
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 64, NO. 5, MAY 2015 2071

Mobile Localization in Non-Line-of-Sight Using
Constrained Square-Root Unscented

Kalman Filter
Siamak Yousefi, Student Member, IEEE, Xiao-Wen Chang, and Benoit Champagne, Senior Member, IEEE

Abstract—Localization and tracking of a mobile node (MN)
in non-line-of-sight (NLOS) scenarios, based on time-of-arrival
(TOA) measurements, is considered in this paper. We develop
a constrained form of a square-root unscented Kalman filter
(SRUKF), where the sigma points of the unscented transforma-
tion are projected onto the feasible region by solving constrained
optimization problems. The feasible region is the intersection of
several disks formed by the NLOS measurements. We show how
we can reduce the size of the optimization problem and formulate
it as a convex quadratically constrained quadratic program, which
depends on the Cholesky factor of the a posteriori error covariance
matrix of the SRUKF. As a result of these modifications, the
proposed constrained SRUKF (CSRUKF) is more efficient and has
better numerical stability compared to the constrained unscented
Kalman filter (UKF). Through simulations, we also show that the
CSRUKF achieves a smaller localization error compared to other
techniques and that its performance is robust under different
NLOS conditions.

Index Terms—Constrained Kalman filter (KF), convex opti-
mization, localization, non-line-of-sight (NLOS).

I. INTRODUCTION

N ETWORK-BASED radio localization has received great
attention in recent years due to limitations of the Global

Positioning System in indoor places and dense urban areas
and now finds numerous applications in surveillance, security,
etc. [1]. In this technology, radio signals exchanged between
a mobile node (MN) and fixed reference nodes (RNs) with
known positions,1 are exploited to determine the unknown
location of the MN. Several different types of measurement
can be used for localization, e.g., time of arrival (TOA), time
difference of arrival, received signal strength (RSS), angle of
arrival (AOA), and a hybrid of these. Among the different
localization techniques, TOA-based methods in which the MN
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1In wireless cellular networks, the RN are identified with the base stations,
whereas in wireless sensor networks, they are called anchors.

and RNs are synchronized are usually preferred, particularly in
the context of IEEE 802.15.4a, which exploits ultrawideband
(UWB) technology [2]. Indeed, measurement of TOA can be
done accurately with UWB signaling due to its fine timing
resolution and robustness against multipath and fading.

One of the main challenges in radio localization is the non-
line-of-sight (NLOS) problem, which occurs due to the block-
age of the direct sight between the MN and RNs. In an NLOS
situation, due to either reflection of the radio waves by scatter-
ers or penetration through blocking objects, the travel time of
the received signals increases [3]–[5]. Consequently, the NLOS
error of each measured TOA needs to be modeled as a random
variable with a positive bias, which can be quite large [6]. The
first step in dealing with the NLOS problem is to detect the
NLOS measurements and, if necessary, discard them. To this
end, some techniques estimate the variance of each measure-
ment, and if it is above a given threshold, the corresponding
link is identified as NLOS [7]–[9]. NLOS identification tech-
niques using signal features have been also proposed for UWB
applications [4], [5], [10]. If, however, the NLOS measurements
cannot be discarded due to an insufficient number of LOS
measurements for unambiguous localization, the next step is to
mitigate their effect through further processing.

There are numerous works focusing on NLOS mitigation for
the localization of stationary nodes, which are mostly based
on (memoryless) constrained optimization techniques, e.g.,
[11] and [12]. In these approaches, the position of the MN
is constrained to be within the convex hull formed by the
intersection of multiple disks, each disk being centered at one
of the NLOS RNs and with a radius equal to the corresponding
measured range. By restricting the MN position in this way
and by employing the LOS measurements in the cost function
to be minimized, the unknown location can be found through
solving a constrained optimization problem. For a survey on
TOA-based memoryless localization in NLOS scenarios, see
[6] and the references therein.

For an MN with available dynamic model, filtering tech-
niques are preferred compared to memoryless methods. This
is particularly the case when data from inertial measurements
units (IMUs) are used in parallel with range information for
tracking purposes [13], [14]. Some methods apply Kalman
filter (KF) preprocessing on measured TOAs to smooth out the
effect of the variances of the NLOS biases while scaling the
covariance matrix in an extended KF (EKF) to further mitigate
the effect of their means [7]–[9]. However, these approaches
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can only achieve a moderate performance for large NLOS
biases. In [15] and [16], it is assumed that the mean and
variance of the NLOS biases are known; in practice, however,
this information is not available accurately beforehand unless
prior field measurements are obtained.

Some other approaches regard the NLOS bias as a nuisance
parameter and try to estimate its distribution using kernel den-
sity estimation (KDE) techniques. In [17], a robust semipara-
metric EKF is proposed for NLOS mitigation of an MN. The
performance of this technique is improved by the interacting
multiple model algorithm in [18]. Although considered for
TOA measurements, these techniques are also suitable when
AOA, RSS, or a hybrid of these is employed. However, in
addition to high computational cost, the performance of KDE
still depends on how well it can model the distribution of the
NLOS biases. It is claimed that for cellular applications, the
performance is only satisfactory when the ratio of NLOS to
LOS measurements is less than a half, and a higher ratio might
result in divergence of KDE algorithms [18].

In some other techniques, the random NLOS biases are con-
sidered as parameters in the state vector to be jointly estimated
with other state parameters [19]–[22], whereas the NLOS bias
variation over time is modeled as a random walk. The technique
in [19] uses EKF, whereas [20] and [21] use particle filters
(PFs) that generally have a high computational cost. In [22], an
improved EKF is used where bound constraints on the NLOS
biases are enforced for improving the localization accuracy.
Although the aforementioned techniques can mitigate the effect
of NLOS biases to some extent, their performance might not
be good due to the mismatch between the random walk model
and the physical reality, which is unavoidable considering the
unpredictable nature of the biases. Furthermore, by including
the biases in the state vector, the computational cost of the filter
grows noticeably [17].

In this paper, we propose an efficient square-root unscented
KF (SRUKF) with convex inequality constraints for localiza-
tion of an MN in NLOS situations. The proposed constrained
SRUKF (CSRUKF) is based on a combination of the SRUKF in
[23] for unconstrained problems and the constrained unscented
KF (UKF) in [24]. In our proposed algorithm, similar to some
memoryless approaches, the NLOS measurements are removed
from the observation vector and are employed instead to form a
closed convex constraint region [6]. At each time step, we use a
SRUKF to estimate the state vector and compute the Cholesky
factor of the error covariance matrix. To impose the constraints
onto the estimated quantities, as proposed in [24], the sigma
points of the unscented transformation (UT) may need to be
projected onto the feasible region by solving a convex quadrat-
ically constrained quadratic program (QCQP). However, we
show that the projection can be done in a more efficient and
numerically stable way by solving a QCQP with reduced size,
in which the cost function depends on the Cholesky factor
of the a posteriori error covariance matrix, which is readily
obtained from the SRUKF. Through simulations, our proposed
algorithm is shown to achieve a good localization performance
under different NLOS scenarios. In particular, in severe NLOS
conditions and with small measurement noises, our method
achieves a superior performance compared to other benchmark

approaches. Another salient advantage is its robustness to false
alarm (FA) errors2 in NLOS identification, which makes it
suitable for practical applications where such errors may be
inevitable.

The organization of this paper is as follows: In Section II,
the system model is described, and the problem formulation is
presented. The proposed CSRUKF algorithm is developed in
Section III, along with a discussion of computational complex-
ity. The simulation results and comparisons with different al-
gorithms are given in Section IV. Finally, Section V concludes
this paper.

Notation: Small and capital bold letters represent vectors
and matrices, respectively. The vector 2-norm operation is
denoted by ‖ · ‖, and (·)T and (·)−1 stand for matrix transpose
and inverse operations, respectively. A diagonal matrix with
entries x1, . . . , xM on the main diagonal is denoted by diag(x1,
. . . , xM ). For i ≤ j, q(i : j) denotes a vector of size j − i+
1 obtained by extracting the ith to jth entries of vector q,
inclusively. The symbol I denotes an identity matrix of appro-
priate dimension. For a positive semidefinite Hermitian matrix
R, R1/2 denotes its unique positive semidefinite square-root
matrix, i.e., such that R1/2R1/2 = R [25].

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

A. System Model

Consider a network of M fixed RNs and one MN, distributed
on a 2-D plane and exchanging timing signals via wireless
links. With reference to a Cartesian coordinate system in this
plane, let ai ∈ R

2 denote the known position vector of the
ith RN, where i ∈ {1, . . . ,M}, whereas xk ∈ R

2 and vk ∈ R
2

denote the unknown position and velocity vectors of the MN
at discrete time instant k, respectively. Let the state vector be
sk = [xT

k ,v
T
k ]

T ∈ R
4, which includes the position and velocity

components of the MN. The motion model is assumed to be a
nearly constant velocity model as

sk = Fsk−1 +Gwk−1 (1)

where the matrices F and G are

F =

⎡
⎢⎣

1 0 δt 0
0 1 0 δt
0 0 1 0
0 0 0 1

⎤
⎥⎦ , G =

⎡
⎢⎢⎣

δt2

2 0

0 δt2

2
δt 0
0 δt

⎤
⎥⎥⎦ (2)

and δt is the time step duration. The vector wk−1 ∈ R
2 in (1) is

a zero-mean white Gaussian noise process (acceleration) with
diagonal covariance matrix Q = σ2

wI .
In this paper, we consider TOA-based localization, in which

the range between the MN and each RN is obtained by mul-
tiplying the time of flight of the radio wave by the speed of
light. If the MN and RNs are accurately synchronized, then a
one-way ranging scheme can be used; otherwise, a two-way
ranging protocol may be employed where the relative clock
offsets are removed from the TOA measurements [26]. Let Lk

and Nk denote the index sets of the RNs that are identified as

2In this paper, an FA refers to the erroneous identification of an LOS link as
being NLOS, whereas a missed detection (MD) refers to the opposite situation.
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LOS and NLOS nodes at time instant k, respectively. The range
measurements can thus be represented by vector rk ∈ R

M with
components

rik =

{
hi(sk) + ni

k, i ∈ Lk

hi(sk) + bik + ni
k, i ∈ Nk

(3)

where hi(sk) = ‖xk − ai‖, ni
k is the measurement noise, and

bik is a positive random NLOS bias, which is usually considered
independent from ni

k. The noise terms ni
k, for i ∈ {1, . . . ,M},

are modeled as independent white Gaussian processes, with
zero mean and known variance σ2

n > 0. The probability distri-
butions of the biases bik are time varying due to the movement
of the MN and other objects in the area. In the literature,
different distributions have been considered for the biases, for
instance: exponential [27], [28], shifted Gaussian [16], and
uniform [4] are widely employed. However, having a priori
knowledge about the distributions of the NLOS biases requires
preliminary field measurements, which may not be possible
in practical applications. Therefore, in this paper, we make
no specific assumption about the distributions of the NLOS
biases, although we suppose that the NLOS links are accurately
identified at every time instant.3

The processing of range measurements for NLOS identifica-
tion and mitigation can be done either at the MN or at a fusion
center connected to the RNs. The former is used in the MN
self-localization applications, whereas the latter is of interest to
target tracking applications.

B. Problem Formulation

The state vector sk and the NLOS biases bik for i ∈ Nk

are the unknown parameters in the aforementioned model.
Representing the NLOS biases by a simple dynamic model such
as a random walk might be justified for certain environments
as considered in [20] and [21], but in general environments,
this may only be considered an approximation. The optimal
choice for the variance of the random walk increment is also
intractable as discussed in [29]. Including the biases bik in the
state vector also increases the computational complexity of the
KF; therefore, it may not be computationally efficient as well.

Since the random walk model may not be an accurate ap-
proximation for the evolution of bik over time, we avoid using
this model and estimating the biases. To simplify the problem
and reduce the number of unknowns, we eliminate the NLOS
measurements from the observation vector rk and instead use
the information carried out by the biases to restrict the position
of the MN within a certain range. For instance, in many appli-
cations, it can be assumed that the TOA measurement noise ni

k

is small compared to bik (particularly in UWB ranging), which
implies that bik + ni

k ≥ 0 [6]. In light of (3), this assumption is
equivalent to

‖xk − ai‖ ≤ rik, i ∈ Nk (4)

3We assume that for every time instant, an NLOS identification technique
has been applied on the measured ranges before employing our proposed filter.
There are numerous techniques that identify the NLOS link using the variance
test [7]–[9]. For UWB applications, the features of the received TOA signal can
also be employed for NLOS identifications, as proposed in [4], [5], and [10].

which is obviously a convex constraint, as in [30]. If the small
noise assumption cannot be made, e.g., in narrow-band systems
where TOA-based ranging measurement errors are relatively
large, the constraints in (4) may not be satisfied. To avoid this
limitation, we can generalize the latter as

‖xk − ai‖ ≤ rik + εσn, i ∈ Nk (5)

where ε ≥ 0 is a small number to ensure that the MN is located
inside a disk with radius rik + εσn. Note that even if the bias
is zero for a given link (i.e., LOS situation), it is more likely
that the MN satisfies the constraint in (5) as compared to (4).
Therefore, we propose to use the constraint in (5) throughout
this paper due to its robustness against measurement noise and
FA error in NLOS identification. In the sequel, the feasible
region, which is denoted by Dk, refers to the convex set formed
by the intersection of the disks in (5); hence

Dk =
{
x : ‖x− ai‖ ≤ rik + εσn ∀ i ∈ Nk

}
. (6)

At every time instant k, let us remove the NLOS measure-
ments from the observations in (3) and only keep the LOS
measurements, i.e., rik for all i ∈ Lk. The remaining LOS range
measurements can be represented by the vector zk ∈ R

|Lk |.
Note that in the worst case, where all the measurements are
identified as NLOS, the vector zk is empty. The state space
model and constraints can thus be expressed as

zk = h(sk) + nk (7a)

sk = Fsk−1 +Gwk−1 (7b)

‖xk − ai‖ ≤ rik + εσn, i ∈ Nk (7c)

where h(sk) and nk are vectors whose entries are hi(sk) and
ni
k for i ∈ Lk, respectively. Under our previous assumptions

on the measurement noise ni
k in (3), the covariance matrix of

nk is positive-definite diagonal, i.e., R = E[nkn
T
k ] = σ2

nI ∈
R

|Lk |×|Lk |. The constraints in (7c) are only on the first two
elements of the state vector, i.e., xk, as we have a 2-D po-
sitioning scenario herein. Note that if the constraints in (7c)
are removed from the state model, then an ordinary nonlinear
filtering technique such as EKF can be used. This approach is
also known as EKF with outlier rejection [20] since the NLOS
measurements are regarded as outliers and therefore discarded.

In minimum mean square error (MMSE) estimation, e.g.,
Kalman-type filters, one tries to find the conditional mean and
covariance matrix of the state vector sk given the measurements
up to current time instant k, as characterized by the conditional
probability density function (pdf) f(sk|z1, . . . ,zk). However,
when extra information about the state vector is available in the
form of inequality constraints, the probability that the MN is
outside the feasible region should be zero. Hence, a truncated
or constrained conditional pdf, i.e., fc(.|.), can be defined as

fc(sk|z1, . . . ,zk) =

{
1
β f(sk|z1, . . . ,zk), if xk ∈ Dk

0, otherwise
(8)

where β
Δ
=

∫
xk∈Dk

f(sk|z1, . . . ,zk)dsk is a normalization
constant. Therefore, one can estimate the state vector by finding
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the conditional mean of sk with truncated pdf as

ŝk =

∫
xk∈Dk

skfc(sk|z1, . . . ,zk) dsk (9)

and the covariance matrix of the constrained state estimate can
be found through

Σ̂k =

∫
xk∈Dk

(sk − ŝk)(sk − ŝk)
T fc(sk|z1, . . . ,zk) dsk.

(10)

This idea is known as pdf truncation, where the distribution
of the state vector given the measurements is forced to be
zero outside the feasible region [31]. For a linear dynamic
model with zero-mean Gaussian measurement and process
noises, where the state vector is subject to linear inequality
constraints, closed-form expressions for ŝk and Σ̂k in (9) and
(10) have been obtained using pdf truncation along with the
Gaussian assumption [32]. For nonlinear inequality constraints,
it is proposed in [32] to do a Taylor series linearization of the
constraints around the current state estimate and then apply
the aforementioned method; however, this approach may not
be accurate [33]. In general cases with nonlinear inequality
constraints, pdf truncation requires multidimensional Monte
Carlo (MC) integration, which becomes computationally ex-
pensive as the size of the state vector grows. Therefore, these
computationally demanding techniques may not be suitable to
solve our problem.

In the following section, we show how we can efficiently
approximate ŝk and Σ̂k using an alternative approach that
combines the SRUKF [21] for unconstrained problems with the
projection-based constrained UKF in [22].

III. CONSTRAINED NONLINEAR FILTERING

WITH SIGMA POINT PROJECTION

Another family of methods for imposing inequality con-
straints on the state vector are the projection-based techniques,
in which the unconstrained state estimate, obtained through a
Kalman-type filter, is projected onto the feasible region by solv-
ing an optimization problem [31]. However, by this approach,
one cannot estimate the constrained error covariance matrix
of the state, i.e., Σ̂k, accurately. Therefore, in addition to the
unconstrained state estimate, some representative sample points
of the conditional pdf f(sk|z1, . . . ,zk) need to be projected
onto the feasible region. For instance, the sigma points of the
UT can give good statistical information about the mean and
the error covariance matrix of the state estimate [34]. Based
on this idea, in [24], a constrained UKF technique has been
proposed in which the sigma points of the UKF violating the
constraints are projected onto the feasible region. However, due
to the dependence of the projection function on the inverse of
the a posteriori error covariance matrix, the method in [24] may
become numerically unstable [33]. In the following sections,
we first describe a variation of the SRUKF that is better suited
to our specific problem; then, to overcome the aforementioned
numerical issue, we design a more efficient and numerically

reliable method for projecting the sigma points generated from
the a posteriori estimates onto the feasible region; finally,
we summarize our algorithm and comment on its numerical
complexity.

A. Unconstrained SRUKF Algorithm

The proposed algorithm in this part is based on the SRUKF
presented in [23] with slight modification such that the algo-
rithm is more efficient and numerically reliable. Let sk−1|k−1

be the estimated state and Σk−1|k−1 be the estimated error
covariance matrix of the state, based on the available measure-
ments up to current time instant k − 1. Let Uk−1|k−1 be the
upper triangular Cholesky factor of Σk−1|k−1, i.e., Σk−1|k−1 =

UT
k−1|k−1Uk−1|k−1. Then, for the next time instant, the

a priori estimate of the state vector and the corresponding error
covariance matrix, which are denoted by sk|k−1 and Σk|k−1,
respectively, can be obtained through prediction as

sk|k−1 =Fsk−1|k−1 (11)

Σk|k−1 =FΣk−1|k−1F
T +GQGT . (12)

Alternatively, the computation of (12) can be avoided as only
the Cholesky factor of the a priori covariance matrix, which is
denoted by Uk|k−1, is required [23]. To this aim, let us rewrite
(12) as

Σk|k−1 =
[
FUT

k−1|k−1 GQ
1
2

] [Uk−1|k−1F
T

Q
1
2GT

]
. (13)

If we compute the QR factorization of the second matrix on the
right-hand side of (13), we obtain Uk|k−1, i.e.,

Uk|k−1 = qr

{[
Uk−1|k−1F

T

Q
1
2GT

]}
(14)

where, by definition, the function qr{.} returns the upper trian-
gular factor of the QR factorization of its matrix argument.

With the help of Uk|k−1, the sigma points of the SRUKF are
generated as proposed in [23], i.e.,

s
(j)
k|k−1=

⎧⎪⎪⎨
⎪⎪⎩
sk|k−1, j = 0

sk|k−1+
√
ηα

(
UT

k|k−1

)
j
, j = 1, . . . , N

sk|k−1−
√
ηα

(
UT

k|k−1

)
j−N

, j = N+1, . . . , 2N

(15)

where N is the dimension of the state vector (in this paper,
N = 4), (UT

k|k−1)j denotes the jth column of matrix UT
k|k−1,

and ηα is a tuning parameter that controls the spread of the
sigma points. To better understand the geometric meaning of
parameter ηα, we can assume that sk|k−1 and Σk|k−1 obtained
through the proposed filter are approximately equal to the mean
and covariance matrix of the conditional pdf f(sk|z1, . . . ,
zk−1). Define random variable ηk = (sk − sk|k−1)

TΣ−1
k|k−1

(sk − sk|k−1), which is the weighted squared distance between
sk and sk|k−1. Suppose that the parameter ηα in (15) is chosen
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such that Pr(ηk ≤ ηα) = α, where 0 < α < 1 represents a
desired confidence level. Then, the region of R

N defined by
ηk ≤ ηα represents a confidence ellipsoid, on the boundary
of which the sigma points in (15) (except s

(0)
k|k−1) fall. For

example, if α = 0.9, the probability for sk to lie inside the
ellipsoid delimited by the sigma points with the corresponding
ηα is 90%. If we assume that f(sk|z1, . . . ,zk−1) is approxi-
mately Gaussian, then the random variable η has a chi-square
distribution with N degrees of freedom, and it becomes easy
to find a value for ηα corresponding to a certain ellipsoid with
confidence level α.4

The generated sigma points are transformed through the
nonlinear measurement function as

z
(j)
k|k−1 = h(s

(j)
k|k−1), j = 0, . . . , 2N. (16)

Then, the mean, cross-covariance matrix, and error covariance
matrix of the transformed sigma points can be estimated by
means of weighted sums as in [35]

ẑk|k−1 =

2N∑
j=0

w(j)z
(j)
k|k−1 (17)

Σs,z
k|k−1 =

2N∑
j=0

w(j)
(
s
(j)
k|k−1 − sk|k−1

)(
z
(j)
k|k−1 − ẑk|k−1

)T

(18)

P z
k|k−1=

2N∑
j=0

w(j)
(
z
(j)
k|k−1−ẑk|k−1

)(
z
(j)
k|k−1−ẑk|k−1

)T

+R

(19)

where R is the covariance matrix of the measurement noise nk

in (7a), and the weights w(j) appearing in these expressions are
defined in a similar way as in [36]

w(j) =

{
1 − N

ηα
, j = 0

1
2ηα

, j = 1, . . . , 2N
(20)

and therefore satisfy
∑2N

j=0 w
(j) = 1.

If the weight w(0) in (20) is negative, it is possible that
the covariance matrix obtained through (19) becomes indefi-
nite (i.e., with negative eigenvalues). However, by choosing a
sufficiently large value of α, we can guarantee that ηα ≥ N ; in
turn, this implies that w(0) ≥ 0, and the covariance matrix (19)
then becomes positive definite. In this paper, we are interested
in projecting the sigma points that are far away from the
mean, and it is therefore legitimate to consider ellipsoids with
larger confidence levels so that the above issue can be naturally
avoided.5 In our dynamic model, with N = 4 and based on the

4The MATLAB function chi2inv(α,N) can be used for this purpose.
5In [34], a scaled version of the UT has been proposed to capture higher

moments of the nonlinear measurement function, where the generated sigma
points are located in the vicinity of each other. This method also guarantees
positive definiteness of the covariance matrix. However, our problem is not
highly nonlinear, and we are interested to generate sigma points that might be
far away from one another; therefore, our parameter selection is different from
[23] and [34].

chi-square assumption for ηk, it follows that if α > 0.6, then
ηα > N , and the positive definiteness of (19) is guaranteed.

For numerical stability, instead of forming P z
k|k−1 explicitly,

its Cholesky factor is calculated. Specifically, if we let

e(j)z =
√

w(j)
(
z
(j)
k|k−1 − ẑk|k−1

)
, j = 0, . . . , 2N (21)

then the upper triangular Cholesky factor of P z
k|k−1, which is

denoted by Uzk
, is obtained through

Uzk
= qr

{[
e(0)z , e(1)z , . . . , e(2N)

z ,R
1
2

]T}
. (22)

It is proposed in [23] to first compute the Kalman gain

Kk = Σs,z
k|k−1

(
P z

k|k−1

)−1

= Σs,z
k|k−1U

−1
zk
U−T

zk
(23)

and then, the a posteriori state estimate and the Cholesky factor
of the error covariance matrix can be updated through

sk|k = sk|k−1 +Kk(zk − ẑk|k−1) (24)

Uk|k = cholupdate
{
Uk|k−1,KkU

T
zk
,−1

}
(25)

where cholupdate{Uk|k−1,KkU
T
zk
,−1} is the consecutive

downdates6 of the Cholesky factor of UT
k|k−1Uk|k−1 using the

columns of KkU
T
zk

. Note that (25) follows from the covariance
matrix update

Σk|k
Δ
= UT

k|kUk|k = UT
k|k−1Uk|k−1 −KkU

T
zk
UzkK

T
k .
(26)

Herein, however, we propose a more efficient and numeri-
cally reliable way to compute sk|k and Uk|k. Instead of the
Kalman gain Kk, we compute

T k = Σs,z
k|k−1U

−1
zk

(27)

which can be obtained by solving multiple triangular linear
systems T kUz,k = Σs,z

k|k−1. Then, it follows from (23) that

Kk = T kU
−T
zk

. Substituting this expression into (24), we obtain

sk|k = sk|k−1 + T kU
−T
zk

(zk − ẑk|k−1) (28)

where the vector yk
Δ
= U−T

zk
(zk − ẑk|k−1) can be obtained by

solving the triangular linear system

UT
zk
yk = zk − ẑk|k−1. (29)

From (25) and (27), it follows that the covariance matrix can be
updated as

Σk|k = UT
k|k−1Uk|k−1 − T kT

T
k . (30)

Hence, the Cholesky factor of Σk|k can be computed as

Uk|k = cholupdate{Uk|k−1,T k,−1}. (31)

6In MATLAB, the built-in function Cholupdate can be employed to do
rank-1 Cholesky update or downdate, indicated by the third argument of the
function.
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Fig. 1. Proposed projection technique. (a) Unconstrained state estimate and the uncertainty ellipsoid of sigma points, among which, some are outside the feasible
region. (b) The projected sigma points fall inside the feasible region, and the uncertainty ellipsoid is shrunk.

Compared with the algorithm in [23], this modified al-
gorithm for the estimation of sk|k and Uk|k saves about
2N |Nk|2 flops at each time step k. It is also more numeri-
cally reliable as it avoids solving some linear systems, which
could be ill-conditioned, and computing some matrix–matrix
multiplications.

Note that if all the measurements at time instant k are in
NLOS, then the measurement vector zk is empty. Hence, we
will use the predicted state in (11) and the Cholesky factor of the
predicted covariance matrix in (14) to replace the a posteriori
state vector in (28) and Cholesky factor of the error covariance
matrix in (31), respectively.

B. Imposing the Constraints on the Estimates

Up to this point, the a posteriori state estimate and the
Cholesky factor of the a posteriori error covariance matrix have
been obtained using a SRUKF without taking the constraints
(7c) into account. To impose the constraints on the estimated
state and error covariance matrix, similar to [24], a new set of
sigma points is generated according to

s
(j)
k|k =

⎧⎨
⎩

sk|k, j = 0
sk|k +

√
ηα(U

T
k|k)j , j = 1, . . . , N

sk|k −√
ηα(U

T
k|k)j−N , j = N + 1, . . . , 2N .

(32)

The generated sigma points (except s(0)k|k) form an uncertainty
ellipsoid with sk|k at its center, as shown in Fig. 1, for N = 2.

After the generation of sigma points s
(j)
k|k with desired confi-

dence ellipsoid, those that violate the constraints are projected
onto the convex feasible region through

P
(
s
(j)
k|k

)
= argmin

q

{(
q − s

(j)
k|k

)T

W k

(
q − s

(j)
k|k

)}

s.t.
∥∥q(1 : 2)− ai

∥∥ ≤ rik + εσn, i ∈ Nk (33)

where W k is a symmetric positive-definite (SPD) weighting
matrix [33], [35]. One reasonable choice is W k = Σ−1

k|k, which
gives the smallest estimation error covariance matrix when a

linear KF is applied to a system with linear dynamic equa-
tions and with zero-mean Gaussian observation and excitation
noises [37].

The optimization problem in (33) is a QCQP, which is convex
since W k is SPD and the constraints are convex [38, p. 153].
As the constraints are only on the first two elements of the state
vector, it is possible to reduce the size of the QCQP problem.
A conventional way to do so is as follows. If we suppose that
q(1 : 2) is fixed, then we can find the optimal q(3 : N), which
is a function of q(1 : 2). By substituting the optimal q(3 : N)
into the cost function, we obtain a QCQP, which only involves
the unknown q(1 : 2).

However, in the aforementioned approach, we first need to
find the matrix W k through an inverse operation, which is both
unnecessarily costly and numerically unstable if the covariance
matrix Σk|k is ill-conditioned. To avoid these shortcomings, we
propose to use an idea from [39] to reformulate and reduce
the size of the convex QCQP problem in (33) such that it
can be solved in a more numerically reliable way. Recalling
that Σk|k = UT

k|kUk|k, the objective function in (33) can be

expressed as (q − s
(j)
k|k)

T
U−1

k|kU
−T
k|k(q − s

(j)
k|k). To get around

the inverse operation, we define

u = U−T
k|k

(
s
(j)
k|k − q

)
(34)

from which it follows that:

q = s
(j)
k|k −UT

k|ku. (35)

It is convenient to partition the lower triangular matrix UT
k|k as

follows:

UT
k|k =

[
L11 0
L21 L22

]
(36)

where L11 ∈ R
2×2 and L22 ∈ R

(N−2)×(N−2) are lower trian-
gular. Then, it follows from (35) that

q(1 : 2) = s
(j)
k|k(1 : 2)−L11u(1 : 2). (37)
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Using (34) and (37), we can reformulate the QCQP problem
(33) as

min
u

{
uT (1 : 2)u(1 : 2) + uT (3 : N)u(3 : N)

}
s.t.

∥∥∥L11u(1 : 2)−
(
s
(j)
k|k(1 : 2)− ai

)∥∥∥
≤ rik + εσn, i ∈ Nk. (38)

Since the constraints do not include u(3 : N), the opti-
mal choice is obviously u(3 : N) = 0, and the optimization
problem (38) becomes

min
u(1:2)

{
uT (1 : 2)u(1 : 2)

}
s.t.

∥∥∥L11u(1 : 2)−
(
s
(j)
k|k(1 : 2)− ai

)∥∥∥
≤ rik + εσn, i ∈ Nk. (39)

This 2-D convex QCQP problem can now be efficiently solved
using iterative techniques [38].

After finding the optimal u(1 : 2), we can compute the
optimal q using (35) and the fact that the optimal u(3 : N) = 0
as follows:

P
(
s
(j)
k|k

)
Δ
= q = s

(j)
k|k −

[
L11

L21

]
u(1 : 2). (40)

The aforementioned approach for reducing the size of the
QCQP problem (33) not only avoids a matrix inverse com-
putation, which may cause numerical instability (see [39]),
but it is also computationally efficient. This approach is even
more suitable when a SRUKF is employed since the Cholesky
factor Uk|k of Σk|k is readily provided in (31). We note that
in some particular scenarios, particularly under FA in NLOS
identification, it is possible that the feasible region Dk in (6)
becomes empty, and consequently, (39) has no solution. In
this case, we simply propose to increase ε until Dk becomes
nonempty.

After finding the projected sigma points through (40),
the mean and covariance matrix may be estimated through
weighted averaging

sPk|k =

2N∑
j=0

w(j)P
(
s
(j)
k|k

)
(41)

ΣP
k|k =

2N∑
j=0

w(j)
(
P
(
s
(j)
k|k

)
− sPk|k

)(
P
(
s
(j)
k|k

)
− sPk|k

)T

.

(42)

As before, instead of (42), we compute the Cholesky factor
UP

k|k of ΣP
k|k, i.e.,

e
(j)
P =

√
w(j)

(
P
(
s
(j)
k|k

)
− sPk|k

))
, j = 0, . . . , 2N

UP
k|k = qr

{[
e
(0)
P , e

(1)
P , . . . , e

(2N)
P

]T}
. (43)

As shown in Fig. 1, we note that the projected sigma points
generally have a different mean and covariance matrix. The
weighted average of the sigma points achieved through this

technique lies inside the feasible region since the average of
selected points in a convex feasible region must lie in it [40].
Furthermore, the covariance matrix of the error is generally
reduced as the sigma points have moved closer to each other.

Finally, in the next iteration of the unconstrained SRUKF, the
constrained a posteriori state estimate sPk|k and the Cholesky

factor of the corresponding error covariance matrix UP
k|k re-

place sk|k and Uk|k, respectively, as

sk|k = sPk|k (44)

Uk|k =UP
k|k. (45)

C. Algorithm Summary and Computational Analysis

The proposed CSRUKF algorithm, which is summarized in
Algorithm 1, consists of two main stages: modified version of
the SRUKF and projection of sigma points, which are discussed
in more detail below.

Algorithm 1 CSRUKF

1: Initialize s0|0 and set Σ0|0 to a large SPD diagonal matrix.
2: Set ηα and ε
3: for k = 1, . . . ,K do
4: Prediction of sk|k−1 using (11), and Uk|k−1 using (14).
5: if |Lk| = 0 then
6: Set sk|k = sk|k−1 and Uk|k = Uk|k−1.
7: else
8: Find the predicted measurement through (16).
9: Calculate the predicted mean (17) and implement

qr{.} in (22).
10: Estimate the cross-covariance in (18).
11: Solve (27) to find T k.
12: Estimate the a posteriori mean sk|k using (28) and

Cholesky factor of a posteriori covariance matrix
Uk|k using (31).

13: end if
14: Generate the sigma points using (32).
15: For every sigma point whose first two elements fall

outside Dk solve (39) and find the projected point (40).
16: Estimate sPk|k using (41) and UP

k|k using (43).

17: Replace sPk|k and UP
k|k as the a posteriori estimates,

i.e., (44) and (45).
18: end for

The SRUKF is more efficient and numerically stable than
UKF, and the computational complexity analysis has also been
presented in [23], in which it is shown that this algorithm re-
quires O(N3), where N is the size of the state vector. However,
the cost of the first stage of our algorithm is generally small
compared to the cost of the projection operations in the second
stage.

The QCQP in (39) is a convex optimization problem, which
is not NP-hard [38, p.153], and can be solved in polynomial
time using an extended optimization package in MATLAB
such as SeDuMi [41]. Since u(1 : 2) ∈ R

2, the optimization
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problem can be solved with moderate cost for 2N + 1 sigma
points at most. However, these calculations can be performed in
parallel and independently of each other; hence, our technique
is suitable for parallel processing. The computational cost of
the algorithm depends on the number of sigma points in (32)
that fall inside the feasible region, as the projection operation
needs not to be applied on them. By tuning the parameter α,
we can achieve a tradeoff between accuracy and computational
cost. On the one hand, if α is small, then it is more likely that
many sigma points will fall inside the feasible region, resulting
in a lower computational cost. However, selecting a small α
may degrade the localization performance as the estimated
quantities remain unchanged after applying the constraints. On
the other hand, selecting a large α increases the computational
cost but, at the same time, may result in sampling many of the
nonlocal points, and thus, the linearization of h(sk) might be
inaccurate [34]. In our simulations, it is observed that selecting
0.65 ≤ α ≤ 0.85 can offer a reasonable tradeoff in terms of
accuracy and computational cost.

IV. SIMULATION RESULTS

The simulations are implemented in MATLAB 2010b on
a 64-bit computer with Intel i7-2600 3.4-GHz processor and
12 GB of RAM. We consider a 2-D area with M = 5 fixed RNs
located at known positions a1 = [0, 0], a2 = [2000, 0]T , a3 =
[0, 2000]T , a4 = [−2000, 0]T , and a5 = [0,−2000]T , where
the units are in meters. A mobile agent moves on this 2-D plane
according to the motion model considered earlier in (1) with
noise covariance matrix Q = 0.04I2, and the time step duration
is set to δt = 0.2 s for K = 1000 time instants. The initial MN
state vector, including the position and velocity components,
is normally distributed with zero mean and covariance matrix
diag([104, 104, 102, 102]).

To model the range measurement, the true distance between
each RN and MN is perturbed with an additive zero-mean
Gaussian noise. We consider two different measurement noise
scenarios: large noise with standard deviation σn = 150 m and
small noise with σn = 15 m, where in our algorithm, we as-
sume that these values are known.7 The large noise assumption
can model general applications such as narrow-band cellular
mobile positioning as considered in [17], [42], whereas the
small noise assumption is suitable for localization applications
with accurate ranging, e.g., IEEE 802.15.4.a. Note that the ac-
curacy of UWB ranging can be improved by increasing the
bandwidth of the system [43]. We also perturb some of the
measurements by NLOS biases that are modeled as exponential
random variables with parameter γ = 500 m [18].8

To consider the possible transition of an RN from LOS to
NLOS and vice versa, we assume that the status of each RN can
change with a certain probability after every 250 time instants.
This assumption is reasonable and in line with [9] and [44]

7In practice, knowledge about σn can be obtained by means of preliminary
calibration experiments in a given environment or through online calculation
based on the path-loss model for radio propagation.

8Our algorithm can still work well with a range-dependent NLOS bias model
as considered in [28]; however, we avoid considering this case due to the lack
of space.

as the channel conditions might not change drastically for an
MN moving with moderate speed. We consider three different
scenarios as follows where the transition from LOS to NLOS
and vice versa is done with probability of 0.5.

• Scenario I: There are four NLOS RNs all the time, whereas
the other RN (the one in the center of the plane) can change
between LOS and NLOS.

• Scenario II: There are three NLOS RNs all the time,
whereas the other two RNs can transit between LOS and
NLOS.

• Scenario III: There are two NLOS RNs all the time,
whereas the other three RNs can change between LOS
and NLOS.

For the proposed CSRUKF, we consider ε = 3 and α = 70%,
which corresponds to ηα = 4.8784 under the Gaussian poste-
rior pdf assumption. Note that for the CSRUKF, all the sigma
points violating the constraints are projected onto the feasible
region. For solving the QCQP problem, we use the optimization
toolbox YALMIP [45] and SeDuMi solver [41].

To see if projecting all the sigma points is necessary to
achieve a good result in NLOS scenarios, we first consider
the common projection technique where only the a posteriori
state estimate of a KF is projected onto the feasible region [37].
Therefore, sk|k obtained through the SRUKF is projected onto
the feasible region; thus, the new a posteriori state estimate
satisfies the constraints. However, the a posteriori covariance
matrix is not changed and remains the same as the uncon-
strained case. This approach has, in general, a lower compu-
tational cost compared to the proposed CSRUKF algorithm
since at most one projection operation needs to be done at each
iteration. We denote this approach by the projection KF (PKF),
and for solving the optimization problem, we follow the similar
procedure as for the CSRUKF.

For comparison purposes, we consider the conventional tech-
niques proposed in [8], [44], and [46], in which the range
measurements are processed using a KF, and then, the smoothed
range measurements are used in an EKF, where the diagonal
elements of the covariance matrix corresponding to the NLOS
measurements are scaled for further mitigation of NLOS bias.
While these techniques differ slightly in terms of preprocessing
and variance calculation, we consider the simple one in [44]
denoted by the smooth EKF (SEKF) with scaling factor 1.5 and
assume that the NLOS identification and variance calculation
are done without error.

The Cramer–Rao lower bound analysis in NLOS shows that
if no prior statistics about the distribution of the NLOS bias
are available, then the optimal strategy is to discard the NLOS
measurements and only use LOS ones [47]. If prior statistics
are available, then the NLOS measurements should also be
used to achieve a lower mean square error. However, this
bound can only be practical if there are enough LOS measure-
ments for unambiguous localization; hence, for a small number
of LOS links, it may not be useful. Although the posterior
Cramer–Rao bound (PCRB) on positioning root mean square
error (RMSE) has been derived approximately in [48] and [49],
these derivations are based on the assumption that the NLOS
bias has a Gaussian distribution with known mean and variance.
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Fig. 2. Comparison of different techniques for large measurement noise with σn = 150 m and exponentially distributed NLOS bias with parameter γ = 500 m.
(a) RMSE for scenario I. (b) RMSE for scenario II. (c) RMSE for scenario III. (d) CDF for scenario I. (e) CDF for scenario II. (f) CDF for scenario III.

Evaluating the PCRB for other NLOS distributions such as
exponential is even more challenging. Since in this paper there
is no information about the distribution of the NLOS biases,
except that they are positive, the mentioned lower bound is still
loose and cannot accurately show the lowest possible error in
estimating the state vector.

Due to these limitations in finding a lower bound on the
positioning RMSE, we consider a semi-ideal situation where
the mean and variance of the NLOS bias of each link are known.
To apply a KF to this case, the mean of the bias is subtracted
from each NLOS measurement, and the error covariance matrix
Rr of the measurement vector rk = [r1k, r

2
k, . . . , r

M
k ]

T
is scaled

according to the variance of the corresponding NLOS bias.
Then we apply an unconstrained SRUKF to a dynamic system
with the same state motion model as in (1) and with an unbiased
set of measurements. For instance, if i ∈ Nk, then Rr(i, i) =
σ2
n + σ2

b , where σ2
b is the variance of the NLOS bias. Note that

after subtracting the mean of the NLOS bias from each NLOS
range measurement, the remaining error is a combination of a
shifted exponentially distributed variable with zero mean and a
zero-mean Gaussian noise. Therefore, if the error is dominated
by the measurement noise, i.e., σ2

n � σ2
b , then nonlinear KFs

give nearly MMSE estimation performance for moderately
nonlinear systems. However, if the error is dominated by the
NLOS bias, i.e., σ2

b � σ2
n, these filters are unlikely to give

nearly optimal performance in the MMSE sense. Although this
approach, which is denoted by bias-aware SRUKF (BSRUKF),
is not optimal in the MMSE sense and may not be even a
performance lower bound for our technique when the mean and
variance of the NLOS bias are known, it can be regarded as a
useful benchmark for comparison with our method.

To evaluate the performance of the algorithms in different
scenarios, we perform T = 100 MC trials for each scenario
and consider different trajectories at each trial. Let xt

k and xt
k|k

denote the true MN position and its estimated vectors at the kth
time step of the trajectory over the tth MC trial, respectively.
The performance metrics are the cumulative distribution func-
tion (cdf) of the positioning error ek, which are expressed as

cdf(ek) = P

[∥∥∥xT
k − xT

k|k

∥∥∥ ≤ ek

]
(46)

and the RMSE of the position estimates at time step k, which is
defined as

ēk =

√
E

[(
xT
k − xt

k|k

)T (
xT
k − xt

k|k

)]
(47)

where P and E, which are the probability function and expec-
tation operator, respectively, are evaluated approximately using
MC trials.

In the following, we compare the effect of measurement
noise and NLOS bias on the performance of different tech-
niques in each considered scenario. We assume that the initial
estimate s0|0 is normally distributed with mean equal to the true
state s0 and covariance matrix Σ0|0 = diag([9 × 104, 9 × 104,

103, 103]).

A. Large Measurement Noise

In the first scenario, we consider the case of a narrow-band
ranging application where the noise variance is relatively high,
i.e., σn = 150 m is considered. The RMSE versus time step is
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Fig. 3. Comparison of different techniques for small measurement noise σn = 15 m and with exponentially distributed NLOS bias with parameter γ = 500 m.
(a) RMSE for scenario I. (b) RMSE for scenario II. (c) RMSE for scenario III. (d) CDF for scenario I. (e) CDF for scenario II. (f) CDF for scenario III.

shown in Fig. 2 for scenarios I, II, and III. The corresponding
cdf of the positioning error is also plotted for each scenario.

We can observe that for scenarios I and II, the CSRUKF
performs almost similar to the SEKF, whereas the RMSE of
the PKF is relatively high. This shows that to obtain a decent
localization performance, the projection of all the sigma points
in the CSRUKF is necessary as compared to projecting only the
mean as done in the PKF. The RMSE of all the techniques are
lower bounded by the RMSE of the BSRUKF, which uses more
prior information about the NLOS biases. The RMSE and cdf
of scenario III indicate that the performance of the CSRUKF is
better than those of the PKF and SEKF noticeably.

B. Small Measurement Noise

For further verification of our algorithm, we consider a case
where the noise variance is relatively small, i.e., σn = 15 m,
which can model errors in UWB ranging applications. The
RMSE and cdf of the estimation error are shown in Fig. 3 for
scenarios I, II, and III.

As observed in Fig. 3, in all the scenarios, the proposed
CSRUKF performs better than all the other methods, particu-
larly the BSRUKF. There are several reasons why the CSRUKF
can outperform the BSRUKF to this extent for small measure-
ment noise: First, the BSRUKF cannot necessarily provide a
performance lower bound, since after removing the mean of the
bias from the NLOS range measurements, the remaining error
term does not follow a Gaussian distribution; hence, applying
a KF to this problem is not the optimum MMSE estimation
technique. In small noise scenarios, the NLOS bias dominates
over the measurement noise, and therefore, the distribution of
the error in the BSRUKF is far from the Gaussian distribution.

For large measurement noise scenarios in Fig. 2, where the
NLOS bias is not significantly larger than the measurement
noise, the error distribution was closer to a Gaussian one, which
was one of the reasons that the BSRUKF was performing better
than the CSRUKF. Second, when σn is large, the feasible region
Dk becomes larger compared to the case that σn is small.
Therefore, it is more likely that most of the sigma points lie
inside Dk and no projection is done; thus, the second stage
of our algorithm does not improve the a posteriori estimate.
Note that by restricting the sigma points to be within a smaller
feasible region, a better location estimate may be obtained.

C. Robustness to Errors in NLOS Identification

In this part, we analyze the performance of our proposed
technique in the presence of NLOS identification errors, i.e.,
FA and MD, which are inevitable in some applications.

To see the effect of FA on the proposed CSRUKF, we assume
that we have one LOS and four NLOS RNs. However, due to
the FA, the LOS link is also wrongly detected as being NLOS.
Therefore, the CSRUKF and PKF wrongly remove the LOS
measurements from the measurement vector and employ the
wrongly detected measurement to impose a constraint on the
state vector. Since the use of a larger ε can increase the chance
that a LOS measurement also satisfies the constraint in (5), it
is expected that FA does not severely degrade the performance
of our proposed technique. The simulation results are shown in
Fig. 4, where it is observed that the CSRUKF is robust against
FA error in NLOS identification and outperforms the SEKF.
Note that the BSRUKF algorithm is evaluated under perfect
NLOS identification, whereas its performance is still worse
than our proposed technique.
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Fig. 4. Comparison of different techniques for σn = 15 m and exponentially
distributed NLOS bias with parameter γ = 500 m and FA in identification of
an LOS RN. (a) RMSE. (b) CDF.

If the NLOS links are regarded as LOS ones, i.e., in the pres-
ence of NLOS MD error, all the Kalman-type filters have to use
a biased measurement in their observation vector, and thus, it is
not surprising that their performances are degraded. Therefore,
for our algorithm to perform well in most of the times, the
threshold used for NLOS identification should change such that
the probability of MD becomes very small.

D. Computation Time

The average computation time of each algorithm is calcu-
lated for each scenario and is shown in Table I. The SEKF
has a very small computation time, because it is essentially
an ordinary KF. The computation time of the PKF, where
only the state vector needs to be projected onto the feasible
region, is obviously lower than the CSRUKF because only one
QCQP problem might need to be solved at every time step. The
most computationally demanding part of the CSRUKF is the
projection of the sigma points, which might be implemented in
parallel form. However, in the simulation, we have done these
projections sequentially, and therefore, the total elapsed time is
larger for the CSRUKF. Still, the highest computation time of
the CSRUKF is lower than the total elapsed time for the entire
trajectory (200 s), meaning that with the computer used here,
the algorithm can be applied for online tracking. Note that the
computational cost of many other popular methods, such as the
KDE or PFs, is also much higher than the ordinary EKF or

TABLE I
AVERAGE RUNNING TIME OF EACH ALGORITHM IN EACH SCENARIO

EVALUATED FOR THE ENTIRE TRAJECTORY (200 s) IN SECONDS

SRUKF, and therefore, our algorithm remains competitive in
terms of computation time.

V. CONCLUSION AND FUTURE WORK

A CSRUKF with projection technique was proposed in this
paper for the aim of TOA-based localization of an MN in
NLOS scenarios. The NLOS measurements were removed from
the measurement vector, and instead, they were employed
to impose quadratic constraints onto the position coordinates
of the MN. The sigma points of the UKF that violated the
constraints were projected on the feasible region by solving a
convex QCQP. As compared to other constrained UKF tech-
niques, we considered a square-root filter and avoided com-
puting the inverse of the state covariance matrix both in the
KF and in the optimization steps; consequently, our approach
has better numerical stability and lower computational cost. In
the simulation experiments, the proposed CSRUKF performed
better than other approaches in different NLOS scenarios. In
particular, CSRUKF performance was excellent when a small
measurement noise variance was considered, suggesting that it
is particularly suitable for high-resolution TOA-based UWB lo-
calization. Another advantage of our technique is its robustness
to FA errors in NLOS identification. The proposed CSRUKF
can be extended to the situations where the information of
an IMU is fused with range measurements for more accu-
rate mobile localization. The proposed CSRUKF can also be
extended to cooperative tracking of multiple MNs. However,
several challenges remain in this respect such as the communi-
cation overload and the efficient implementation of a distributed
version of the CSRUKF. We leave the investigation of such
cooperative localization scenarios to future work.
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