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Abstract—We investigate the performance of distributed
least-mean square (LMS) algorithms for parameter estimation
over sensor networks where the regression data of each node are
corrupted by white measurement noise. Under this condition, we
show that the estimates produced by distributed LMS algorithms
will be biased if the regression noise is excluded from considera-
tion. We propose a bias-elimination technique and develop a novel
class of diffusion LMS algorithms that can mitigate the effect of
regression noise and obtain an unbiased estimate of the unknown
parameter vector over the network. In our development, we first
assume that the variances of the regression noises are known «
priori. Later, we relax this assumption by estimating these vari-
ances in real time. We analyze the stability and convergence of the
proposed algorithms and derive closed-form expressions to char-
acterize their mean-square error performance in transient and
steady-state regimes. We further provide computer experiment
results that illustrate the efficiency of the proposed algorithms and
support the analytical findings.

Index Terms—Bias-compensated least-mean square (LMS),
diffusion adaptation, distributed parameter estimation, network
optimization.

I. INTRODUCTION

NE OF the critical issues encountered in distributed pa-

rameter estimation over sensor networks is the distortion
of the collected regression data by noise, which occurs when the
local copy of the underlying system input signal at each node
is corrupted by various sources of impairments such as mea-
surement or quantization noise. This problem has been exten-
sively investigated for the case of single-node processing de-
vices [2]-[17]. These studies have shown that if the deleterious
effect of the input noise is not taken into account, the param-
eter estimates so obtained will be inaccurate and biased. Various
practical solutions have been suggested to mitigate the effect
of the input measurement noise or to remove the bias from the
resulting estimates [S]—[17]. These solutions, however, may no
longer lead to optimal results in sensor networks with decentral-
ized processing structure where the data measurement and pa-
rameter estimation are performed at multiple processing nodes
in parallel and with cooperation.
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For networking applications, a distributed total-least-squares
(DTLS) algorithm has been proposed that is developed using
semidefinite relaxation and convex semidefinite program-
ming [18]. This algorithm mitigates the effect of white input
noise by running a local TLS algorithm at each sensor node
and exchanging the locally estimated parameters between the
nodes for further refinement. The DTLS algorithm computes
the eigendecomposition of an augmented covariance matrix at
every iteration for all nodes in the network, and is therefore
mainly suitable for applications involving nodes with powerful
processing abilities. In a follow-up paper, the same authors
proposed a low-complexity DTLS algorithm [19] that uses an
inverse power iteration technique to reduce the computational
complexity of the DTLS while demanding lower communica-
tion power.

In recent years, several classes of distributed adaptive algo-
rithms for parameter estimation over networks have been pro-
posed, including incremental [20]-[23], consensus [24]-[27],
[27]-[30], and diffusion algorithms [31]-[42]. Incremental
techniques require the definition of a cyclic path over the
nodes, which is generally an NP-hard problem; these tech-
niques are also sensitive to link failures. Consensus techniques
require doubly-stochastic combination policies and, when used
in the context of adaptation with constant step-sizes, can lead
to unstable behavior even if all individual nodes can solve the
inference task in a stable manner [38]. In this work, we focus
on diffusion strategies because they have been shown to be
more robust and to lead to a stable behavior regardless of the
underlying topology, even when some of the underlying nodes
are unstable [38].

A bias-compensated diffusion-based recursive least-squares
(RLS) algorithm has been developed in [43] that can obtain un-
biased estimates of the unknown system parameters over sensor
networks, where the regression data are distorted by colored
noise. While this algorithm offers fast convergence speed, its
high computational complexity and numerical instability may
be a hindrance in some applications. In contrast, the diffusion
least-mean square (LMS) algorithms are characterized by low
complexity and numerical stability. Motivated by these features,
in this paper, we investigate the performance of standard dif-
fusion LMS algorithms [31]-[33] over sensor networks where
the input regression data are corrupted by additive white noise.
To overcome the limitations of these algorithms, as exposed by
our analysis under this scenario, we then propose an alterna-
tive problem formulation that leads to a novel class of diffu-
sion LMS algorithms, which we call bias-compensated diffu-
sion strategies.

More specifically, we first show that in the presence of
noisy input data, the parameter estimates produced by standard
diffusion LMS algorithms are biased. We then reformulate this
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estimation problem in terms of an alternative cost function
and develop bias-compensated diffusion LMS strategies that
can produce unbiased estimates of the system parameters. The
development of these algorithms relies on a bias-elimination
strategy that assumes prior knowledge about the regression
noise variances over the network. The analysis results show that
if the step-sizes are within a given range, the algorithms will
be stable in the mean and mean-square sense and the estimated
parameters will converge to their true values. Finally, we relax
the known variance assumption by incorporating a recursive
approach into the algorithm to estimate the variances in real
time.

In summary, the contributions of this article are the fol-
lowing: 1) performance evaluation of standard diffusion LMS
algorithms in networks with noisy input regression data; 2) de-
velopment of a novel class of diffusion LMS strategies that
are robust under this condition; 3) presentation of a recursive
estimation approach to obtain the regression noise variances
without using the second-order statistics of the data; 4) deriva-
tion of conditions under which the proposed algorithms are
stable in the mean and mean-square sense; 5) characterization
of their mean-square deviation (MSD) and excess mean-square
error (EMSE) in transient and steady-state regimes; and 6) val-
idation of theoretical findings through numerical simulations
of newly proposed algorithms for parameter estimation over
sensor networks.

The remainder of the paper is organized as follows. In Sec-
tion II, we formulate the problem and discuss the effects of
input measurement noise on the performance of diffusion LMS
over sensor networks. In Section III, we propose bias-compen-
sated diffusion LMS algorithms along with a recursive estima-
tion of the regression noise variance. In Section IV, we analyze
the stability and convergence behavior of the developed algo-
rithms and obtain conditions under which the algorithms are
stable in the mean and mean-square sense. We present the com-
puter experiment results in Section VI and conclude the paper
in Section VII.

Notation: Matrices are represented by uppercase fonts, vec-
tors by lowercase fonts. Boldface letters are reserved for random
variables, and normal letters are used for deterministic vari-
ables. Superscripts (-)7 and (-)*, respectively, denote transposi-
tion and conjugate transposition. Symbols Tr(-) and p(-) denote
the trace and spectral radius of their matrix argument. The oper-
ator E[] stands for statistical expectation, and Az (-) denotes the
kth eigenvalue of its matrix argument. The Kronecker product
is denoted by ®, and the block Kronecker products [44] are de-
noted by ®,. The operator diag{-} converts its argument list
into a (block) diagonal matrix. The operator col{-} performs a
vertical stacking of its arguments, while vee(-) is the standard
vectorization for matrices. The symbol bvee(-) is the block vec-
torization operator that transforms a block-partitioned matrix
into a column vector [44].

II. PROBLEM STATEMENT

Consider a collection of /V sensor nodes distributed over a
geographical area and used to monitor a physical phenomenon
characterized by some unknown parameter vector w® € CM*1,
As illustrated in Fig. 1, at discrete-time ¢« € N, each node % €
{1,2,..., N} collects noisy samples of the system input and
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Fig. 1. Measurement model for node k.

output denoted by zx; € C'*™ and d; (i) € C, respectively.
These measurement samples can be expressed as

R =gy + N (1)

d; (I) = 'll,k77i”ll)v + ’U]c(’l'y) 2)

where uy, ; € C'*M ny; € C*M and v, (i) € C, respec-

tively, denote the regression data vector, the input measurement
noise vector, and the output measurement noise.!

Assumption 1: The random variables in data model (1)—(2)
satisfy the following conditions.

a) The regression data vectors are independent and identi-
cally distributed (i.i.d.) over time and independent over
space, with zero-mean and covariance matrix R, =
Elu} ,ur:] > 0.

b) The fegression noise vectors 1y, ; are Gaussian, i.i.d. over
time, and independent over space, with zero-mean and
covariance matrix R, r = E[n} ;2] = o), 1.

c) The output noise samples v (7) are i.i.d. over time and in-
dependent over space, with zero-mean and variance 2 , .

d) The random variables uy ;, n¢ ; and v,(m) are indepen-
dent for all k&, ¢, p, 4, j, and m.

The linear model (1)—(2) differs from those used in previous
works on distributed estimation, such as [23], [31], and [33]. In
these references, it is assumed that the actual regression vector
Uy ; is available at each node %. There are many practical situa-
tions, however, where the nodes only have access to noisy mea-
surements of the regression data. We use relation (1) to model
such disturbance in the regressors, and to investigate the effect
of the noise process 1, ; on the distributed estimation of w?.
To better understand the effect of this noise, we first examine
the behavior of a centralized estimation solution under this con-
dition and then explain how the resulting effect carries over to
distributed approaches.

In centralized estimation, nodes transmit their measurement
data {2z}, ;, dy (i)} ¥_, to a central processing unit. In the absence
of measurement noise, i.e., 1y ; = 0, the central processor can
estimate the unknown parameter vector w° by, e.g., minimizing
the following mean-square error (MSE) function [45]:

N
Ju(w) = E[dp(i) — ug ] 3)
k=1

Let us introduce 74, 1 2 Eldi(i)u; ;] and denote the sums of
covariance matrices and cross-covariance vectors over the set
of nodes by

N

N
Ru = E Ru.,k: Tdu = § Tdu. k-
k=1

k=1

4)

'We use parentheses to refer to the time indices of scalar variables, such as
d (1), and subscripts to refer to time indices of vector variables, such as 2y, ;.
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It can be verified that under Assumption 1, the solution of (3) is

w® = R, 'ry,. 5)

U

Now consider the recovery of the unknown parameter vector w?’
for the noisy regression system described by (1) and (2). Since
the regression noise ny, ; is independent of u;. ; and dj.(i), we
have

szkf é E [zz,izk,’i] = Ru,k + U-r,2,,7k,l (6)
A N
Tz = E [di(D)25 ] = Tauk- )

Considering these relations and now minimizing the global
MSE function

N
Jo(w) =Y E|di(i) — 24 ] ()
k=1

with . ; in (3) replaced by z;; in (8), we arrive at the biased
solution

w® = (R +021) " ray ©)

where

(10)

N
2 _ § : 2
Op = Jn,k"
k=1

Let us define the bias implicit in solution (9) as b = w® — w".

To evaluate b, we may use the following identity, which holds
for square matrices X; and X5 provided that X; and X; + X,
are both invertible [46]

X1+ X)) = X7 = (T4 X7'X) X XX ()

Here, R,, and (R, +<7,21 I) are invertible, and therefore we obtain

(Ru+02D) " =R, ' — o2 (I+02R,") 'R,

(12)
Considering this expression and relation (9), the bias resulting
from the minimum MSE estimation at the fusion center can be
expressed as
b=02(I+02R,") " R, u’. (13)

In the absence of regressor noise, it has been shown in pre-
vious studies that the parameter estimates obtained from stan-
dard diffusion LMS strategies approach the minimizer of the
network global MSE function [33]. This also holds in noisy re-
gression applications for diffusion LMS developed based on the
global cost (8), meaning that the estimates generated by stan-
dard diffusion LMS algorithms will eventually approach (9). As
shown by (13), this solution is biased and deviates from the op-
timal estimate by b. This issue will become more explicit in our
convergence analysis in Section [V-A.

In the sequel, we explain how by forming a suitable objective
function, the bias can be compensated in both centralized and
distributed LMS implementations.

III. BIAS-COMPENSATED LMS ALGORITHMS

In our development, we initially assume that the regression
noise variances, {o2 , }_,, are known a priori. We later re-
move this assumption by estimating these variances in real time.
In networks with centralized signal processing structure, one
way to obtain the unbiased optimal solution (5) is to search for a
global cost function whose gradient vector is identical to that of
cost (3). It is straightforward to verify that the following global
cost function satisfies this requirement:

N N
J(w) = (Z[E|dk(i) —zk,.,;wl2> - (Z ai,kllwl2> :
k=1 k=1

(14)

Remark 1: In bias-compensation techniques for single-node
adaptive algorithms, including [12], [13], and [16], the authors
first apply a least squares (LS) or minimum MSE procedure to
obtain an estimate of the unknown parameter vector. The re-
sulting estimate consists of the desired solution along with an
additive bias term. The bias, which is normally expressed in
terms of the second-order statistics of the regression data and the
input and output measurement noises, is removed from the solu-
tion by subtraction. In the proposed technique in this paper, we
start by considering bias removal one step earlier, meaning that
we design a convex objective function such that its unique sta-
tionary point leads to an unbiased estimate. In this respect, our
approach is mostly inspired from the derivation of the modified
LMS and RLS algorithms in [8] and [15]. However, these algo-
rithms still assume the knowledge of the ratio of input-to-output
noise variances in their update equations.

The derivation of distributed algorithms will be made easier
if we can decouple the network global cost function and write
it as sum of local cost functions that are formed using the local
data. The global cost (14) already has such a desired form. For
this to become more explicit, we express (14) as

J(w) = Z Ji(w)

k=1

15

where .Ji (w) is the cost function associated with node & and is
given in terms of local data d. (i) z , i.e.,
Ti(w) = E |dy(i) — 2z 0]* — 02 . |Jw|)*. (16)
Remark 2: Under Assumption 1, the Hessian matrix of (16)
is positive definite, i.e., V2 Ji(w) > 0, hence, J(w) is strongly
convex [47].
We first comment on the centralized LMS algorithm that

solves (14), and then elaborate on how to develop the unbiased
distributed counterparts.

A. Bias-Compensated Centralized LMS Algorithm

To minimize (15) iteratively, a centralized steepest descent
algorithm [45] can be implemented as

N *
Z VJI«(MQ]
k=1

w;, = Wi—1 —

amn
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where 1 > 0 is the step-size, and V.J;,(w) is a row vector rep-
resenting the gradient of J;, with respect to the vector w. Com-
puting the gradient vectors from (16) leads to
N
w; =w; 1+ Z (razp — Repw; 1 + 0,2,,,k‘wi71) . (18)
k=1
In practice, the moments . j and r4  are usually unavailable.
We, therefore, replace these moments by their instantaneous ap-
proximations 2} ;25 ; and 2} ,d. (i), respectively, and obtain the
bias-compensated centralized LMS algorithm
N

w; =w;—1+ { Z (ZZZ di(i) — zpw; 1] + Uivkwifl) .

k=1
(19)
In Section V, we propose an adaptive scheme to estimate the
variances of the regression noise required in the above central-
ized LMS algorithm as well as in its distributed counterpart de-
rived below.

B. Bias-Compensated Diffusion LMS Strategies

There exist different distributed optimization techniques that
can be applied on (14) to find w* [31], [33], [48]. We concen-
trate on diffusion strategies [31], [33] because they endow the
network with real-time adaptation and learning abilities.

In particular, diffusion optimization strategies lead to dis-
tributed algorithms that can estimate the parameter vector w?’
and track its changes over time [31], [33], [37], [49]. Here, we
briefly explain how diffusion LMS algorithms can be developed
for parameter estimation in systems with noisy regression data.
The main step in the development of these algorithms is to re-
formulate the global cost (14) and represent it as a group of op-
timization problems of the form

ntijn Z Cok ([E |d (i) — zg,i'w|2 — 0'3’£||’UJH2)

LENG

2
Y bk flw—w’|
LeEN\{k}
where N, is the set of nodes with which node & shares informa-
tion, including node k itself. The nonnegative scalars {c¢  } are
the entries of a right-stochastic matrix C' € RN X that satisfy

(20)

N
Cok = 0if? Q Nk, and ZC(’k =1.
k=1

The scalars {bg ;. } are scaling coefficients that will end up being
incorporated into the combination coefficients {a, ;. } that ap-
pear in the final statement (23) of the algorithm below. The first
term in the objective function (20) is the modified mean-squared
function incorporating the noise variances of neighboring nodes
£ € N}.. This part of the objective is based on the same strategy
as in the above centralized objective function for bias removal.
The second term in (20) is in fact a constraint that forces the
estimate of the node & to be aligned with the true parameter
vector w’. Since w’ is not known initially, it will be alterna-
tively substituted by an appropriate vector during the optimiza-
tion process. One can use the cost function (20) and follow sim-
ilar arguments to those used in [33], [37], and [49] to arrive at
the bias-compensated adapt-then-combine (ATC) LMS strategy
(Algorithm 1). Due to space limitations, these steps are omitted.

e2y)
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Algorithm 1: ATC Bias-Compensated Diffusion LMS

1/1k,i =W -1 — Pk Z Ce.k [ﬁ(wk,i—l)r (22)

fej\fk
Wi = Z (M,k"pe,i (23)
fENk
Algorithm 2: CTA Bias-Compensated Diffusion LMS
/‘/)k,i—l = Z Qe Wy 51 (27)
LEN,
Wi =iy 1 — Mk Z Cek [ﬁ%("/’k,ifl)} (28)

LeN;,

In this algorithm, u;. > 0 is the step-size at node %, the vectors
¥, and wy,; are the intermediate estimates of w® at node k, and
the stochastic gradient vector is computed as

e *
I:vjé(wk,i—l)] =— [}, (de(1)—2¢ Wy i1) 4075 Wei—1]
(24)
which is an instantaneous approximation to the gradient of (16).
Moreover, the nonnegative coefficients a, ; are the elements of
a left-stochastic matrix A € R™V*¥ satisfying

agr =10 if ¢ Q./\fk, and Z agr = 1.
LEN,,

To run the algorithm, we only need to select the coefficients

{c;;,k,, ay, &}, which can be computed based on any combination

rules that satisfy (21) and (25). One choice to compute the en-
tries of matrix A is
2

gk = % and Qp &k = 1- Z e k- (26)

Zl,e.’\/k O-'n,l/, fEJV'k\k?

This rule implies that the entry a¢ j is inversely proportional

to the regressor noise variance of node £. Other left-stochastic

choices for A are possible, including those that take into account

both the noise variances and the degree of connectivity of the

nodes [39].

By reversing the order of the adaptation and combination
steps in Algorithm 1, we can obtain the following combine-then-
adapt (CTA) diffusion strategy (Algorithm 2). As we will show
in the analysis, the proposed ATC and CTA bias-compensated
diffusion-LMS, in average, will converge to the unbiased solu-
tion (5) even when the regression data are corrupted by noise. In
comparison, the estimate of the previous diffusion LMS strate-
gies such as one proposed in [33] will be biased under such
condition.

Remark 3: In the proposed ATC algorithm, each node % re-
ceives {u¢;,de(i), 02 ,} from its neighbors in the adaptation
step, and 4/, ; in the combination step, where £ € A} In total,
it will receive (2M + 2)|V}| scalar data from its neighbors. To
reduce the communication overhead of the network, one solu-
tion is to choose C = I. Doing so, we can reduce the amount

(25)



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

ABDOLEE AND CHAMPAGNE: DIFFUSION LMS STRATEGIES IN SENSOR NETWORKS WITH NOISY INPUT DATA 5

of exchanged data at each node k to M || while maintaining
almost similar performance results, as evidenced in Section VI.
Note that the amount of information exchange in this case will
be equal to that of the standard ATC diffusion LMS in [33]. This
conclusion is also valid for the proposed CTA Algorithm 2.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the convergence and stability of
the proposed ATC and CTA bias-compensated diffusion LMS
algorithms by viewing them as special cases of a more general
diffusion algorithm of the form

¢k,7ﬁ71 = Z (Lé’llz'wlf,ifl (29)
EGJ\/}C
Yoi =Fri1— Mk Z Cek {V/@T]@@kﬂ;,l)] (30)
EEJ\[k
wiei= Y abe 31)
LENG

where {051,3} and {052,3} are nonnegative real coefficients cor-
responding to the (£, k)th entries of left-stochastic matrices A4;
and A, respectively, which have the same properties as A. Dif-
ferent choices for A; and A5 correspond to different operation
modes. For instance, A; = I and A3 = A correspond to ATC,
whereas A; = A and A, = I generate CTA. For mathemat-
ical tractability, in our analysis, we assume that the variances
of the regression noises, i.e., o2 , , over the network are known
a priori. /

We define the local weight-error vectors as wy,; = w’— Wy,

'«,b,“ = w® — 9y ;, and ¢k ;, = w® — ¢, ; and form the global
weight-error vectors by stackmg the local error vectors, i.c.,
~i—"01{¢11 ¢21 - ¢J\1} (32)
'2001{"/’11' ‘/’2ia-~ "/)7\1} (33)
w; =col{ ;, Wa, ..., Wy} (34)
We also define the block variables
g; =C"col {z; w1(i),... 25 on (i)} (35)
Ri = dlag, { Z Cek (Zzi247i — 0',2L7£1) 7]%‘ = 1, ceey IV}
EG/\/},,.
(36)
Pi = dlag, { Z Cok (ZZ{IHJ — O',i’ﬁ]—) ,k‘ = 1, ey N}
LeN,
(37)
M =diag{pilns, ..., punIar} (38)

and introduce the following extended combination matrices:
Ai=A1@1y A=A10 C=CaIly. (39)

Using these definitions and update (29)—(31), it can be verified
that the following relations hold:

&5714 :A{ﬁ’i—l
":bi :‘%i—l - M (gi —Piw’ + Ri&i-1)

= ALy, (40)

where w® = 1 ® w°. From the set of equations given in (40), it
is deduced that the network error vector w; evolves with time
according to the recursion

w; = Byw;,_1 — Agng + .Ag./\/l'Piw" 41)
where the time-varying matrix B; is defined as
B, = A (I - MR;)AT. (42)

A. Mean Convergence and Stability

Tacking the expectation of both sides of (41) and considering
Assumption 1, we arrive at

Elio;] = B (Efw, 1)) (43)
where in this relation
B2E[B)] = AL (] — MR)AY (44)
R 2E[R] :diag{ ST copBurk=1,..., N}. (45)
(’E/\fg

To obtain (43), we used the fact that E[.AJ Mg,] = 0 because
vy, ; is independent of z, ; and E[v(¢)] = 0. Moreover, we have
E[P;] = 0 because E[z} ;n;;] = o2 ,I. According to (43),
lim; o E|J@;]| — 0 if B is stable (i.e., when p(B) < 1). In
fact, because p(A1) = p(A2) = 1 and R > 0 choosing the
step-sizes according to
2

P (Eeen, cerllu)
guarantees p(B) < 1. We omit the proof, but a similar argument
can be found in [49] and [35]. We summarize the mean-conver-
gence results of the proposed bias-compensated diffusion LMS
in the following.

Theorem 1: Consider an adaptive network that operates using
diffusion Algorithms 1 or 2 with the space-time data (1) and
(2). In this network, if we assume that the regressors noise vari-
ances are known or perfectly estimated, the mean error vector
evolves with time according to (43). Furthermore, Algorithms 1
and 2 will be asymptotically unbiased and stable provided that
the step-sizes satisfy (46).

Remark 4: In networks with noisy regression data (1), the es-
timates generated by the previous diffusion LMS strategies such
as the ones proposed in [33] and [49] are biased, i.e., E[@;] # 0
as 7 — oo. This can be readily shown if we remove (f%’ ;. from
(36) and (37). In this scenario, (43) will be stable if

2
p (Z,:E,\rk Co ke (Ru,e + criﬂM))

Then, for sufficiently small step-sizes, satisfying (47), it can be
verified that the estimate of the standard diffusion LMS deviates
from the network optimal solution w” by

0< pp < (46)

0 < pp < 47

lim E[w;] = (Ina — B) LAT MP'w® (48)
where
B 2 AT (Ixn — MR AT (49)
R' 2 diag { Z cop (Rupe+ (T,,217£IA,1) Jk=1,... ,N}
KEJV;,-
(50)
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(51

P’ édiaug{ Z c/;,k(r,‘,zMIM, E=1,.. ..,N} .

LENG

As it is clear from (48), the bias is created by the regression
noise {ny, ;} only, whereas the noise {#.(¢)} has no effect on
generating the bias.

B. Mean-Square Convergence and Stability

To study the mean-square performance of the proposed al-
gorithms, we first follow the energy conservation arguments of
[33] and [45] and determine a variance relation that is suitable in
the current context. The relation can be obtained in the limit, as
1 — o¢, by computing the expectation of the weighted squared
norm of (41) under Assumption 1, i.e.,

Ellwl|3 =E (lwi-1/l% ) + E [g7 MA2A; Mg,]
+ E [P MAEA] MPw°] (52)

where ||z]|4 = z*3z and & > 0 is a weighting matrix that we
are free to choose. Note that (52) is obtained by eliminating the
following terms:

E [(A; Mg,)*SAT(I — MR)ATSw; 1] =0 (53)
E [(Ag (1- MRi)AlTﬂ;i_l)*EAgMgJ —0  (54)
E [(ASMPuw®)* SAT (I — MR;) A{w; 1] =0 (55)
E [(A2 (I — MR)ATw; _1)*SAT MP,u°] = 0. (56)
These terms are zero first because w; 1 is independent of g,,
P;, and R; under Assumption 1 [50], and second, since the
proposed algorithms are unbiased, E[w;] is zero for large ¢ if

the step-sizes are chosen as in (46).
In relation (52), we have

¥ = B/YB,. (57)

It follows from Assumption 1 thate; ; and R, are independent
of each other so that

E (@i 1ll3 ) = Elloi g (58)
Substituting this expression into (52), we arrive at
Ell@:[$ = Elli; 113 + Tr[SA7 MGM.A;]
+ Tr [SA] MIIM A, (59)
where
¥ =E[B;XB,]. (60)
In (59), G = E[g,g97], which using (35) is given by (see

Appendix A)

G = CTdiag {0371 (Ru,l + JZJI) ,
ooy (Run +oa xI)}C. (61)

In relation (59), IT = E[P;w°w®*P;], and its (k, j)th block is
computed as (see Appendix B)

My =Y corces {Ui,e [0l (R e + o7 1)
4

+(6 - 1)0,%7@111071)0*} (62)
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where 3 = 2 for real-valued data and 3 = 1 for complex-valued
data. If we introduce o = bvee(X) and ¢/ = bvec(X'), then we
can write ¢/ = Fo where

F=E [B{ @ B;‘] . (63)

Considering these definitions, the variance relation in (59) can
be rewritten more compactly as
=012 ~ 2 T
Ellwi|; = Ellwil7, +7" 0 (64)

where we are using the notation ||:z||2 as a short form for ||z,
and where

~v = bvec (AQTMQTMAQ + AQTA/IHTMAQ) .
To compute F, we expand ¥/ from (60) to get

(65)

Y = A (A2 AT — RMASA] — AXAT MR AT
+E [AR; MAZA] MR, AT . (66)
The last term in (66) depends on A2 and can, therefore, be
neglected for small step-sizes. As a result, we obtain
F e (A0 AT I RM-RIM, I (A2 As). (67)

We can also derive a more compact expression to compute F . To
this end, we first note that the last term in (66) can be expressed
as

E [A1R; MA LA MR, AT |
=E [AR* MA,ZAT MRAT] + O(M?)  (68)
Now by substituting (68) into (66) and ignoring the remaining

terms that depend on A2, under the small step-size condition,
we arrive at
Fr B, B (69)

We now proceed to show the stability of the algorithm in the
mean-square error sense, as follows. Using (64), we can write

2}—1‘4-10 +’YTZ.7:jO'. (70)

7=0

lim E|lw;||2 = lim E||@_,|
11— 00 71— 00

As it is evident from this expression, the proposed algorithms
will be stable in the mean-square sense if F is stable. From (69),
we deduce that F will be stable if B is stable. According to our
mean-convergence analysis, the stability of B is guaranteed if
(46) holds. Therefore, the step-size condition (46) is sufficient
to guarantee the stability of the algorithms both in the mean and
mean-square sense.

C. Mean-Square Steady-State Performance

To obtain MSE steady-state expressions for the network, we
let ¢ go to infinity and use expression (64) to write
(71)

lim IEH’&’i”%I—]:)U =+To.
1—00

By definition, the MSD and EMSE at each node % are respec-
tively computed as

m = Jim Ellini |2 Ge= lim Elling i3, (72)
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The MSD and EMSE of the nodes can be retrieved from the
network error vector w, by writing

e = lim B[, 0m (73)
Ck’ = lim IEHI&’iH%diag(ek)t}@Ru,k} (74)

1—00

where e, is a canonical basis vector in R™ with entry one at po-
sition k. From (71) and (73), we can obtain the MSD at node £,

fork € {1,2,...,N}, as

e =~ (I — F) thvee (diag(er) ® Ing) - (75)
In the same manner, we compute the EMSE at node % as

G =y (I — F) ovec (diag(er) ® Ruz).  (76)

The network MSD and EMSE are defined as the average of
MSD and EMSE values over the network, i.e.,

1 N 1 N
= — . (== . 77
7 N;nk_ ¢ N;ck (77)

D. Mean-Square Transient Behavior

We use (64) to obtain an expression for the mean-square be-
havior of the algorithm in transient-state. In this expression, if
we substitute w1 = 0,Vk € {1,..., N}, we obtain

@2 = sy 97 S Fio(9)

5=0

Writing this recursion for ¢ — 1 and subtracting it from (78) leads
to

lwillz = @il + lw’ll5 - mye +2"Froo (79)
By replacing o with o9, = bvec(diag{er} ® Ips) and
Oemse, = bvec(diag{er} ® Ry k) and using wy, 1 = 0, we
arrive at the following two recursions for the evolution of MSD
and EMSE over time:

TIk(I’) :nk(Z - 1) - ‘|71)O|lf’:(17.7-‘)0',,,5dk; + ’YTFL‘O'msdk (80)
Ck(z) :Ck(z - 1) - ||w0||.7:”_1(17‘7:)0'emsek + ’YTinlo-emsek-
(81)

The MSD and EMSE of the network can be computed either by
averaging the nodes transient behavior, or by substituting

1
Omsd = NbVCC(LMN) (82)

Temse = %bvcc (diag{Ru1,..., Run}) (83)
in recursion (79). We summarize the mean-square analysis re-
sults of the algorithms in the following.

Theorem 2: Consider an adaptive network operating under
bias-compensated diffusion Algorithm 1 or 2 with the space-
time data (1) and (2) that satisfy Assumption 1. In this network,
if we assume that the regressors noise variances are known or

perfectly estimated and nodes initialized at zero, then the MSD
and EMSE of each node £ evolve with time according to (80)
and (81) and the network MSD and EMSE follow recursions

7}(2) :7’(l - 1) - ||Iwo||‘7:"(17.7:)0',,,5(1 + fyTﬁamsd
(@) =€l = 1) = ([0l 511 F)oumee VT F Hoernse

where oy,5q and gese are defined in (82) and (83) and F is
given by (63). Moreover, if the step-sizes are chosen to sat-
isfy (46), the network will be stable, converge in the mean and
mean-square sense, and reach the steady-state MSD and EMSE
characterized by (77).

V. REGRESSION NOISE VARIANCE ESTIMATION

In the proposed algorithms, each node still needs to have
the regression noise variances, {2 [}“]‘V:" 1> to evaluate the sto-

chastic gradient vector, V.J,. In practice, such information is
rarely available and normally obtained through estimation. A
review of previous works reveals that the regression noise vari-
ances can be either estimated offline [43] or in real time when
the unknown parameter vector, w?, is being estimated [51], [52].
For example, in the context of speech analysis, they can be es-
timated offline during silent periods in between words and sen-
tences [43]. In some other applications, these variances are es-
timated during the operation of the algorithm using the second-
order moments of the regression data and the system output
signal [51], [52]. In what follows, we propose an adaptive recur-
sive approach to estimate the regression noise variances without
using the second-order moments of the data.

The variance of the regression noise at each node is classified
as local information and, hence, it can be estimated from the
node’s local data. When the regression data at node % is not
corrupted by measurement noise (i.e., 2x,; = Ux,;), and when
the node operates independently of all other nodes to estimate
w® by minimizing E|dy (i) — uy ;w|?, the minimum attainable
MSE can be expressed as [45]

A 9 * —1
Jmin = O-d,k: - Tdu,kRu,krd“'vk'

(84)
Under noisy regression scenarios where node & operates inde-
pendently to minimize the cost (16), the minimum achievable
cost will still be (84). To verify this, we note from Remark 2 that
since Jy (w) is positive definite and, hence, strongly convex, its
unique minimizer under Assumption 1 will be w*. Therefore,
substituting w? into (16) will give its minimum, i.e.,

min J(w) = E |dy (i) — ziw°|* — 02, [|w°]?
w ’

(85)
(86)

2 * -1 .
=04k — Tdu,k‘Ru,k7duvk

= Jlllill .
We use this result to estimate the regression noise variance o2 ,

at each node k.
Now, let us introduce
A .
er(i) = dp(1) — 2 Wi i1 (87)

where wy, ;1 is the weight estimate from ATC diffusion (which
would be replaced by %, ; ; for CTA diffusion). Considering
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Jk(wk,,;,l), for sufficiently small step-sizes and in the limit
when the weight estimate is close enough to w?, it holds that

Eler(i)]” — o7 1w ” = - (88)
From (2) and (84), it can be verified that J,,,;,, = 012}7 x> and hence
from (88), we can write

Elex ()" =~ o7 1 + on g Jw°)| . (89)
In this relation, o , can be ignored if a7 ,[lw’|[* > o2 .
Under such circumstances, if we assume ||w°||? # 0, which is

true for systems with at least one nonzero coefficient, then the
variance of the regression noise can be obtained by

> Elex(d)’

a. .
L

Since, in (90), E|ex(i)|> and the unknown parameter, w°, are
initially unavailable, we can estimate O',QL' & using the following
relations as the latest estimates of these quantities become avail-
able, i.e.:

2
yl

(90)

fuli) =afuli- D+ (- alle@P  OD

where 0 <€ a < 1 is a smoothing factor with nominal values in
the range of [0.95, 0.99].

Assumption 2: The regression noise variance, o2 ,, and
the output measurement noise, af,}k, satisfy the following
inequality:

o [0 > 07 (93)

Under this assumption, the regressor noise variance at each

node k can be adaptively estimated via (91) and (92) using the

data samples ey, (¢) and wy, ;1 supplied from the bias-compen-
sated LMS iterations.

VI. SIMULATION RESULTS

In this section, we present computer experiments to illustrate
the efficiency of the proposed algorithms and to verify the the-
oretical findings. We evaluate the algorithm performance for
known regressor noise variance and with adaptive noise vari-
ance estimation. We consider a connected network with N =
20 nodes that are positioned randomly on a unit square area
with maximum communication distance of 0.4 unit length. The
network topology is shown in Fig. 2. We choose A; = 1,
compute Ay using the relative-variance rule (26), and choose
the matrix C' according to the metropolis criterion [31], [49].
In the plots, we use AL and Ceq to refer to this particular
choice of A3 and C. The network data are generated according
to model (1) and (2). The aim is to estimate the system parameter
vector w® = [1,1]7/y/2 over the network using the proposed
bias-compensated diffusion algorithms. In all our experiments,
the curves from the simulation results are drawn from the av-
erage of 500 independent runs.

We choose the step-sizes as pr = 0.05 and set wy, 1 =
[0,0]7, for all k. We adopt Gaussian distribution to generate
v;.(i), ny. ;, and uy, ;. The covariance matrices of the regression
data and the regression noise are of the form 2, , = 03_ Y
and 02 , Iy, respectively. The network signal and noise power
profile are given in Table I.

1) Transient MSE Results With Perfect Noise Variance Es-
timation: In Fig. 3, we demonstrate the network transient be-
havior in terms of MSD and EMSE for the proposed diffusion
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Fig. 2. Network topology used in the simulations.

TABLE I
NETWORK SIGNAL AND NOISE POWER PROFILE
Parameters
Node k o2k Tr(Ru,k) o2k

1 0.0230 0.3000 0.0170
2 0.0020 0.7500 0.0970
3 0.0160 0.5250 0.0620
4 0.0040 0.4250 0.0570
5 0.0420 0.6000 0.0600
6 0.0400 0.6500 0.0730
7 0.0120 1.0000 0.0560
8 0.0120 0.7750 0.0860
9 0.0310 0.7250 0.0250
10 0.0280 0.6750 0.0490
11 0.0350 0.6500 0.0680
12 0.0500 0.6000 0.0760
13 0.0090 0.2750 0.0600
14 0.0340 0.3500 0.0150
15 0.0290 0.6250 0.0160
16 0.0280 0.9250 0.0490
17 0.0020 0.3250 0.0830
18 0.0080 0.8750 0.0370
19 0.0410 0.2500 0.0170
20 0.0460 0.8000 0.0160

LMS algorithm, standard diffusion LMS algorithm [33], and
the noncooperative mode of the proposed algorithm. Note that
As = I and C' = T correspond to the noncooperative network
mode of the proposed algorithm, where each node runs a stand-
alone bias-compensated LMS. As the results indicate, the per-
formance of the cooperative network with C\,.; and A, ex-
ceeds that of the noncooperative case by 12 dB. We also ob-
serve that the proposed algorithm outperforms the standard dif-
fusion LMS [33] by more than 12 dB. It is interesting to note
that the noncooperative algorithm outperforms the standard dif-
fusion LMS by about 1 dB.

We also present the EMSE and MSD of some randomly
chosen nodes in Fig. 4. In particular, we plot the EMSE
learning curves of nodes 4 and 18 and the MSD learning curves
of nodes 5 and 15. We observe that the MSD curves of the
chosen nodes are identical. Since the algorithm is unbiased,
this implies that these nodes have reached agreement about
the unknown network parameter, w°. As we will show in the
steady-state results, all nodes over the network almost reach
agreement. We note that, in all scenarios, there is a good
agreement between simulations and the analysis results.

2) Steady-State MSE Results With Perfect Noise Variance Es-
timation: The network steady-state MSD and EMSE are shown
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Fig. 3. Convergence behavior of the proposed bias-compensated diffusion
LMS, standard diffusion LMS, and noncooperative LMS algorithms.
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Fig. 4. MSD learning curves of nodes 5 and 15 and EMSE learning curves of
nodes 4 and 18.

in Figs. 5 and 6. From these figures, we observe that there is a
good agreement between simulations and analytical findings. In
addition, we consider the case when nodes only exchange their
intermediate estimates (i.e., when C' = I). It is seen that the
MSD performance of the algorithm with C,.t is 1 dB superior
than that with C' = 1. We also observe that the performance dis-
crepancies between nodes in terms of MSD are less than 0.5 dB
for cooperative scenarios, while in the noncooperative scenario
it is more than 5 dB. This shows agreement in the network in
spite of different noise and energy profiles at each node. Note
that the fluctuations in EMSE over the network are due to dif-
ferences in energy level in the nodes’ input signals, but this does
not preclude the cooperating nodes from reaching a consensus
in the estimated parameters.

3) MSE Results of the Algorithm With Adaptive Noise Vari-
ance Estimation: We compare the transient and steady-state
behavior of the bias-compensated diffusion LMS with known
regressor noise variance and adaptive noise variance estimation.
For this experiment, we consider the same network topology and
noise profile as above. However, the unknown parameter vector
to be estimated, in this case, is w® = 215 + 27515, where 1,

2 4 6 8 10 12 14 16 18 20

Node k
Fig. 5. Network steady-state MSD for different combination matrices.
=25 T § ‘ T % T T T
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Fig. 6. Network steady-state EMSE for different combination matrices.

is an M x 1 column vector with unit entries. The network en-
ergy profile is chosen as Tr(12, ;) = 20 Tr(o2 , I). Using these
choices, Assumption 2 will be satisfied. We set « = 0.99 and
. = 0.01 for all k.

Figs. 7 and 8 show the steady-state EMSE and MSD of
the network for these two cases. The steady-state values are
obtained by averaging over the last 200 samples after initial
convergence. We observe that the performance of the proposed
bias-compensated LMS algorithm with adaptive noise variance
estimation is almost identical to that of the ideal case with
known noise variances.

Fig. 9 illustrates the tracking performance of the bias-com-
pensated diffusion LMS algorithm for these two cases for a
sudden change in the unknown parameter w* and compares the
results to that of the standard diffusion LMS algorithm given
in [33]. The variation in the unknown parameter vector occurs
at iteration ¢ = 550 when w® changes to 2w®. Similar conclu-
sion as in Fig. 7 and 8 can be made for the proposed algorithms
with known and estimated regression noise variances. We also
observe that the proposed algorithms outperform the standard
diffusion LMS [33] by nearly 10 dB in steady state.

Fig. 10 illustrates the results of regression noise variance
estimation in the steady state. In this experiment, we observe
that for i > 350, Ele? ,(i)] — o2 . This indicates that the

n,k
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Fig. 7. Steady-state network EMSE with known and estimated regressor noise
variances.
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Fig. 8. Steady-state network MSD with known and estimated regressor noise
variances.
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Fig.9. EMSE Tracking performance with known and estimated regressor noise
variances.

proposed adaptive estimation strategy for computation of the

nodes’ regression noise variance over the network works well.
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Fig. 10. Estimated and true value of the regression noise variance, 62 ,, over
the network.

VII. CONCLUSION

We developed bias-compensated diffusion LMS strategies for
parameter estimation over sensor networks where the regression
data are corrupted with additive noise. The algorithms operate
in a distributed manner and exchange data via single-hop com-
munication to save energy and communication resources. The
proposed algorithms estimate the regression noise variances and
use them to remove the bias from the estimate. In the anal-
ysis, it has been shown that the proposed bias-compensated dif-
fusion algorithms are unbiased and converge in the mean and
mean-square error sense for sufficiently small step-sizes. We
carried out computer experiments that confirmed the effective-
ness of the algorithms and support the analytical findings.

APPENDIX A
COMPUTATION OF G

This can be computed by substituting g(7) from (35) into G =
Elg.9;], and as a result

zT,ivl(i)

¢=CTE [PI(D)z1,. ... o5 (D)2n]C. (94)

The (%, 7)th block of the above matrix can be computed as
0, k#j

s = o3k (Ruk + U?L,kj) , k= ©3)
and (61) follows.
APPENDIX B
COMPUTATION OF 11
We rewrite 11 as
II = [E[PAZ’PZ‘] (96)

where €2 = w°w?*. The (k, j)th block of I can be computed as
Hk«’j =E z Z Ce kCm,j (szin@_’i — 0'727,‘[])
¢ m

X ij (nfmzmvi — 02 I) .

T,

o7
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We use (1) to replace z¢; and 2, ;
* *
Wiy =EY D concom (Ufmei+nme; —
£ m

onmd) . (98)

O'Z,ﬂl) Qi

* ®
x (nm,’iumr,i + n'm,inmr,i -
This leads to

E E Ce kCm, j ’U'/ iy, 1S)k]nm iUm, 1] (99)
+ E E Ce kCm ] lnl( A 1S2k7nm "%, l]
- E E Cy, k’CﬂL]

If we assume that the regression {u,} and noise {n;;} are
zero-mean circular Gaussian complex-valued vectors with un-
correlated entries, then

’L fﬂ]‘lnm an I,] . (100)

E [u} 0 Qn), b 5]

[0, {#£m
o ()’,'2[ ﬂTr(ij)R,ujj, £=m (101)
E [n} ;ne, lSlk, i

T, ZQkJ n,m.? 12 # m
/307,,7(52143‘077,,,,7, + Ui:EITr (Slkjaiif) , L=m

(102)
and
E [02 (I, iMani] = i Qo (103)
We note that
Qg = 71)271)5* (104)

where w$ = wy, Vk,j € {1,2,... N}. Therefore

Qo = Qnn VK k7 m,n € {17 2,... N} (105)

and Tr(Q4;) = ||w®||*. As a result

I ; = Z CokCe {Ug7€||’u20||2 (ng + UTZLJI)
¢

H(B — Dok w’w™} . (106)
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