the related
problem of uncertainty estimation in CNN-based localization,
which is the main focus of this work.

The letter is organized as follows: In Section II, the system
model of the underlying CNN-based localization method is
reviewed. In Section III, the MC dropout method for MUE
is introduced. In Section IV, simulation results are presented,
followed by concluding remarks in Section V.

II. SYSTEM MODEL

The underlying CNN-based localization method consists of
two phases [15]: A) data acquisition phase, and; B) learning
phase. Fig. 1 illustrates the two phases and related sub-tasks.

A. Data Acquisition

Phase A, which consists of sub-tasks A1 and A2, performs
the feature extraction. This phase is present for both of the
offline and online modes, depending on the data collection being
performed for training or test purposes, respectively. In A1, a
BS equipped with NT antennas broadcasts channel-sounding
signals over a given frequency band B using a fixed code-
book of transmit beamforming (BF) vectors. The codebook is
represented as C = {f1, . . ., fM}, where fi ∈ CNT×1 is the ith
transmit BF vector (i.e., BF codebook index) and M is the
codebook size. The signals broadcast by the BS are monitored
by a user device equipped with NR antennas whose location
is known. The received signal at a given sounding frequency
f ∈ B corresponding to the ith BF vector can be written as:

ri(f) = wHHfis+wHz , i ∈ {1, 2, . . .,M} (1)

where s ∈ C is the amplitude of the sounding signal, H ∈
CNR×NT is the transfer function of the MIMO wireless channel,
w ∈ CNR×1 is the beamformer at the receiver and z ∈ CNR×1

is an additive noise term.

Subtask A2 focuses on measuring the received power level
at the user device. Specifically, given ri(f) for all f ∈ B, the
power delay profile (PDP), Pi(τ) is extracted according to the
procedure described in [23], where τ is the delay variable. By
sampling Pi(τ) at the rate Fs =

1
Ts

, where Ts is the sampling
period, we obtain Pi[j] = Pi(jTs), ∀j ∈ {1, . . ., Ns}, where
Ns = �T/Ts� is the total number of samples and T is the
maximum excess delay. Note that in order to distinguish signal
from noise and also compressing the data, the PDP samples,
Pi[j], are represented by binary values defined as

xi,j =

{
1 if Pi[j] ≥ η
0 else

(2)

where η is the PDP threshold level. The use of binary PDP
offers many advantages: it simplifies CNN implementation by
reducing the complexity of calculations (for both training and
testing) and allowing a smaller network size; it can also improve
the localization performance under high noise levels [15]. The
binary PDP values are used to define a feature matrix, i.e. X =
[xi,j ] which is then transmitted to the BS.

For simplicity, we consider localization over a two-
dimensional (2D) space, but generalization to 3D is straightfor-
ward. For the purpose of training, we assume that PDP data can
be obtained in this way for the set of known mobile user positions
distributed on a grid, and represented by vectors yk ∈ R2 ∀k ∈
K = {1, . . .,K}, where K is the total number of positions. For
the kth position, a feature matrix Xk ∈ RM×Ns is obtained as
explained above. Hence, for the kth position, Xk and yk define
the input and output data of the CNN, respectively. The set of all
positions in the grid and associated feature matrices, denoted as
D = {(Xk,yk)|k ∈ K}, referred to as the BF fingerprint, is
stored at the BS where it is used as a training data set.

B. Learning-Based Localization

The general purposes of phase B which consists of B1 and
B2, are to train the CNN and use it to predict the position at BS
and finally inform the mobile user of its position. The accuracy
resulting from the proposed system ultimately depends on the
learning capabilities of the inference block. Sub-task B1 consists
of both online and offline modes: in the offline mode the CNN
is trained using collected training data, D at the offline mode
of phase A, and in the online mode, the CNN performs the
prediction for the test data collected at the online mode of phase
A. It is a supervised learning problem. Due to the nonlinear acti-
vation functions, a CNN is a good candidate to learn the complex
phenomena commonly encountered in a mmWave transmission,
such as reflections and diffraction [13]. To solve the localization,
the network is trained using the well-known gradient-based al-
gorithm for learning the CNN parameters. The device’s position
is relayed back to the user in phase B2. An evaluation of the
computational complexity of this CNN algorithm can be found
in [15].

III. MC DROPOUT METHOD FOR MUE

We first discuss the approximation of the GP with MC dropout
and then consider MUE based on this approximation.

A. MC Dropout as a GP Approximation

As mentioned earlier, solving the MUE problem for an ar-
bitrary GP is intractable. Here, starting with the full GP, MC
dropout can be used as an approximation for Bayesian un-
certainty estimation. This view of dropout will allow us to
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derive new probabilistic results in deep learning. Consider a
NN model with L layers. Assume that at layer ith, i ∈ 1, . . .,L,
the model applies a random weight matrix Wi of dimension
Ki ×Ki−1. Let y ∈ RKL denote the output vector (or pre-
diction) corresponding to an input feature vector x ∈ RK0 .
Each GP layer may also apply a bias vector mi ∈ RKi . Let
ω = [W1,m1. . .,WL,mL] represent the collection of weight
parameters, which is a multi-dimensional random variable with
prior distribution p(ω). For an arbitrary GP, we have

p(y |x ,ω) = N (
E(y |x ,ω), τ−1I

)
(3)

E(y |x,ω ) =

√
1

KL
WLσ

(
. . .

√
1

K2
W2σ(W1x+m1). . .

)
(4)

where σ is NN activation function and τ > 0 is the model
precision hyper-parameter. The predictive distribution for an
input data x is equivalent to using an ensemble of the infinite
number of neural networks with various configuration of the
weights, which is:

p (y |x,D ) =

∫
p (y |x,ω ) p (ω |D )dω (5)

where p(ω|D) is the conditional or posterior distribution on
weights. It can be inferred from (5) that for a given data, in
order to find the prediction value, we must examine the proposed
model in all the existing possible models.

The posterior distribution p(ω|D) is intractable. In this case,
the only possible solution is approximating p(ω|D). Instead
of finding p(ω|D), we define an approximated variational
distribution q(ω), whose structure is easy to evaluate. We
would like the approximated distribution to be as close as
possible to the posterior distribution obtained from the full
GP. Thus, we minimize the Kullback–Leibler (KL) divergence
KL(q(ω), p(ω|D)), which is intuitively a measure of similarity
between two distributions [21]. One of the solutions for approx-
imating p(ω|D), is called MC dropout. In this solution, we use
q(ω) to approximate the intractable posterior. In fact, q(ω) can
be defined in terms of the random quantities:

Wi = diag([zi,j ]
Ki
j=1)Mi

zi,j ∼ B (pi) ∀i ∈ {1, . . ., L} , j ∈ {1, . . .,Ki−1}

q(ω) ∼ N
(
E(y|x,ω),

1

τ
I

)
diag(z1, . . ., zL) (6)

where pi and matrices Mi of dimensions Ki ×Ki−1 are vari-
ational parameters and B stands for Bernoulli distribution. The
binary variable zi,j = 0 corresponds to unit j in layer i− 1 being
dropped out as an input to layer i and alsozi = [zi,1, . . ., zi,Ki

]T .
The KL(q(ω), p(ω|D)), which is our minimization objective,
is shown to be [21]:

LMC = −
∫

q(ω) log p(y |X ,ω)dω +KL(q(ω), p(ω)) (7)

where the first term is the loss function and the second term
represents the regularization. Minimizing (7) over ω will result
in a variational distribution q(ω) that explains the data well
(as obtained from the first term) while still being close to the
prior and preventing the model from over-fitting (regularization
term). We rewrite the loss function term of (7) with Monte Carlo
sampling over ω with a single sample as:

L(1)
MC =

1

N

N∑
n=1

log p(yn|xn, ω̂n) (8)

Fig. 2. CNN-based and MC dropout method for user position estimation and
uncertainty using beamformed fingerprint data.

TABLE I
NUMBER OF LEARNABLE PARAMETERS, TRAINING TIME, AND INFERENCE

THROUGHPUT

Note that ω̂n is not maximum a posteriori estimate, but ran-
dom variable realizations from the Bernoulli distribution, ω̂n ∼
q(ω), which is identical to applying MC dropout to the weights
of the network. In [21], it is shown that the second term in (7) is
equivalent to

∑L
i=1 ‖ωi‖22 with some modifications. Thus, the

objective function can be written as:

LMC = −λ1L(1)
MC + λ2

(
L∑

i=1

pi ‖Mi‖22 + ‖mi‖22
)

(9)

where λ1 = 1
Nτ , and λ2 = l2

2τN . The precision hyper-
parameters τ and length-scale l are tuned by grid search. As
seen in Fig. 2, the convolution layers and maxpooling operations
remain untouched during the MC dropout method. In the dense
layer, MC dropout is performed at prediction time. The random
neurons in each layer are dropped out, according to the associ-
ated probability, from the base neural network model to create
another model. The theoretical results in [24] reveal that for a
NN with one dense layer, dropout can reduce the Rademacher
complexity by a factor of p2. Table I shows the computational
savings resulting from our proposed approach compared with
the original CNN method in [15].

B. Uncertainty Estimation

As we discussed, the model uncertainty can be obtained from
the MC dropout method. Approximated predictive distribution
is given by [21]:

q(y |x ) =
∫
p(y|x,ω)q(ω)dω (10)

To obtain the first moment for the GPs, we use T sets of MC
dropout realizations from the Bernoulli distribution as

Eq(y|x )(y) ≈ 1

T

T∑
t=1

E(y|x,ωt) (11)

In practice, this is equivalent to performing T stochastic forward
passes through the network and averaging the results (Fig. 2).
Note that the mean of the dropout realizations is interpreted as
the network prediction. We can estimate the second moment in
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Fig. 3. Maximum received power from the ray-tracing simulation in the NYU
area.

the same way (φ = q(y|x)):

Eφ(y
Ty) ≈ τ−1I+

1

T

T∑
t=1

E(y|x,ωt)
T
E(y|x,ωt) (12)

The model’s predictive variance is

varφ(y) = Eφ(y
Ty)− Eφ(y)

TEφ(y) (13)

IV. NUMERICAL RESULTS1

We use the mmWave data generated by the Wireless InSite
ray-tracing simulator [25] and a high precision open-source 3D
map of the NYU area [26], containing BF fingerprint data from
401× 401 positions. The specific propagation parameters are
inherited from the experimental measurements in [27] while
in [28], it is shown that these ray-tracing simulations adequately
match experimental observations. Fig. 3, shows the ray-tracing
measurements with a transmit power of 30dBm, which corre-
sponds to the maximum received power for all possible transmit
BF vectors. In this simulation, the carrier frequency is 28GHz,
BF fingerprint codebook size is M = 32, and the transmitter
is at position (0,0). In order to account for possible mismatch
in the data set (measurement uncertainty), noise is added to
the ray tracing data following a log-normal distribution with
6dB standard deviation. The robustness of the CNN-based lo-
calization method with respect to measurement noise in the PDP
data is further discussed in [15]. The following configuration is
assumed: one convolution layer with 8, 3× 3 filters, followed
by 2× 1 max-pooling, 7 hidden layers (1024 neurons each), 2
outputs, and the MC dropout rate set to 0.2.

For each one of 10 selected positions, Fig. 4 illustrates the
uncertainty estimation using 1000 MC dropout points (104 MC
Dropout points in total). Let 0 ≤ e ≤ 1 denote the eccentricity
of the shape of the level contour curves of the GPs. At positions
with low received power, e tends to one, and by increasing
the received power, e is decreased. Also, at high transmitted
power, the mean of MC dropout inference values is close to
the true value, which was also expected. A confidence ellipse
(with corresponding main axis lengths) is shown in the bottom
left corner of Fig. 4, where λx, λy are the eigenvalues of the
covariance matrix and η = 5.99 is the 95% percentile for the
chi-square distribution with two degrees of freedom [29]. Fig. 5
depicts the Pearson correlations [30] (−1 ≤ PC ≤ 1) for all

1The Code and Data Can Be Found At https://github.com/gante/mmWave-
Localization-Learning.

Fig. 4. Uncertainty estimation using 1000 MC dropout points for 10 true
positions.

Fig. 5. PC using 1000 MC dropout points for each possible position in the
grid.

possible positions (401× 401 = 160801) in the grid. For each
such position in Fig. 5, we train the network, test it to produce
1000 MC dropout points, and then calculate PC for that position.
We note that the shapes of the uncertainty regions learned from
the data for each true position in Fig. 4 are consistent with the
corresponding PC values in Fig. 5. For example, the displayed
ellipse for true position (280,310) has major axis pointing along
south-east, which is the corresponding value of 0.65 for the PC.

V. CONCLUSION

In this letter, we proposed a method for capturing the un-
certainty in mobile user localization for the MIMO mmWave
outdoor localization system. Using MC dropout algorithm, we
estimated the uncertainty of the position. We showed that MC
dropout can be represented as an approximation to GPs to predict
the MUE. Simulation results show that the shape of the uncer-
tainty region depends on the maximum power received at the
mobile user. The trade-off between uncertainty region accuracy
and computational complexity of MC-dropout and other BNN
approximations for mmWave localization will be explored in
future work.
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