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Effective Multi-Path Vector Channel Simulator for
Antenna Array Systems

Alex Stéphenne and Benoît Champagne

Abstract—In this paper, we present a new, computationally ef-
ficient simulator for time-varying multi-path (fast fading) vector
channels that can be used to evaluate the performance of antenna
array wireless receivers at the base station. The development of the
simulator is based on the emulation of the spatio-temporal corre-
lation properties of the vector channel. The channel is modeled as
a single-input multi-output finite impulse response (FIR) system
with time-varying coefficients which are obtained via the applica-
tion of a space-time correlation shaping transformation on some
independent random sequences. The various parts of the new sim-
ulator are detailed and channel simulation realizations are pre-
sented and commented.

I. INTRODUCTION

BECAUSE of the limited availability of spectrum, wireless
system designers are under pressure to achieve high

spectral efficiency. To this end, future wireless systems will
almost certainly use adaptive antenna arrays [1], [2]. Since
performance analysis of communication systems is often
done first via computer simulations, there is a need for an
effective multi-path vector (multi-antenna) channel simulator.
The design of such a simulator must be done with great care
since the performance increase associated with the use of
beamforming, space diversity, and/or path diversity for a given
simulated system is strongly dependent on the temporal and
spatial characteristics of the channel.

To study the performance of antenna array receivers via
simulation, it is often assumed for simplicity that the multi-path
channel characteristics vary slowly as compared to the symbol
duration, so that a fixed vector channel can be used (e.g.
[3]–[9]). The main limitation of such an approach is that
one can obviously not study the tracking properties of the
algorithms used to adapt the receiver filters. Recently, a
time-varying vector channel simulator has been presented in
[10]. The latter decomposes the channel in its time-varying
components due to each of the propagation paths, whether
they are temporally differentiable or not1 . Such a simulator
becomes very computationally expensive when the number of
propagation paths is large, as can be the case in a typical urban
environment. A costly new channel simulator (hardware and
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1In order for two paths to be time-differentiable (resolvable), their relative
delay of arrival must be greater than the inverse of the bandwidth of the trans-
mitted signal [11].

software) based on a similar approach has even been recently
developed [12] to cope with the enormous amount of compu-
tations needed to obtain the time-varying channel coefficients.
There is clearly a need to develop a vector channel simulator
with reduced computational complexity for urban/suburban
environment for which the number of time-indifferentiable
subpaths (TISs) per time-differentiable path (TDP) is high.

In this paper, we present a new computationally efficient sim-
ulator for time-varying multi-path (fast-fading) vector channels
that can be used to evaluate the performance of antenna array
wireless receivers at the base station when each TDP can be con-
sidered as composed of many TISs and there is no line-of-sight
transmission path.

The development of the simulator is based on an innova-
tive approach: the emulation of the joint spatio-temporal cor-
relation properties of the channel. The channel is modeled as a
single-input multi-output finite impulse response (FIR) system
with time-varying channel coefficients which are obtained via
the application of a space-time correlation shaping transforma-
tion on some independent random sequences. The new simu-
lator is a multi-channel generalization of the scalar channel pre-
sented in [13]. The main advantage of the new simulator, as op-
posed to the ones presented in [10], [12], is that its computa-
tional complexity is now proportional to the number of TDPs,
regardless of the number of TISs. Another advantage is that
fewer topographical parameters are being feed into the simu-
lator making it less environment dependent.

The structure of the paper is as follow. In Section II, the
multi-path vector channel is described. The various components
of the vector channel simulator are detailed in Section III. Sec-
tion IV presents and discusses channel simulation realizations
which demonstrate the practicability of the new simulator. Some
final remarks are given in the Section V.

II. THE MULTI-PATH VECTORCHANNEL

In this section, we present the multi-path wireless vector
channel model used in the development of the simulator,
starting with the transmission model and continuing with the
channel statistical characterization.

A. Transmission Model

We consider the transmission of a signal from mobile to base,
i.e., the uplink transmission2 . We suppose that the mobile has

2Downlink transmission modeling is of less interest since the envelope cor-
relation of received signals between antenna elements at the mobile is very low
even for relatively small antenna element separation [16]. A multi-path vector
channel simulator would therefore consist of many independent scalar channel
simulator.

0018–9545/00$10.00 © 2000 IEEE



STÉPHENNE AND CHAMPAGNE: EFFECTIVE MULTI-PATH VECTOR CHANNEL SIMULATOR 2371

Fig. 1. Illustration of a given transmission path from mobile to base.

a single antenna while an array of antenna elements is used for
reception at the base. In order to present the channel model, the
following relevant parameters are defined:

• , the carrier frequency ;
• , the speed of light;
• , the carrier wavelength;
• , the transmitted signal bandwidth;
• , the speed of the mobile;
• , the number of antenna elements in the array;
• , the array dimension (the maximum distance between

any two arbitrary antenna elements);
• , the propagation path total length;
• , the path angles of arrival (azimuth and elevation) at the

antenna array;
• , the Doppler angle associated with a given transmission

path;
• , the path propagation delay from mobile to base;
• and , the minimum and maximum propagation

delays ( delay spread).
Fig. 1 illustrates a given transmission path from the mobile to

the antenna array at the base. Note that no specific geometrical
restriction on the array configuration is imposed.

The time required for the received waveform associated with
a given transmission path to propagate across the array is typ-
ically much smaller than the inverse of the transmitted signal
bandwidth . The narrowband array assumption
[14] can therefore be used for many wireless communication
systems. As an example, in the case of IS-95 for which

MHz [15], the above assumption is equivalent to
m, and is clearly always satisfied for any micro-diversity

scheme. Under the narrowband array assumption, one widely
used model [5], [7], [8], [10] for the baseband equivalent of the

-dimensional vector channel impulse response is given by

(1)

where
observation time at the channel output;
time at which the impulse is applied at the input;
Dirac delta function representing this impulse;

number of TDPs;
propagation delay for theth TDP;
th complex path vector.

This complex path vector is related to the antenna geometry and
is dependent on the amplitude attenuation and phase distortion
induced by the channel at the various antenna elements for all
TISs associated with theth TDP. The elements of the complex
path vectors, denoted by for , are called
herechannel coefficients.

To simplify the subsequent statistical analysis of the com-
plex path vectors, we choose to visualize the channel impulse
response (1) as a linear superposition of propagation path con-
tributions associated to a continuum of angles of arrival (AOA)
, Doppler angles , and propagation delays. We therefore

have

(2)

where
domain of integration of for the th TDP
which is equal to

;
path magnitude density function with respect
to the AOA, Doppler angle, and propagation
delay;
radial Doppler frequency .

The vector in (2) is the array propagation vector [14], de-
fined here as

(3)

where is the time difference of arrival, between theth and
the 0th antenna elements, of the propagation paths with AOA
; and the superscript denotes the transpose operator. The

terms and in (2) are associated with the
Doppler effect, the antenna diversity and the transmission delay
from mobile to base, respectively. Note that the array propaga-
tion vector definition (3) could be modified to include the effect
of antenna element directionality.
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It is important to outline the limitations on the validity of our
propagation model imposed by the various hypotheses made to
obtain (1) and (2). The derivation of the model presented in this
section is detailed in Appendix A. Note that, under our modeling
assumptions, the Doppler angle associated with a particular TIS
is time-invariant. The model is therefore only valid for small
mobile displacements or, equivalently, for short periods of time.
The propagation model does not allow for significant mobile or
scatterers displacement like the model presented in [12]. Also
note that, although the delay associated with individual TDP
are assumed fixed in time, the effect of propagation delay vari-
ations for the TISs are included in the model and express them-
selves through the Doppler component in the path vectors. The
transmitted signal bandwidth,, is assumed relatively small, so
that the Doppler affects only the carrier frequency, and not the
modulation bandwidth, for a given TIS. This last assumption is
reasonable for most existing systems but may not be for future
wideband systems.

In a typical urban/suburban environment we can often assume
that all TDPs are composed of a large number of TISs and that
the mobile is surrounded by local reflecting structures so that
there is no line-of-sight transmission. By the central limit the-
orem we then find the channel coefficients to be well approxi-
mated by circularly complex Gaussian variables [17], i.e., they
are characterized by a Rayleigh envelope [16]. The Rayleigh en-
velope model for multipath fading is widely used and was vali-
dated experimentally [16]. Since Gaussian variables are entirely
characterized by their first and second order statistics, we can
simulate the channel coefficients by generating Gaussian
variables that have appropriate mean and correlation. The first
and second order statistics of the desired channel coefficients
are characterized in the next subsection.

B. Second Order Characterization

We consider a mobile surrounded by local reflecting struc-
tures so that there is a large number of indirect transmission
paths each of which exhibiting different AOA, delay , and
Doppler angle .

With the considered framework, it is reasonable to use the
following modeling assumptions:

1) TISs corresponding to different delays, AOA, or Doppler
angles have uncorrelated amplitudes. That is,

(4)

where the superscript denotes the conjugate operator,
and is the joint power density function. This as-
sumption is intuitively reasonable since propagation paths
associated with different AOA, Doppler angles, or trans-
mission delays do not result from the same interactions
with the physical environment.

2) The power density function is separable in
, and , i.e.,

(5)

where and are the power density
function with respect to the delay, the Doppler angle and

the AOA for the th path, respectively. The intuitive val-
idation of this assumption comes from the fact that there
is no direct physical relation between the Doppler angle,
the propagation delay and the direction of arrival, so that
knowledge of or does not give any information
about the remaining two.

3) The power density function with respect to the Doppler
angle, , is uniform since the local scatterers are uni-
formly distributed around the mobile.

We define

(6)

which is simply the power fraction associated with theth path.
Typically, a negative exponential distribution is used to describe
the power density function with respect to the transmission de-
lays [19], so that one finds

(7)

where is the mean delay.
Because of the random phase associated with each individual

TIS in a given TDP (due to the different delays of arrival), it is
easily shown that the channel coefficients are well modeled by
a zero-mean complex variable [18].

To simplify the analysis of the second order statistics, we sup-
pose that . This is respected in vehicular technology
( m/s, s) provided GHz. Under
our modeling assumptions one may show that the cross-corre-
lation matrix of the complex path vectors is given by (see Ap-
pendix B)

(8)

(9)

where
time lag;
Bessel function of the first kind and of
order 0;

superscript denotes the Hermitian-transpose operator; and the
matrix ; which is called here the spatial correlation matrix
for the th TDP, is given by

(10)

Note that an expression similar to (9) for the complex path
vector cross-correlation matrix is given in [5].

The spatial correlation matrix for theth TDP, , can be
obtained from (10) once the antenna geometry (or equivalently
the functions in (3)), and the power density functions with
respect to the AOA , are selected.

The performance of an antenna array receiver is strongly de-
pendent on the level of correlation between the signals received
at the various antenna elements. It is therefore of great interest
to develop an intuitive understanding for the spatial correlation
characteristics of signals received at the antenna array under our
modeling assumptions. To do so, we consider an antenna array
of two elements spaced apart. We also introduce a simple
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Fig. 2. Geometry of the simple two-elements array model.

propagation model for which all the incoming paths lie in the
same plane as the array, and the power density function of the
incoming TISs with respect to the angle of arrival is uniform in

, where is the mean angle of arrival and is called
the angular spread. The model geometry is illustrated in Fig. 2.
Only one TDP is considered. With this model, the spatial
correlation matrix of (10) is a matrix. The spatial
correlation between the signals received at the two antenna ele-
ments is a function of the antenna separation, and is simply
given by the entry of on the second row and first column,
denoted by , which is equal to

(11)

It can be shown that (11) can be rewritten in the following
way:

(12)

To a good approximation [16], [19], the envelope correlation
is equal to the squared magnitude of the complex signal corre-
lation, so the spatial correlation between the envelopes of the
received signals at the two antenna elements, which we denote
by , is simply given by the squared magnitude of .
Figs. 3(a) and (b) illustrate the value of obtained from
(12), versus the normalized antenna separation for dif-
ferent values of angular spread and for (broadside) and

, respectively. We note that, as expected, when the an-
gular spread is null , maximum spatial envelope corre-
lation exists between the signals at the antenna elements. When

and the signal comes from broadside, there are zeros in
the spatial correlation at specific values of antenna separation.
The larger the angular spread, the lower the value of antenna
spacing corresponding to the first zero. When the signal is not
coming from broadside, as in Fig. 3(b), the antenna separation
necessary for low spatial correlation is larger. In mobile com-
munications, the base is typically far from the mobile and the
local scatterers surrounding it, the angular spread induced by
these local scatterers, , is therefore often relatively small [2],
of the order of a few degrees at most. With such values of an-
gular spread, Fig. 3 indicates that the spatial envelope correla-
tion between two antenna array elements can remain relatively
high even if they are separated by many.

(a)

(b)

Fig. 3. Spatial envelope correlation�(D) versus normalized antenna
separation for different values of angular spread and for two values of average
angle of arrival. (a)� = 90 . (b) � = 20

III. N EW VECTORIAL CHANNEL SIMULATOR

The new channel simulator is described in this section. The
general structure of the simulator is first presented and a detailed
description of its main component, the complex path vector gen-
erator, is then given.

A. Simulator Structure

The vectorial channel simulator structure is shown in Fig. 4.
It is a single-input multi-output discrete-time FIR filter with
time-varying coefficients, based on a tapped-delay-line model
with evenly spaced taps one sample apart. The time index and
the corresponding sampling interval are denoted byand , re-
spectively. The sampling rate is set equal to the Nyquist rate, i.e.,

. The input to the channel simulator, , is the base-
band transmitted signal; the outputs,
are the baseband received signals at theantenna elements.
The th tap input of the th tapped-delay-line associated with
the th antenna, i.e., , is multiplied by a time-varying
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channel coefficient . A complex noise signal mod-
eling external noise or possibly multiuser interferences is added
to the th tapped-delay-line output. The power of this noise
signal is chosen according to the required signal-to-(interfer-
ence-plus)-noise ratio.

The vector channel simulator main task is to synthesize the
complex path vectors , i.e., the time-
varying channel coefficients , so that their cross-correla-
tion characteristics are as given by (9). The complex path vector
generator used to obtain the desired channel coefficients is de-
scribed in the next subsection.

B. Complex Path Vector Generator

The basic philosophy behind the complex path vector gener-
ator is to devise some kind of space-time correlation shaping
transformation that will be applied to uncorrelated Gaussian
white noise sequences in order to obtain a discrete-time version
of the time-varying complex path vectors

in (1) exhibiting the appropriate spatio-temporal correlation
properties, as given by (9). Such a transformation would permit
to generalize the scalar channel simulator presented in [13] to
the vectorial (multi-channel) case. Note that contrarily to the
simulation approach presented in [12], our approach bypass the
tracking of high resolution delays for the TISs by stochasti-
cally modeling the channel variations due to the Doppler effect.
These channel variations are narrowband by nature so that their
tracking can be done at a relatively low rate.

As shown later on, as long as the complex path vectors are
obtained at a rate higher than twice the Doppler frequency, their
temporal correlation structure is preserved when interpolation
procedures are used, later on, to bring the sampling rate to a
higher value. Since the Doppler frequency is typically much
smaller than , it is computationally profitable to do the dig-
ital processing required to obtain the complex path vectors at a
smaller rate than the rate used in Fig. 4. The complex
path vectors obtained at this reduced rate, which we denote by

, can then be interpolated to the higher required rate .
Observation of (9) indicates that the complex path vectors

are independent, which means that the simulated channel coef-
ficients can be generated independently for each TDP. Further-
more, by rewriting (9) in the following way for the case :

(13)

where

(14)

we note that the matrix is independent of . This suggests
that, in order to obtain the appropriate space-time correlation
characteristics for a given path, one can use a time transforma-
tion followed by a spatial transformation. More precisely, the
desired time-varying complex path vector for theth TDP ,
which is used in Fig. 4, can be obtained from the complex path
vector generator illustrated in Fig. 5.

The time index in Fig. 5 refers to the sampling interval
of the complex path vectors prior to interpolation, which is de-

Fig. 4. Time-varying vector channel simulator.

noted by . The noise generator to the left of Fig. 5 produces
zero-mean circularly complex Gaussian vectors

(15)

such that

(16)

The time-correlation shaping filter (TCSF) denoted by in
Fig. 5 is designed so that the temporal correlation of its output,

, is approximately equal to the temporal
component in (13), namely . Note that the same TCSF
will be used for each TDP since the time-correlation component
in (13) is independent of the TDP index. Section III–B1 is
devoted to the design of the required TCSF.

The space-correlation shaping transformation in Fig. 5 takes
care of the spatial component of the correlation, i.e.,in (13).
This transformation is applied to the vector whose entries
are the output of the time shaping filters (one for each antenna
elements) at time for the th TDP, i.e.,

(17)

Section III-B2 gives all the details on how to obtain the space-
correlation shaping transformation.

By combining a properly designed TCSF and spatial trans-
formation, we end up with a procedure for synthesizing time-
varying complex path vectors with the desired space-time cor-
relation properties. The obtained simulated complex path vec-
tors are finally interpolated in time to the desired sampling rate

.
A more detailed description of the various components of the

complex path vector generator of Fig. 5 will now be given.
1) Time-Correlation Shaping Filter (TCSF):The use of a

TCSF to obtain the desired temporal correlation is not a new
approach. It was already used more than twenty years ago [20],
and was still used recently [13]. The desired power spectral den-
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Fig. 5. Structure of the complex path vector generator (one such structure per TDPi).

sity function, denoted by , is the Fourier transform of the
Bessel function in (13), and is given by

if

otherwise
(18)

The Fig. 6 illustrates versus normalized frequency (nor-
malized by the sampling frequency characterized below).
For the optimal TCSF, we have and the im-
pulse response is infinite in length. But since has singular-
ities at , the design of a stable TCSF with

is unrealizable. In practice, the singularities around
are replaced by sharp peaks. If a FIR filter is selected to

approximate the optimal TCSF, as in [20], the order of the filter
must be high to obtain a sharp frequency response. To reduce
computational complexity, a low order infinite impulse response
(IIR) filter was used in [13]. No design details for the TCSF are
given in this reference. It is only said that a second-order bi-
quadratic filter with a very low damping factor is used. For this
reason, a new IIR TCSF design is presented in this section.

The new TCSF is linear and time invariant. The associated
impulse response and its-transform are denoted by and

, respectively. The sampling rate
must be high enough so that the temporal correlation structure of
the channel coefficients is preserved when interpolation proce-
dures are used, later on, to bring the sampling rate to its desired
value . To do so, the selected value of must be higher
than the Nyquist frequency [21] which is twice the Doppler fre-
quency . We selected . A pole-zero TCSF
of order

(19)

is considered. To obtain the and , we consider the min-
imization of an error function via a BFGS quasi-Newton method
[22]. The selected error function, , is given by

(20)

where the are frequency samples uniformly distributed
in . The minimization procedure was repeated for various
values of filter order and number of frequency
points . Since , by taking values of

which are not divisible by three, the singularities of at
pose no problem since they are not considered in the

Fig. 6. Desired and obtained power spectral density functionsS(!) and
jH(e j .

minimization process. A good compromise between complexity
and performance was achieved with and . The
obtained coefficients of are given in Table I. The desired
and obtained power spectral density and are
illustrated in Fig. 6. A pole-zero diagram for the new TCSF is
given in Fig. 7, while the first hundred samples of the TCSF
impulse response are plotted in Fig. 8. The temporal correlation
of the TCSF output, , and the desired
temporal correlation, are illustrated in Fig. 9.

2) Spatial Transformation:The spatial transformation used
to obtain the complex path vector from (17) is a
linear and memoryless operator. It takes the form of a simple
matrix multiplication, i.e.,

(21)

From (8), (9), (13), and (21), we can see that one must find a
matrix such that .

The development of the spatial transformation operatoris
based on the Karhunen-Loève expansion for vectorial random
processes [23], [17]. Since the matrix is the correlation ma-
trix of a discrete-time stochastic process, it is a nonnegative def-
inite Hermitian matrix [17]. Any Hermitian matrix is diagonal-
izable [17], so that we can write

(22)
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Fig. 7. Pole-zero diagram of the obtained TCSF.

Fig. 8. First samples of the impulse responseh(m).

where the matrix whose columns are the orthonormalized
eigenvectors of , denoted by ,
and is the diagonal matrix whose entries are the corre-
sponding eigenvalues . Note that the premultiplication
of a vector by represents an orthogonal transformation
from the basis to the canonical basis. Of
course the premultiplication of a vector by does
the inverse transformation. The fact that is nonnegative
definite implies that , but since, by definition,

, or equivalently , we have
, so that the eigenvalues of

are real and nonnegative. We can therefore write

(23)

(24)

(25)

Fig. 9. Desired and obtained temporal correlations.

TABLE I
H(z) COEFFICIENTSOBTAINED VIA OPTIMIZATION

where is the desired matrix used in the spatial
transformation (21).

Premultiplication of the spatially uncorrelated signal vector
by gives a complex path vector such

that

(26)

(27)

(28)

(29)

which is the desired result (13). The approximation made in
going from (26) to (27) simply comes from the fact that the de-
signed TCSF gives a vector whose elements have a
temporal correlation which is not exactly equal to

(see Fig. 9).
Fig. 10 illustrates the space-correlation transformation for

the th path. Each element of the spatially uncorrelated
signal vector (from the output of the TCSF) is first scaled
by the square root of the eigenvalue. The resulting vector is
then premultiplied by the eigenvector matrix . The output of
the path vector generator, , has the
appropriate time-space correlation properties.

Note that if the angular spread associated with a given TDP
is small (of the order of a few degrees) and the number of an-
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Fig. 10. Space-correlation shaping transformation.

Fig. 11. General system for interpolation.

tenna elements is high, then a few of the associated eigen-
values will dominate the others in am-
plitude [24]. It is therefore possible, under these conditions, to
reduce the computational requirements of the spatial transfor-
mation by setting the small eigenvalues to zero.

It is important to mention that the space-correlation shaping
transformation of Fig. 10 can be used independently of the
vector channel simulator presented in this paper to obtain se-
quences with the appropriate spatial correlation from mutually
uncorrelated sequences that already exhibit the appropriate
temporal correlation. Such sequences could have been obtain
previously from scalar channel simulators such as those
presented in [16], or could simply be temporally uncorrelated
sequences if for a given application one needs to generate a
simulated channel exhibiting no temporal correlation between
observations.

3) Interpolator: As said earlier, the sampling frequency as-
sociated with the channel filtering is typically much
larger than the one associated with the complex path vector
generator (see Figs. 4 and 5). We therefore need
to obtain the high rate channel coefficients required for
channel filtering from the low rate ones via interpola-
tion. When a signal with a sampling frequency much higher than
the Nyquist frequency has to be interpolated, simple methods
such as linear or cubic interpolation can be used without com-
promising on the precision [25]. In our case, the sampling fre-
quency is typically much larger than , which is
the Nyquist frequency associated with the channel coefficients.
It is therefore possible to decompose the interpolation process to
reduce computational requirements. To do so, we use the inter-
polation system shown in Fig. 11. The system is composed of a
classical interpolator [26] followed by a cubic interpolator [25].
The classical interpolator increases by a factorof at least 30
the sampling rate which becomes much higher than the Nyquist
frequency. It does so by adding zeros between samples
(zero-padding) and filtering the resulting signal with a low-pass
filter that has a radial cutoff frequency of . Once the classical
interpolation is done, a computationally less intensive cubic in-
terpolator is being used to further increase the sampling fre-
quency to its desired value . The total system is much less
computationally demanding than would be a classical interpo-
lator alone. Note that if the mobile speed is null, i.e.,

Fig. 12. Geometry of the antenna array and of a given TDP,i (top view).

TABLE II
PATH ANGLE OF ARRIVAL PARAMETERS

becomes infinite and no interpolation (or TCSF)
is required since a time-invariant simulated channel is obtained.

IV. SIMULATION EXAMPLE

In this section, we present and analyze a channel realization
obtained with the new time-varying vector channel simulator
described above.

In this example, we consider TDPs and a horizontal
circular array of receiving antenna elements separated
by half a wavelength. To simplify the analysis of the directivity
of the channel we assume that all the propagation paths lie in
the same plane as the array (elevation angle is null), and that
the power density function with respect to the azimuth angle for
the th TDP is uniform in the interval , where is the
mean angle of arrival and is the angular spread for theth
path. The geometry of the antenna array and of a given TDP,, is
given in Fig. 12. Note that a far-field assumption is used, so that
the angle of arrival for a given TIS is the same at any position
on the antenna array.

In our example,
and . These parameters are displayed

in Table II for quick reference. The selected mobile speed is
30 m/s (108 km/h), the carrier frequencyis 1 GHz (Doppler
frequency Hz), the transmitted signal bandwidthis
1.2288 MHz, the negative exponential delay profile is used and
the mean delay in (7) is set to . The complex
path vector update interval is before
interpolation. The classical interpolation decreases this interval
to ( in Fig. 11) while the cubic interpolator brings
it down from to .

Fig. 13 illustrates the evolution in time of the magnitude of
the channel coefficients for antenna element 0, i.e., for
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Fig. 13. Channel coefficient magnitudesversustime for antenna element 0.

Fig. 14. Directivity pattern (contour plot) for receiver matched to simulated
channel att = 0:02 s.

. Due to the fact that there is high channel coeffi-
cients correlation between antennas, the evolution in time of
the channel coefficients for the two other antennas is almost
identical and is therefore not shown. Comparing the shapes of
the curves in Fig. 13 with what is shown in the literature (in
[27] for example), we see that the time evolution of the simu-
lated channel coefficients is representative of a typical wireless
channel.

Next, we show that channel coefficients with appropriate spa-
tial characteristics are being obtained by the new channel sim-
ulator. To this end, we look at the directivity pattern (DP) of a
receiver matched to the simulated channel, i.e., a receiver whose
coefficients are simply the complex conjugate of the channel co-
efficients. The DP is simply a graph of the gain of the receiver
versusthe azimuth angle (and frequency if the frequency is not
set to a particular value) of the incoming paths. A DP contour
plot at time s for all possible values of normalized
frequency and azimuth angle is shown in Fig. 14. The brighter
the region in this figure, the higher the gain of the receiver. We
can see that, as expected, most of the incoming energy arrives

Fig. 15. Directivity pattern (contour plot) at carrier frequencyversustime for
receiver matched to simulated channel.

at azimuth angles near as given above. Note that
the lack of strong energy around comes from the
fact that the corresponding path is in a fade at s (see
Fig. 13).

Fig. 15 illustrates the variation in time of the DP when the
normalized frequency is set to 0 (i.e., carrier frequency for pass-
band equivalent channel). By comparing Figs. 15 to 13, we see
that the gain for azimuth angles nearfollows closely the mag-
nitude of the channel coefficients. To better analyze the direc-
tivity of the simulated channel, we show in Fig. 16 the DPs as-
sociated to the channel coefficients of each individual TDP for
different values of time. As expected the DPs point toward the
mean angle of arrival of the corresponding TDP and the gain
associated with each TDP depends on the instantaneous fading
conditions. Note that there is no perfect symmetry in the DPs for
a given TDP (especially noticeable for the second path). This is
due to the fact that the fading correlation between antenna ele-
ments is not maximal so that the optimal receiver not only gives
a maximum gain in the direction of signal arrival but also gives
higher weights to the antenna elements at which the signal ex-
hibit the less fading related attenuation. The DP for the second
path exhibit more asymmetry because that TDP has the larger
angular spread and is therefore the one for which there is the
less fading correlation between antenna elements.

V. DISCUSSION ANDCONCLUSION

The numerical complexity of existing vector channel sim-
ulators is proportional to the number of TISs. For example,
the complexity of the simulator presented in [10] is of order

, where is the number of discrete AOA
at the base, and is the number of TISs per AOA (which is
supposed identical for all values of AOA to simplify the anal-
ysis). A transmitted radio-mobile signal in a urban environment
is diffracted, refracted and reflected a large number of times,
so that the overall propagation process is distributive in nature.
The simulation of this distributive process with existing simula-
tors requires that a very large number of discrete AOA be con-
sidered. The simulation of a vector channel with existing sim-



STÉPHENNE AND CHAMPAGNE: EFFECTIVE MULTI-PATH VECTOR CHANNEL SIMULATOR 2379

(a) (b)

(c)

Fig. 16. Path directivity patterns for a receiver match to the simulated channel for three different values of time. (a)t = 0. (b) t = 0:02s. (c) t = 0:05s.

ulators can therefore become very computationally expensive.
The new vector channel simulator presented in this paper bypass
the need to decompose the channel in its TISs by stochastically
modeling the channel variations associated with the combina-
tion of these time-varying TISs. The numerical complexity of
this new simulator is of order and is therefore inde-
pendent of the number of TISs.

The observations presented in the previous section and others
made on similar channel realizations obtained for different sim-
ulation scenarios lead us to the conclusion that the new simulator
is an attractive working alternative to existing vector channel
simulators. The new simulator is easy to use and models real-
istic channel behavior while having a complexity proportional
to the number of TDPs, regardless of the number of TISs. This
simulator is being used at INRS-Télécommunications to com-
pare the performance of many CDMA receiver algorithms under

time-varying conditions. Part of this work has been presented in
[28].

APPENDIX A
CHANNEL MODEL DERIVATION

The signal propagation through a single path, from the mobile
to the th antenna element at the base, can be modeled by the
following impulse response:

(30)

where
observation time at the channel output;
time at which the impulse is applied at the input;
received amplitude;
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transmission delay of a signal transmitted at time,
and received at theth antenna element.

Assuming that the Doppler angle is time-invariant over the
observation interval, we have

(31)

Denoting the transmitted signal by , the received signal at
the th antenna element (assuming there is no noise) can there-
fore be written as

(32)

(33)

which, since , is equal (approximately) to

(34)

We can write , where is the baseband
equivalent of the transmitted signal, so that

(35)

which, assuming , is equal (approxi-
mately) to

(36)

We define and . Under the narrow-
band array assumption we have , so that

(37)

Furthermore, by making a Taylor expansion of the argument of
the exponential function we can write

(38)

where represents a term which goes to zero much faster
than . Assuming and , we
therefore have

(39)

The baseband equivalent of the received signal at theth antenna
element is then

(40)

and the baseband equivalent of the -dimensional vector
channel impulse response is

(41)

where is the array propagation vector for the considered path,
which is defined as

(42)

Considering a more realistic propagation scenario for which
TDPs exist, we have

(43)

where

(44)

and the indexes are used to refer to the variables associated
with the th of the TISs for the th TDP.

APPENDIX B
COMPLEX PATH VECTORSCORRELATION

From (8) and (2), we obtain

(45)

(46)

(47)

Then, from (4), (5), and the fact that the power density function
with respect to the Doppler angle,, is uniform, we get

(48)

(49)

which is the desired result.
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