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Abstract—In this paper, a cooperative wideband spectrum sens-
ing scheme based on the expectation–maximization (EM) algo-
rithm is proposed for the detection of a primary user (PU) system
in multiantenna cognitive radio (CR) networks. Given noisy sig-
nal observations from N secondary users (SUs) over multiple
subbands at a fusion center (FC), prior works on cooperative
spectrum sensing often use the set of received subband energy as
decision statistics over the sensing interval. However, to achieve
satisfactory performance, knowledge of the channel state infor-
mation (CSI) and the noise variances at all the SUs is required
by these algorithms. To overcome this limitation, our proposed
method, which is referred to as joint detection and estimation
(JDE), adopts the EM algorithm to jointly detect the PU signal and
estimate the unknown channel frequency responses and noise vari-
ances over multiple subbands in an iterative manner. Various as-
pects of this proposed EM-JDE scheme are investigated, including
a reliable initialization strategy to ensure convergence under prac-
tical conditions and a distributed implementation to reduce com-
munication overhead. Under the assumption of perfect estimation
for the channel frequency responses and noise variances, we fur-
ther show that the proposed EM-JDE converges to the maximum-
likelihood (ML) solution, which serves as an upper bound on
its performance. Monte Carlo simulations over Rayleigh fading
channels show that the proposed scheme significantly improves the
performance of spectrum detection by exploiting the diversity of
the spatially distributed SUs with multiple antennas.

Index Terms—Channel state information, cognitive radio,
expectation-maximization, joint detection and estimation,
multi-antenna, spectrum sensing.

I. INTRODUCTION

IN recent years, cognitive radio (CR) has emerged as a key
technology paradigm to alleviate the frequency spectrum

scarcity [1]. The basic idea behind CR is that unlicensed
or secondary users (SUs) share the frequency spectrum op-
portunistically with licensed or primary users (PUs) without
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causing harmful interference. This can be achieved by enabling
the SUs to monitor the presence of PUs over a particular
band of frequencies. In the literature, several spectrum sensing
techniques have been proposed, which include energy detec-
tion (ED), matched filter detection, and cyclostationary feature
detection [2], [3]. The appropriate spectrum sensing technique
is chosen based on a priori knowledge about the PU’s signal
and the receiver complexity. For example, the matched filter
is the optimal detection technique when the SU has complete
information about the PU signal, which is rarely the case in
practice [4]. The cyclostationary feature detector exploits the
periodicity of the modulated signal to distinguish it from the
stationary noise; however, it suffers from high computational
complexity [5], [6]. The ED is the optimal detection scheme if
the PU’s signal is unknown; it also offers the advantage of lower
complexity [7].

In many CR applications, detailed a priori knowledge about
the PU’s signal structure and modulation is not readily avail-
able, and in this context, ED is the most common choice for
spectrum sensing. However, ED suffers from a poor perfor-
mance in wireless environments characterized by low signal-
to-noise ratio (SNR), multipath fading, or shadowing [8].
Multiantenna techniques have been employed along with ED
to combat the fading effects by exploiting the spatial diversity
of the observations at the SU terminal in [9]; they also help
to reduce the sensing time compared with single-antenna ED.
Another drawback of ED is its inherent susceptibility to uncer-
tainties about the noise variance at the SU side. In [10], it was
noticed that there is a minimum value of SNR, which is referred
to as the SNR wall, and below which the spectrum detection
fails even with infinite sensing intervals. In [11], necessary
conditions for the existence of an SNR wall in ED techniques
coupled with noise power estimation were introduced. In [12],
the performance of multiantenna-based cooperative spectrum
sensing was investigated under Rayleigh fading channels when
an improved form of ED is employed, where the decision
statistic is an arbitrary positive power of the amplitudes of the
PU’s signal samples.

Most works presented for the spectrum sensing problem
assume the perfect knowledge of the channel conditions and
noise variance by the SU, and few researchers have investigated
the effect of estimation errors in these parameters on the PU
detection process or possible estimation techniques that can be
used jointly [13]. In [14] and [15], spectrum detectors based
on the generalized likelihood ratio test (LRT) were proposed
for multiantenna CR, and their performance was examined
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under flat-fading channel conditions, assuming unknown chan-
nel gains and noise variance. An eigenvalue-based signal de-
tection scheme was developed in [16] under noise variance
or signal correlation uncertainty. In [17], spectrum sensing
techniques for a finite-rank PU signal with unknown spatial co-
variance matrix were studied. In [18], a multiantenna spectrum
sensing technique based on discrete Fourier transform (DFT)
analysis of the received signals over flat-fading channels was
presented, which does not require the knowledge of the noise
variances at the different receive antennas.

In the aforementioned spectrum sensing schemes, the test
statistics, e.g., energy measures, are derived as a function of the
received signals at different SU’s antennas, making the decision
process on spectral occupancy vulnerable to common channel
impairments, such as time variations and multipath fading,
particularly for mobile networks. In this paper, to overcome
this limitation, we propose a spectrum sensing scheme where
a binary hypothesis test is applied on estimates of the average
power transmitted by the PU over the frequency spectrum of
interest during the sensing interval. Consequently, it is possible
to make decision on the spectral occupancies of the current state
of the channel, which in turn improves the sensing performance.
We first develop our proposed approach for a multiantenna CR
network operating over a wide frequency bandwidth, where a
fusion center (FC) collects observations from N spatially dis-
tributed SUs over multiple subbands through different reporting
channels. The estimation of the PU’s average transmitted power
requires the knowledge of the channel gains and noise variances
at each SU over different frequency subbands; therefore, reli-
able channel and noise variance estimation becomes crucial for
the proposed spectrum sensing scheme. As opposed to a more
conventional approach, in which the channel state information
(CSI) and noise variances are estimated first followed by spec-
trum detection, we jointly detect the PU’s signal and estimate
the unknown channel and noise parameters in each subband,
thereby forming a joint detection and estimation (JDE) scheme.
In the literature, iterative JDE techniques have been applied
in wireless communication systems, particularly for multiuser
detection, because of their ability to achieve accurate estimation
without wasting the system resources [19]. In particular, the
expectation–maximization (EM) algorithm has been proposed
in iterative receivers due to attractive features such as iteratively
attaining the maximum-likelihood (ML) solution with reduced
complexity [20].

The application of the EM algorithm in spectrum sensing has
been considered in our earlier works [21], [22], which focus on
a specific noncooperative scenario, i.e., a single SU with time-
invariant channels. In this paper, we propose a new and more
general EM-JDE scheme for cooperative spectrum sensing in
multiuser multiantenna CR networks, where multiple spatially
distributed SUs cooperate to detect the state of occupancy of
a wideband frequency spectrum. In addition to the extended
modeling of spatial dimension, which involves more elaborate
mathematics in the derivations, the new contributions in this
paper include the following essential aspects.

1) Cooperation Mechanisms: Different cooperation mecha-
nisms among SUs are considered, i.e., centralized versus

Fig. 1. Occupancy of a wideband spectrum.

distributed implementations, as a means to tradeoff com-
munication overhead for local processing complexity at
the SUs.

2) Initialization for EM Algorithm: A practical and re-
liable initialization strategy for the parameters to be
estimated is proposed, which provides a reasonably
“good” starting point for fast convergence of the iterative
algorithm.

3) Performance Evaluation: The asymptotic ML-based spec-
trum sensing for the multiuser scenario is investigated,
to provide an upper bound on the performance of the
proposed algorithm. New closed-form expressions of the
corresponding probability of false alarm and missed de-
tection are also derived.

4) Numerical Experiments: New simulation results for the
multiuser CR network are reported. In addition to
the convergence behavior of the iterative algorithm
with the proposed initialization, the effects of time-
varying fading channels, the number of cooperating
SUs, and the distributed implementation are thoroughly
studied.

Our theoretical findings and simulation results demonstrate
the advantages of the proposed cooperative EM-JDE scheme in
improving the performance of spectrum detection by exploiting
the diversity offered by spatially distributed SUs with multiple
antennas.

The remainder of this paper is organized as follows. The
system model and problem formulation are presented in
Section II. In Section III, we derive the EM-JDE scheme for
cooperative spectrum sensing in multiantenna CR networks. An
ML-based upper bound on the performance of the proposed
scheme is developed in Section IV. In Section V, the simulation
results and discussions are presented. Finally, conclusions are
drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In our work, we assume a CR network comprised of N
SUs, which are indexed by n ∈ {0, . . . , N − 1}, where each
SU terminal is equipped with P receiving antennas. We con-
sider a wideband frequency spectrum, which is divided into K
subbands, as shown in Fig. 1. Here, the concept of a subband
is identical to that used in a multicarrier modulation system,
where each subband represents a narrow band of frequency
centered on a single subcarrier, upon which the corresponding
subband information is modulated.
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The time-domain measurements, after sampling using Nyquist
rate at the pth antenna of the nth SU, can be represented as1

rn,p(l) =

L−1∑
q=0

hn,p(q)s(l − q) + vn,p(l) (1)

where p ∈ {0, . . . , P − 1}; s(l) is the lth sample of the
time-domain signal transmitted by the PU; hn,p(q) for q ∈
{0, . . . , L− 1} denotes the qth tap of the channel impulse
response between the PU and the pth antenna of the nth
SU, which is assumed of finite length L; and vn,p(l) is an
additive noise process. In this paper, we employ a frequency-
domain detector, where a K-point DFT operation is applied
on successive frames of rn,p(l) to obtain the following narrow-
band discrete frequency components:

Rk,n,p(m) =

K−1∑
l=0

w(l)rn,p(mK + l)e−j2πlk/K (2)

where frequency index k ∈ {0, . . . ,K − 1}, frame index m ∈
{1, . . . ,M − 1} with M being the number of frames available
for detection, and w(l) is a normalized frequency analysis
window [25]. Under the assumption that the frequency sub-
bands are sufficiently narrow, in comparison to the interval of
variations in the channel frequency responses (or equivalently,
K � L), the linear convolution in (1) can be approximated as
the circular convolution, such that application of DFT in the
time domain is equivalent to the pointwise multiplication of
the corresponding K points in the discrete frequency domain
[26], i.e.,

Rk,n,p(m) = Hk,n,pSk(m) + Vk,n,p(m) (3)

where Sk(m) represents the DFT coefficient of the PU signal
s(t) over the mth time frame in the kth subband, Hk,n,p is the
DFT coefficient of the channel hn,p(q) between the PU and
the pth receive antenna of the nth SU in the kth subband, and
Vk,n,p(m) is the DFT coefficient of the noise vn,p(l) at the pth
receive antenna of the nth user, as obtained over the mth frame
in the kth subband.

The linear model (3), with multiplicative channel effect on
the PU signal in each subband, is common in the wideband
spectrum sensing literature (see, e.g., in [27]–[29]). Neverthe-

1Recently, allowing sub-Nyquist sampling rates while still maintaining a
certain level of detection quality has received increasing attention in the
physical implementation of wideband spectrum sensing where a high sampling
rate is needed [23], [24]. In effect, the proposed EM-JDE scheme in this paper
could be combined with an existing compressive sensing technique in order to
operate at a sub-Nyquist sampling rate. Specifically, under the assumption of
sparse spectrum, the first step is to compress and collect a set of time-domain
samples with reduced dimensionality by means of a linear transformation.
This can be expressed as r′n,p = Snrn,p, where rn,p is the K-dimensional
vector of observation from (1), Sn is an K ′ ×K compressive sensing matrix,
and r′n,p is the compressed vector of observations with dimension K′ < K .
From this point on, the proposed EM-JDE can be applied with appropriate
modifications, which are needed to take into account the effects of the known
transformation matrix Sn on the unknown channel coefficients and noise
variances in (1). However, the suitable choice of the compression matrices Sn

and the dimensionality parameter K′ in the CR network applications remains
an open issue, which, we believe, falls outside the scope of this paper.

less, in practice, the DFT operation will suffer from spectral
leakage, which may cause interference between neighboring
subbands. Traditionally, a properly chosen window function
w(l) can be applied in (2) to allow a design tradeoff between
frequency resolution and leakage [25]. Specific solutions to
the suppression of spectral leakage in the context of spectrum
sensing have been studied in [30]–[32]. In this paper, we
assume that such a suppression technique has been employed
to eliminate or, at least, reduce the spectral leakage among
successive frequency bands to a level that is comparable to that
of the additive background noise. Considering the high levels
of radio noise and interference often encountered in CR appli-
cations, this does not represent a very stringent requirement.
Thus, the effect of the spectral leakage can be minimized or
neglected, which facilitates the derivation and analysis of the
EM algorithm.2

In this paper, we make use of the statistical model de-
scribed in the following for the characterization of the received
signal samples {Rk,n,p(m)}, which is widely adopted in the
literature (see again [27]–[29] and the references therein). To
begin with, we define the vectors S = [ST

0 , . . . ,S
T
K−1]

T and
Sk = [Sk(0), . . . , Sk(M − 1)]T , where superscript T denotes
the transpose operation. Since we have no prior knowledge
about the PU signal, Sk is assumed to follow a complex
circular Gaussian distribution with zero mean and covariance
matrix BkIM , which is denoted CN (0M , BkIM ), where 0M

is an M × 1 zero vector, IM is an identity matrix of order
M , and Bk is an occupancy parameter as explained in the
following. The complex circular Gaussian assumption of the
subband PU signal is widely employed in the spectrum sensing
literature as it can be naturally justified in many applications.
For instance, when the PU system employs a broadband form
of modulation, such as multicarrier modulation [33], [34] or
spread spectrum [35], the received signal in each subband in
(2) is the sum of K nearly independent contributions. In this
case, one can invoke the central limit theorem [36] to motivate
the Gaussian assumption since, in practice, the number of
subbands K used for spectrum sensing can be fairly large,
e.g., K = 2l, where l ≥ 6. An exception to this would be
when the PU system uses OFDM modulation with the same
frequency plan as the one used by the wideband SU detector
and with perfect synchronization in time and frequency, but in
practice, this is unlikely to be the case. Notwithstanding the
above, the Gaussian model corresponds to a worst-case assump-
tion, according to the principle of maximum entropy [37].

We model the subband occupancy Bk as a binary random
variable, which indicates the status of the PU activity in the
kth subband: Bk = 0 when the kth subband is vacant, whereas
Bk = 1 when the PU signal is present.3 We assume inde-
pendent subband occupancy, i.e., the joint probability mass

2At moderate SNR, and in the absence of correlation between adjacent
subband occupancy by the PU, the consideration of leakage is conceptually
equivalent to a slight increase in the additive background noise variance.
We have been able to confirm this point for a standard DFT-based analysis
(rectangular window) by independent simulations not reported in this paper.

3Without loss of generality, to simplify the presentation, we assume that,
when the PU is present, the signal power in the kth subband is normalized to
unity, i.e., E[|Sk|2|Bk = 1] = 1.
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Fig. 2. Cooperative spectrum sensing in a CR network.

function (pmf) of B = [B0, . . . , BK−1]
T is given by P (B) =∏K−1

k=0 P (Bk), where P (Bk) denotes the marginal pmf of Bk.
Moreover, given B, signal samples from different subbands are
independent, i.e., the conditional probability density function
(pdf) f(S|B) =

∏K−1
k=0 f(Sk|Bk), where f(Sk|Bk) denotes

the conditional pdf of Sk given Bk.
The channel coefficients Hk,n,p in (3) are assumed to remain

constant during the sensing interval and hence are modeled as
deterministic but unknown quantities. For later reference, we
define the channel coefficient vectors H = [HT

0 , . . . ,H
T
K−1]

T ,
Hk=[HT

k,0, . . . ,H
T
k,N−1]

T , andHk,n=[Hk,n,0, . . . ,Hk,n,P−1]
T .

The additive noise samples Vk,n,p(m) form ∈ {0, . . . ,M − 1}
in (3) are represented by the vector Vk,n,p = [Vk,n,p(0), . . . ,
Vk,n,p(M − 1)]T , which is modeled as CN (0M , ςk,nIM ),
where the noise variance ςk,n � E[|Vk,n,p(m)|2] has the same
value over the different receive antennas of the nth SU.
For future reference, we also introduce the vectors ς =
[ςT0 , . . . , ς

T
K−1]

T and ςk = [ςk,0, . . . , ςk,N−1]
T , which are also

treated as deterministic but unknown quantities. The noise vec-
tor Vk,n,p has independent distribution across the frequency,
user, and antenna indexes and is assumed independent of the
signal generation mechanism at the PU, as represented by
random vectors S and B.

In our work, as shown in Fig. 2, we assume a centralized
spectrum sensing scheme, where local observations from the
N SUs are reported assuming error free transmission to the
FC, which can be a cognitive base station or a selected CR
node. Then, a final decision is taken at the FC based on these
observations to determine the presence or absence of the PU
signal. On this basis, the problem at hand can be formulated
as follows: Our goal is to detect the value of the occupancy
random variable in each subband, i.e., Bk ∈ {0, 1}, based on
the set of observations {Rk,n,p(m) : ∀k, n, p and m} collected
from the N SUs and considering that the information about
the channel vector Hk and the noise variance vector ςk in
each subband is missing. Therefore, the unknown parameter
vector of this wideband spectrum sensing problem can be
represented by the concatenated vector U = [BT ,HT , ςT ]T .

Considering the given statistical model of the received signal
samples Rk,n,p(m) in (3), ML estimation of this parameter
vector results in a multidimensional joint optimization problem,
whose solution can be achieved in theory by applying an
exhaustive search. However, due to the very large number of
unknown parameters subject to estimation, the ML solution is
not feasible in practice.

III. EXPECTATION–MAXIMIZATION-BASED JOINT

DETECTION AND ESTIMATION

In the literature, the EM algorithm is proposed to achieve
the ML solution iteratively with low computational complexity
[38]. Therefore, here, we use the EM algorithm to estimate the
unknown parameter vector of each subband while performing
the spectrum detection process concurrently. This technique,
which is referred to as iterative JDE, has been used to solve
many problems of practical interest in the wireless commu-
nications, but to the best of our knowledge, its application
to spectrum sensing has not been extensively researched. In
the following, we first apply the EM formalism to derive the
proposed JDE algorithm for cooperative spectrum sensing in
multiantenna CR networks. This is followed by a discussion of
related implementation aspects, including computational com-
plexity, distributed implementation in cooperative frameworks,
and the proposed initialization scheme.

A. Algorithm Derivation

While the EM algorithm is often developed and studied
for the case of continuous parameters, here, we are faced
with a mixed situation in which the unknown channel and
noise parameters H and ς are continuous, whereas the spectral
occupancy vector B takes on discrete (binary) values. There-
fore, to simplify the application of the EM formalism and the
convergence analysis of the resulting algorithm, we initially
adopt a purely continuous approach in which the occupancy
variables {Bk} are first treated as continuous within the interval
of [0, 1]. In this way, the intermediate estimates of each Bk

obtained through the sequence of EM iterations, which are
denoted B̂

(i)
k , where the iteration index i ∈ N, may be viewed

as soft estimates of the occupancy in subband k. This makes
it possible to find closed-form expressions for the maximum
of the expected conditional likelihood during the maximization
step of the EM procedure. Once the sequence of soft estimates
B̂

(i)
k has been judged to converge to an adequate level (as

will be explained in the following), a hard estimate of Bk is
finally obtained by applying a binary test, i.e., comparing B̂

(∞)
k

to a properly selected threshold. The specific details of our
derivation follows.

According to the EM terminology, the incomplete data
R = [RT

0 , . . . ,R
T
K−1]

T consists of the observations from
all the receive antennas of the N SUs over the K sub-
bands, where we define Rk = [Rk(0)T , . . . ,Rk(M − 1)T ]T ,
Rk(m) = [Rk,0(m)T , . . . ,Rk,N−1(m)T ]T , and Rk,n(m) =
[Rk,n,0(m), . . . , Rk,n,P−1(m)]T . The so-called complete data
Y is defined as a combination of K independent pairs of Rk

and Sk, i.e., Y = [YT
0 , . . . ,Y

T
K−1]

T , where Yk = [RT
k ,S

T
k ]

T .
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Conditioned on U =
[
BT ,HT , ςT

]T
, the K component

vectors of Y are statistically independent, and consequently

f(Y|U) =

K∏
k=1

f(Rk,Sk|Uk) (4)

where

f(Rk,Sk|Uk) = f(Rk|Sk,Uk)f(Sk|Uk). (5)

Invoking the Gaussian assumptions on the signal and noise
made in Section II, it follows that the complete data log-
likelihood function L(Y|U) is given by

L(Y|U) =

K−1∑
k=0

L(Yk|Uk) (6)

where

L(Yk|Uk)

= L(Rk|Sk,Uk) + L(Sk|Uk)

= −MP

N−1∑
n=0

ln(πςk,n)−M ln(πBk)−
1
Bk

M−1∑
m=0

|Sk(m)|2

−
N−1∑
n=0

1
ςk,n

P−1∑
p=0

M−1∑
m=0

|Rk,n,p(m)−Hk,n,pSk(m)|2 (7)

and the unknown parameter vector of the kth subband Uk =
[Bk,H

T
k , ς

T
k ]

T .
In the expectation step (E-step) of the EM algorithm, we

compute the conditional expectation of (6) given R and the
estimation of U at the ith iteration, i.e., U = Û(i), where
Û(i) = [(B̂(i))T , (Ĥ(i))T , (ς̂(i))T ]T , and B̂(i), Ĥ(i), and ς̂(i)

are the EM estimates of B, H, and ς at the ith iteration,
respectively. The result of this conditional expectation is a
function of the unknown parameter vector U, which we denote
by Δ(U|Û(i)). Hence, we have

Δ(U|Û(i)) =

K−1∑
k=0

Δ
(
Uk|Û(i)

)
(8)

where Δ(Uk|Û(i)) is expressed as (9), shown at the bottom of
the page, and E[·] denotes the expectation operator.

In the maximization step (M-step) of the algorithm, the
updated parameter estimate Û(i+1) is obtained by maximizing

Δ(U|Û(i)) in (8) with respect to U. Here, since the samples of
each process are statistically independent across the frequency
index, Uk can be estimated individually by maximizing its
corresponding term, i.e., Δ(Uk|Û(i)) in (9). Notice that the
occupancy parameter Bk in the conditional expectation in (9)
is actually decoupled from the channel and variance parameters
Hk,n,p and ςk,n; therefore, we can first estimate Bk, followed
by the estimation of Hk and ςk.

To begin with, B̂
(i)
k can be updated by maximizing (9)

with respect to Bk. By neglecting the terms in (9) that are
independent of Bk, we obtain

B̂
(i+1)
k =arg max

Bk∈[0,1]
g

(
Bk,

M−1∑
m=0

E
[
|Sk(m)|2‖R, Û(i)

])
(10)

where

g(Bk, φ) � −M ln (πBk)−
1
Bk

φ. (11)

As explained earlier, the parameter space for Bk is discrete,
and the convergence of the EM algorithm in this case is not
always guaranteed. To overcome this problem, we artificially
extend the search range of the M-step maximization from the
discrete space {0, 1} to the continuous space [0, 1]; therefore,
the solution to the M-step update (10) can be given by

B̂
(i+1)
k = min

{
1
M

M−1∑
m=0

E
[
|Sk(m)|2|R, Û(i)

]
, 1

}
. (12)

Under this continuous parameter space assumption, the con-
vergence of the resulting EM estimator to a stationary point
follows from well-known results on the analysis of the con-
ventional EM algorithm [39], [40]. To compute B̂(i+1)

k in (12),
we note that E[|Sk(m)|2|R, Û(i)] = |E[Sk(m)|R, Û(i)]|2 +
Var[Sk(m)|R, Û(i)], and Var[·] is the variance operator. Since
R and S are jointly Gaussian, the conditional mean and vari-
ance of Sk(m) given R and Û(i) can be expressed in the
following forms [41]:

E
[
Sk(m)|R, Û(i)

]
=B̂

(i)
k Ĥ

(i)H
k Γ̂

(i)−1

k Rk(m) (13)

Var
[
Sk(m)|R, Û(i)

]
=B̂

(i)
k −B̂

(i)
k Ĥ

(i)H
k Γ̂

(i)−1

k Ĥ
(i)
k B̂

(i)
k (14)

where the superscript H denotes the conjugate transpose, and

Γ̂
(i)

k = B̂
(i)
k Ĥ

(i)
k Ĥ

(i)H
k + Σ̂

(i)

k . The matrix Σ̂
(i)

k that represents

Δ(Uk|Û(i)) = −MP

N−1∑
n=0

ln(πςk,n)−M ln(πBk)−
1
Bk

M−1∑
m=0

E
[
|Sk(m)|2|R, Û(i)

]

−
N−1∑
n=0

1
ςk,n

P−1∑
p=0

M−1∑
m=0

×E
[
|Rk,n,p(m)−Hk,n,pSk(m)|2|R, Û(i)

]
(9)
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the ith iterative estimate of the noise covariance matrix in the
kth subband for the N SUs is given by

Σ̂
(i)

k =

⎛
⎜⎜⎜⎜⎜⎝
Σ̂

(i)

k,0 · · · · · · 0P

0P Σ̂
(i)

k,1 · · · 0P

... · · · · · ·
...

0P · · · · · · Σ̂
(i)

k,N−1

⎞
⎟⎟⎟⎟⎟⎠ (15)

where Σ̂
(i)

k,n = ς̂
(i)
k,nIP . From (12)–(14), it follows that the EM

algorithm provides an iterative estimate of the average trans-
mission power of the PU system in each subband, i.e., an
iterative energy detector. In turn, this can be used to provide
binary-valued subband occupancy decisions through the ap-
plication of a final hard limiter, as will be explained in the
following.

Next, we obtain the estimate of Hk at the (i+ 1)th iteration

as follows. Each element of Ĥ
(i+1)
k is obtained by maximiz-

ing its corresponding summand in the right-hand side of (9),
which yields

Ĥ
(i+1)
k,n,p =arg min

Hk,n,p

M−1∑
m=0

× E
[
|Rk,n,p(m)−Hk,n,pSk(m)|2|R, Û(i)

]
(16)

and subsequently

Ĥ
(i+1)
k,n,p =

∑M−1
m=0 Rk,n,p(m)E

[
Sk(m)∗|R, Û(i)

]
∑M−1

m=0 E
[
|Sk(m)|2 |R, Û(i)

] (17)

where the superscript ∗ denotes the complex conjugate. Intro-
ducing Rk,n,p = [Rk,n,p(0), . . . , Rk,n,p(M − 1)]T , Ĥ(i+1)

k,n,p in
(17) can be represented in a more compact form as

Ĥ
(i+1)
k,n,p =E

[
SH
k Sk|R, Û(i)

]−1

E
[
Sk|R, Û(i)

]H
Rk,n,p (18)

which can be seen as an iterative least-squares channel esti-
mation of Hk,n,p at the (i+ 1)th iteration. During the sensing
periods where the kth subband is vacant, the SUs only receive
noise samples. Therefore, it is not necessary to estimate the
channels, and the channel estimation step has to be dropped
from the EM iterative loop. We use the following approach
to make a decision on the EM channel estimation step. We
compare the value of B̂(i)

k after running the EM algorithm for a
few iterations with a preset threshold δB > 0. The value of δB
is chosen to be less than the mid-value between the minimum
and maximum values of Bk, i.e., in our case, δB < 0.5. The
selection tends to be conservative in the sense that it prevents
stopping the channel estimation unnecessarily due to an erro-
neous missed detection. Consequently, the values of B̂(i)

k after
these few iterations can be classified within two regions: R0

with 0 ≤ B̂
(i)
k < δB and R1 with δB ≤ B̂

(i)
k ≤ 1. The channel

estimation step is excluded from the EM iterative loop if B̂(i)
k is

located within R0. To realize this condition without hindering

the update of B̂(i)
k in the EM algorithm, Ĥ(i+1)

k,n,p in (17) can be
redefined as follows:

Ĥ
(i+1)
k,n,p =

∑M−1
m=0 Rk,n,p(m)E

[
Sk(m)∗|R, Û(i)

]
ϑ+

∑M−1
m=0 E

[
|Sk(m)|2|R, Û(i)

] (19)

where

ϑ =

{
�, B̂

(i)
k ∈ R0

0, B̂
(i)
k ∈ R1

(20)

and � is a large positive number. Note that the classification
in (20) is based on the soft estimate B̂

(i)
k at the ith iteration

and may therefore involve error. To minimize the effects of this
error, variations in the values of B̂

(i)
k over successive stages,

i.e., groups of T iterations as explained in Section III-B4, can be
exploited to improve the exactness of the decision in comparing
B̂

(i)
k with threshold δB . This stems from the fact that, when

the kth subband is vacant, the soft estimate of Bk tends to
decline toward zero, but not monotonically, whereas in the case
when the kth subbed is occupied by the PU system, B̂(i)

k will
tend to increase toward the true value of 1. Therefore, in our
implementation, the decision in (20) is performed only at the
end of a stage, such that the descent in the values of B̂(i)

k can
be more accurately detected. We remark that this approach is
empirical in nature but works well in simulation experiments.
However, a formal proof of its advantages is not currently
available, which remains an interesting topic of future research.

Finally, we update ς̂
(i)
k as follows. In (9), we substitute

Ĥ
(i+1)
k,n for Hk,n and maximize the objective in (9) with respect

to ςk,n. That is

ς̂
(i+1)
k,n = argmin

ςk,n

(
MP ln(ςk,n) +

1
ςk,n

P−1∑
p=0

M−1∑
m=0

Vk,n,p(m)

)
(21)

where

Vk,n,p(m)

= E
[
|Rk,n,p(m)− Ĥ

(i+1)
k,n,p Sk(m)|2|R, Û(i)

]
= |Rk,n,p(m)|2 −Rk,n,p(m)∗Ĥ

(i+1)
k,n,p E

[
Sk(m)|R, Û(i)

]
−Rk,n,p(m)Ĥ

(i+1)∗
k,n,p E

[
Sk(m)∗|R, Û(i)

]

+
∣∣∣Ĥ(i+1)

k,n,p

∣∣∣2 E [
|Sk(m)|2|R, Û(i)

]
. (22)

This yields

ς̂
(i+1)
k,n =

1
MP

P−1∑
p=0

M−1∑
m=0

Vk,n,p(m). (23)

Up to this point, as explained earlier, the proposed EM-JDE
produces a soft estimate of Bk at each iteration. Finally, a hard
(i.e., binary) estimation of Bk is performed once the sequence
of EM iterative steps for the soft estimates is judged to have
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reached an adequate level of convergence. In our case, the
convergence condition is defined by comparing the difference
between the estimates of B̂

(i)
k in two successive iterations

with a small positive threshold ε. That is, the EM iterations
stop if |B̂(i+1)

k − B̂
(i)
k | ≤ ε, where ε → 0+. Then, hard limiting

with threshold γk is applied on the EM estimate of Bk after
convergence, which we simply denote B̂

(∞)
k = limi→∞ B̂

(i)
k .

The corresponding test can be expressed as

B̂
(∞)
k

B̂EM
k =1

�
B̂EM

k =0

γk (24)

where B̂EM
k ∈ {0, 1} is the final binary estimate of the kth sub-

band occupancy. The choice of γk, as in other binary detection
problems, gives rise to a practical tradeoff between the prob-
ability of false alarm Pf,k(γk) and the probability of missed
detection Pm,k(γk). Specifically, as γk increases from 0 to 1,
Pf,k(γk) decreases from 1 to 0, whereas Pm,k(γk) increases
from 0 to 1. The various receive operating characteristic (ROC)
curves shown in Section V are indeed obtained by varying
γk in this way. In particular, if a desired level of Pf,k(γk) is
needed in a given application, a rough estimate of γk can be
obtained from the asymptotic performance analysis given in
Section IV-B, as per (47); this value can be then further refined
through simulations or experimental measurements.

Remark 1 (Assumption on Subband Occupancy): In many
applications, there will be correlation in the occupancy of
adjacent subbands, as evidenced in recent experimental studies
[42]. In fact, the modeling of the subband occupancy highly
depends on the operation of the primary system. If the PU
represents a multiuser multicarrier modulation-based network,
e.g., OFDMA, where each user operates independently on a
subset of dedicated subcarriers, the subband occupancy could
be assumed independent, particularly if adaptive loading is
employed. However, if the PU is a broadcast television or
wireless local area network system, the PU signal usually
occupies a range of contiguous subbands, and therefore, the
subband occupancy becomes correlated. For the latter case,
investigating cooperative wideband spectrum sensing with cor-
related subband occupancy represents an interesting, yet chal-
lenging extension of this work. To be specific, since the random
variables {Bk} are no longer independent, to solve the M
step in (10)–(12), a joint optimization problem over multiple
discrete variables needs to be considered (see, e.g., [27] and
[43]), which is quite computationally intensive. Therefore, in
this paper, we focus on the former case, which facilitates the
derivation of a low-complexity algorithm. However, investi-
gating cooperative wideband spectrum sensing with correlated
subband occupancy, possibly by exploiting a simpler but subop-
timal mathematical framework, remains an interesting research
direction for our future work.

B. Implementation Aspects

1) Computational Complexity: Using the EM algorithm, the
Nd-dimensional optimization problem for each subband k is
decomposed into Nd independent 1-D optimization problems,

Fig. 3. Block diagram of the proposed EM-JDE algorithm with distributed
implementation at each SU.

where Nd = 1 +N(P + 1) is the number of unknown parame-
ters of subband k, leading to a computationally feasible scheme.
Furthermore, at each iteration of the EM algorithm, the solution
of these 1-D optimization problems is obtained in closed form
where the computation of the conditional moments in (13) and
(14) dominates the computational complexity of the proposed
EM-JDE scheme. By exploiting the specific structure of the

matrix Γ̂
(i)

k as a sum of a diagonal matrix plus a rank-1 modifi-
cation term and invoking the Sherman–Morrison formula [44],
it can be shown that this step requires O(NP ) mathematical
operations.

2) Distributed EM-JDE Implementation: The proposed EM-
JDE scheme adopts centralized spectrum sensing, where the
observations from multiple SUs need to be reported to the
FC. The advantage of centralized processing is that the CR
units benefit from a much reduced hardware complexity since
the decision-making process is performed at the FC. However,
the communication overhead between the SUs and the FC is
increased since each SU must transmit their KP complex-
valued observed frequency samples per sensing frame for M
consecutive frames before the EM algorithm can be run by the
FC. This overhead can be reduced by adopting a distributed or
localized implementation for the EM-JDE, as explained in the
following.

The block diagram of the distributed implementation of the
proposed EM-JDE is presented in Fig. 3. In the proposed dis-
tributed implementation, each SU generates an iterative soft es-
timate of Bk locally by running a simplified version of the EM
algorithm (the derivation is similar to the one in Section III-A
and therefore omitted for brevity), thereby producing the se-
quence B̂

(i)
k,n. Then, each SU reports its estimate of Bk after

convergence, i.e., B̂(∞)
k,n , to the FC to make a decision on the

spectral occupancy. Using these reported estimates from the
N SUs, where error-free transmission is assumed, the decision
statistic on the kth subband is defined as

B̂k =
1
N

N−1∑
n=0

B̂
(∞)
k,n . (25)

Compared with the centralized implementation described ear-
lier, the distributed implementation significantly reduces the
communication overhead between the FC and the SUs toK com-
plex values per SU per sensing period of M frames. However,
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this is achieved at the expense of increasing the hardware
complexity of the CR units used by the SUs. The performance
of the given low-overhead distributed approach is compared
with that of the centralized spectrum sensing in Section V.

3) Initialization: In theory, the EM algorithm monotonically
increases the log-likelihood function of the observed data at
each iteration. Therefore, it is guaranteed to converge to a
stationary point of the likelihood function, which can be a local
maxima or a saddle point4 (see, e.g., [39] and [40]). In practice,
the convergence of the EM algorithm to a global maxima (i.e.,
the ML solution) can be achieved by using reliable initializa-
tion of the unknown parameters. This can also guarantee fast
convergence to the ML solution within a reasonable number of
iterations. In the following, we present an initialization strategy
that ensures good convergence under practical conditions of
operation in the CR network with multiple SUs operating over
time-varying channels.

Starting with ς̂
(0)
k,n, it is assumed that the FC has a priori

knowledge about the recent history of the PU’s activity, i.e.,
the FC can record the intervals of presence and absence of the
PU signal in the time–frequency plane (e.g., based on some
basic form of ED or other available data) to determine the most
likely intervals over which the kth subband is not occupied, and
then report this information to the SUs. By targeting such an
idle period of the PU activity, the initial estimate of ςk,n at the
nth SU is determined by computing the sample variance of the
observations from the P receive antennas, as follows5:

ς̂
(0)
k,n =

1
JnP

Jn−1∑
j=0

P−1∑
p=0

|Vk,n,p(j)|2 (26)

where Jn is the number of available frames during an idle
period. In the centralized implementation, the values of ς̂

(0)
k,n

from the N SUs are reported along with the frequency samples
Rk,n,p(m) to the FC, where the complete EM-JDE algorithm
can be run; whereas in the distributed implementation, the
value of ς̂

(0)
k,n computed at the nth SU is used locally to run

the distributed version of the EM-JDE, as shown in Fig. 3.
Following initialization for the first block of M frames based
on a priori knowledge of the PU’s activity as given earlier,

4While the convergence rate of the EM algorithm near a stationary point can
be analyzed by means of Taylor series expansion and Jacobian computation of
the EM iterative mapping function [45], this analysis in the current setup would
be extremely complicated and of limited value as it would provide information
about convergence in a small neighborhood of a stationary point. In a practical
setup as considered here, the convergence rate of the EM algorithm highly
depends on the initialization of the unknown parameters and can vary on a
case-by-case basis. In our work, as an alternative to such analysis and in order
to guarantee fast convergence within a reasonable number of iterations, we
propose some novel initialization techniques that are specifically designed for
the use of the EM-JDE algorithm in wideband spectrum sensing applications.

5The effect of the SNR wall on ED with ML noise variance estimation
has been thoroughly investigated in [10]. In [10, Th. 1], it has been proven
that ED with noise power estimation can avoid the SNR wall phenomenon
if the variance of the noise estimator decreases in o(1) with the number of
the sensing frames. In the special case of interest here, where the narrow-band
noise power is estimated according to the sample average in (26), we have that

limJn→∞ var{ς̂(0)k,n} = 0 under a standard Gaussian assumption for the noise
samples. The condition of the theorem is therefore satisfied: In theory, there is
no SNR wall, and any arbitrary pair (Pf,k, Pd,k) can be achieved for the ED
by increasing the observation interval.

initialization for subsequent blocks can be based on the noise
variance estimates obtained via application of the EM-JDE
algorithm in the previous frame.

The estimate of Bk is initialized by the FC as follows. Let
κ̂
(0)
k,n represent the sample variance of the received signals at

the P antennas of the nth SU normalized by ς̂
(0)
k,n, as given in

the following:

κ̂
(0)
k,n =

1

MPς̂
(0)
k,n

M−1∑
m=0

P−1∑
p=0

|Rk,n,p(m)|2 . (27)

On the one hand, when the kth subband is occupied by the PU
(i.e., Bk = 1), κ̂(0)

k,n represents an initial estimate of the received
SNR at the nth SU in that subband. On the other hand, when
the kth subband is idle (i.e., Bk = 0), we have Rk,n,p(m) =

Vk,n,p(m), and then κ̂
(0)
k,n ≈ 1. Each SU transmits its variance

estimate κ̂
(0)
k,n to the FC, which subsequently computes the

initial estimate

B̂
(0)
k = min

{
1
N

N−1∑
n=0

∣∣∣κ̂(0)
k,n − 1

∣∣∣ , 1

}
. (28)

As a result, B̂(0)
k is more likely to take values close to zero

when the kth subband is vacant, as well as values larger than
zero when the PU signal is present.

Finally, we discuss the initialization of the channel estimates.
In a traditional (i.e., nonopportunistic) communication network,
the source can transmit a short sequence of known training
symbols to help the receiver initiate the channel estimation
[46]. In CR networks, this approach is not feasible since the
SUs have no a priori information about the PU signal. One
possible alternative is simply to initialize the unknown channel
coefficients to zero, i.e., Ĥ(0)

k,n = 0P , where 0P denotes a P × 1
zero vector. However, the zero initialization might increase
the probability of missed detection, which in turn leads to
higher interfering rate with the PU. In this paper, we consider a
more practical approach where each SU has only very limited
knowledge of the PU-to-SU channels. The true but unknown
channel between the PU and the pth receive antenna of the
nth SU in the kth subband can be represented by the following
additive model [47]:

Hk,n,p = H̄k,n,p +ΔHk,n,p (29)

where H̄k,n,p is the available channel estimate at the SU, which
can be inaccurate, andΔHk,n,p captures the underlying channel
uncertainty. Specifically, the uncertainty ΔHk,n,p is assumed to
take values from the following bounded set:

Hk,n,p � {ΔH : |ΔH | ≤ εk,n,p} (30)

where εk,n,p > 0 specifies the radius of Hk,n,p and therefore
reflects the degree of uncertainty associated with the available
channel estimate H̄k,n,p. Such a model has been extensively
used in transceiver design for CR networks [48], [49], where
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H̄k,n,p can be obtained by calculating the deterministic path-
loss coefficients between PU and the different SU antennas,
whereas the size of the uncertainty region can be derived
from the fading channel statistics. Therefore, for each triplet
(k, n, p), an initial guess of the channel frequency response can
be obtained as

Ĥ
(0)
k,n,p = H̄k,n,p +ΔHk,n,p (31)

where ΔHk,n,p is randomly generated from the set Hk,n,p. To
further reduce the probability of missed detection of the pro-
posed EM-JDE algorithm, multiple initializations are generated
according to (31) in parallel, and the one with the largest value
of the corresponding complete data log-likelihood function, i.e.,
L(Y|U) in (6), is selected at the expense of using additional
computing resources.

4) Operation of EM-JDE Algorithm: In our implementation
of the proposed EM-JDE scheme, we propose the follow-
ing strategy to operate the iterative algorithm with the goal
of enhancing its convergence and stability. In this strategy,
the sequence of EM iterations is divided into S consecutive
stages, which are indexed by s ∈ {1, . . . , S}, where each stage
comprises T iterations, which are indexed by i = (s− 1)T +
j, where j ∈ {1, . . . , T }. In each stage, we fix the value

of B̂
(i+1)
k = B̂

(i)
k for the first T − 1 iterations (i.e., for j =

1, . . . , T − 1), whereas the values of Ĥ
(i+1)
k and ς̂

(i+1)
k are

updated using the EM formulas derived in Section III-A with
every iteration i. At the last iteration of each stage (i.e., when we
reach j = T ), B̂(i+1)

k is updated along with Ĥ
(i+1)
k and ς̂

(i+1)
k

using the most recent estimates Ĥ(i)
k and ς̂

(i)
k . This means that

the values of Ĥ
(i)
k and ς̂

(i)
k always change with the iteration

index i, whereas the value of B̂(i)
k only changes with the stage

order s, i.e., when i = sT . Indeed, with imperfect knowledge
of these quantities, the iterative EM estimate B̂

(i)
k might not

converge sufficiently rapidly to the true value Bk due to the
uncertainty in the channel and noise parameters. We have found
experimentally that by devoting more iterations for improving
the channel and noise estimation before updating B̂

(i+1)
k , we

can ascertain a unique slope of the EM estimate B̂(i)
k toward one

of the two limiting values, i.e., 0 or 1. Specifically, this increases
the likelihood that at the end of a given iteration, B̂sT

k >

B̂
(s−1)T
k when Bk = 1 and B̂sT

k < B̂
(s−1)T
k when Bk = 0.

Hence, the stability of the EM algorithm is improved, even with
imperfect channel and noise variance estimation.

IV. UPPER BOUND ON THE ASYMPTOTIC PERFORMANCE

OF EXPECTATION–MAXIMAIZATION–JOINT

DETECTION AND ESTIMATIOX

The performance of spectrum sensing schemes is evaluated
using the Neyman–Pearson criterion, where for a given prob-
ability of false alarm in the kth subband, e.g., Pf,k(γk) = αk

with αk ∈ [0, 1], the optimum threshold in the decision-making
process γopt

k and, subsequently, the optimum probability of
detection P opt

d,k (γ
opt
k ) are provided [41]. This analytical eval-

uation cannot be applied in iterative JDE schemes since the

derivation of a closed-form expression for the final decision
statistics, i.e., B̂(∞)

k , is not apparently feasible. Therefore, we
present an analytical evaluation of the EM-JDE assuming a
perfect knowledge of the CSI and noise variances by the SUs.
In this case, the ROC curve represents an upper bound on the
performance of the EM-JDE scheme. The derivations can be
summarized as follows. First, we present the EM estimation of
Bk assuming that ςk and Hk are perfectly known by the SU,
which enables us to express B̂

(i+1)
k in terms of B̂

(i)
k . Then,

we obtain an explicit expression of B̂(∞)
k by deriving the ML

solution of the same problem, which is denoted B̂ML
k , and by

proving that limi→∞ B̂
(i)
k = B̂ML

k . Finally, using B̂ML
k , closed-

form expressions of γopt
k and P opt

d,k (γ
opt
k ) are derived.

The analysis presented in the following is important for sev-
eral reasons. First, it sheds light on the convergence properties
of the proposed EM-JDE scheme under idealized conditions.
Second, the closed-form expressions of Pf,k(γk) and Pd,k(γk)
obtained for the ideal ML solution can be used as an upper
bound on the performance of the proposed scheme, allowing
setting of the preliminary values of the detection thresholds γk
to achieve a specified false-alarm rate.

A. EM-Based Spectrum Sensing

Here, we determine the spectrum occupancy assuming the
perfect knowledge of channel frequency responses H and noise
variances ς . Therefore, the only unknown parameter in the kth
subband is the occupancy parameter Bk, and we denote the EM
solution in this case as the ideal EM-based spectrum sensing
(IdEM-SS). Following the same procedure as in Section III-A,
B̂

(i+1)
k is obtained as in (10), i.e.,

B̂
(i+1)
k =

1
M

M−1∑
m=0

E
[
|Sk(m)|2 |R, B̂(i)

]
(32)

where E[|Sk(m)|2|R, B̂(i)] can be derived using (13) and (14)

with Ĥ
(i)
k and ς̂

(i)
k replaced by their true values. To justify the

convergence of B̂
(i+1)
k to B̂ML

k as i → ∞, we first derive a
closed-form expression for the ML estimator of B, which is
referred to as the ideal ML-based spectrum sensing (IdML-SS),
as follows.

The log-likelihood function of R given B (assuming that H
and ς are known) is

L(R|B) =

K−1∑
k=0

L(Rk|Bk) (33)

where

L(Rk|Bk) = −MNP ln(π) −M ln (det(Γk))

−
M−1∑
m=0

Rk(m)HΓ−1
k Rk(m). (34)

In (34), Γk = BkHkH
H
k +Σk with Σk defined as in (15)

but using the true values of ςk,n, i.e., ς̂(i)k,n = ςk,n, and det(·)
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denotes the matrix determinant. Using the matrix determinant
lemma [50], det(Γk) is reduced to

det(Γk) =
(
1 +BkH

H
k Σ−1

k Hk

)
det(Σk)

= (1 +BkH
H
k Σ−1

k Hk)

N−1∏
n=0

ςPk,n. (35)

Moreover, by using the Sherman–Morrison formula [44], Γ−1
k

can be expressed as

Γ−1
k = Σ−1

k − BkΣ
−1
k HkH

H
k Σ−1

k

1 +BkHH
k Σ−1

k Hk

. (36)

Substituting (35) and (36) in (34) and neglecting the terms
independent of Bk, we obtain

L(Rk|Bk)

= −M ln(1 +BkH
H
k Σ−1

k Hk) +
Bk

1 +BkHH
k Σ−1

k Hk

×
M−1∑
m=0

Rk(m)HΣ−1
k HkH

H
k Σ−1

k Rk(m). (37)

Since the subband occupancies {Bk} are assumed statistically
independent, the maximization process of (33) with respect
to B is done separately for each subband. The ML estimate
of the kth subband occupancy is obtained by maximizing the
log-likelihood function (37) with respect to Bk, i.e., B̂ML

k =
argmaxBk

L(Rk|Bk). To simplify its derivation, let us intro-
duce random variable Υk(m) = Rk(m)HΣ−1

k Hk and define
Ψk = HH

k Σ−1
k Hk. Then, B̂ML

k is obtained by taking the deriv-
ative of (37) with respect to Bk and equating the resultant
equation to 0 as follows:

−MΨk

1 +BkΨk
+

(
1

1 +BkΨk
− BkΨk

(1 +BkΨk)2

)

×
M−1∑
m=0

|Υk(m)|2 = 0 (38)

which yield

B̂ML
k =

1
MΨ2

k

M−1∑
m=0

(
|Υk(m)|2 −Ψk

)
. (39)

Using (36) with Bk = B̂
(i)
k , (13) is reduced to

E[Sk(m)|R, B̂(i)]

= B̂
(i)
k HH

k

(
Σ−1

k − B̂
(i)
k Σ−1

k HkH
H
k Σ−1

k

1 + B̂
(i)
k Ψk

)
Rk(m)

= CkAk,m (40)

where we define Ck=(1+B̂
(i)
k Ψk)

−1 and Ak,m= B̂
(i)
k Υk(m)H.

Similarly, (14) is expressed as

Var
[
Sk(m)|R, B̂(i)

]
=

B̂
(i)
k

1 + B̂
(i)
k Ψk

. (41)

Substituting (40) and (41) in (32), we have

B̂
(i+1)
k =

1
M

M−1∑
m=0

B̂
(i)2

k |Υk(m)|2(
1 + B̂

(i)
k Ψk

)2 +
B̂

(i)
k

1 + B̂
(i)
k Ψk

. (42)

Substituting B̂
(i)
k = B̂

(i+1)
k = B̂

(∞)
k in (42) and solving the

resultant equation, we obtain B̂
(∞)
k = B̂ML

k as given by (39).

B. Performance Evaluation

Here, we derive closed-form expressions for the probability
of false alarm and missed detection, i.e.,Pf,k(γk) andPd,k(γk),
respectively, for the IdML-SS. Based on the analysis in Part A,
it follows that these expressions will also be applicable to the
IdEM-SS approach in the limit of large i, assuming that Hk and
ςk are known. The desired performance metrics are derived by
considering the binary test in (24), with B̂EM

k now replaced by
B̂ML

k , and making use of the expression of B̂ML
k in (39).

Conditioned on Hk and ςk, the random variable Υk(m) =
RH

k (m)Σ−1
k Hk has a complex Gaussian distribution with zero

mean and varianceE[|Υk(m)|2]=E[|Rk(m)HΣ−1
k HkH

H
k Σ−1

k

Rk(m)|], whose expression can be derived as follows. We first
expand |Υk(m)|2 as the following sum:

|Υk(m)|2 =

N−1∑
n=0

N−1∑
n′=0

ζk,n(m)ζk,n′ (m)∗ (43)

where ζk,n(m) = ς−1
k,nRk,n(m)HHk,n. Then, we derive the

expected value of the cross term ζk,n(m)ζk,n′ (m)∗, which is
given as follows (see the Appendix):

E [ζk,n(m)ζk,n′(m)∗]

= ς−1
k,nς

−1
k,n′‖Hk,n‖2

(
‖Hk,n′‖2Bk + ςk,nδn,n′

)
(44)

where ‖ · ‖ returns the 2-norm of a vector. Using (44),
E[|Υk(m)|2] is obtained as

E
[
|Υk(m)|2

]

=

N−1∑
n=0

ς−2
k,n‖Hk,n‖2

(
‖Hk,n‖2Bk + ςk,n

)

+Bk

N−1∑
n=0

N−1∑
n′=0,n′ �=n

ς−1
k,nς

−1
k,n′‖Hk,n‖2‖Hk,n′‖2. (45)

Let |Υk|2 =
∑M−1

m=0 |Υk(m)|2, which is a sum of M statisti-
cally independent terms, where each term |Υk(m)|2, once nor-
malized by half its variance, follows a chi-square distribution
with two degrees of freedom, which is denoted χ2

2. Therefore,
(|Υk|2/(E[|Υk(m)|2]/2)) has a chi-square distribution with
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2M degrees of freedom, i.e., χ2
2M . Under the hypothesis Bk =

0, E[|Υk(m)|2]Bk=0 �
∑N−1

n=0 ς−1
k,n‖Hk,n‖2. Using the closed-

form expression of the complementary cumulative distribu-
tion function of the chi-square distribution, Pf,k(γk) is given
by [14]

Pf,k(γk) =P
(
B̂ML

k > γk|Bk = 0
)

=P

(
|Υk|2

E [|Υk(m)|2]Bk=0

>
γkMΨ2

k +MΨk∑N−1
n=0 ς−1

k,n‖Hk,n‖2

)

=Γ

(
M,

γkMΨ2
k +MΨk∑N−1

n=0 ς−1
k,n‖Hk,n‖2

)
(46)

where Γ(c, y) = (1/Γ(c))
∫∞
y xc−1e−xdx = w is the nor-

malized upper incomplete gamma function, and Γ(c) =∫∞
0 xc−1e−xdx represents the complete gamma function. Un-

der the constraint Pf,k(γk) = αk, the optimum threshold is
given as follows:

γopt
k =

1
MΨ2

k

(
Γinv(M,αk)

N−1∑
n=0

(
ς−1
k,n‖Hk,n‖2

)
−MΨk

)
(47)

where Γinv(c, w) is the inverse incomplete gamma function
of Γ(c, y) [51]. Similarly, under the hypothesis Bk = 1, the
optimum probability of detection under the constraint that
Pf,k(γk) = αk, i.e., according to the Neyman–Pearson formu-
lation of the binary hypothesis testing problem, is obtained as
follows [52]:

P opt
d,k

(
γopt
k

)
= P

(
B̂ML

k > γopt
k |Bk = 1

)

= P

⎛
⎜⎝ |Υk|2

E
[
|Υk(m)|2

]
Bk=1

>
γopt
k MΨ2

k +MΨk

E
[
|Υk(m)|2

]
Bk=1

⎞
⎟⎠

= Γ

⎛
⎜⎝M,

γopt
k MΨ2

k +MΨk

E
[
|Υk(m)|2

]
Bk=1

⎞
⎟⎠ (48)

where

E
[
|Υk(m)|2

]
Bk=1

=

N−1∑
n=0

ς−2
k,n‖Hk,n‖2

(
‖Hk,n‖2 + ςk,n

)

+

N−1∑
n=0

N−1∑
n′=0,n′ �=n

ς−1
k,nς

−1
k,n′‖Hk,n‖2‖Hk,n′‖2. (49)

We remark that, by using the threshold derived in (47), the
theoretical ROC obtained from (46) and (48) acts as an upper
bound for the proposed EM-based JDE with unknown CSI
and noise variance. Therefore, the “ideal” threshold (47) in

Fig. 4. Convergence behavior of the proposed EM-JDE scheme for a CR
scenario with N = 1 SU equipped with P = 2 antennas. (a) Log-likelihood
function of the complete data in (6). (b) MSE of channel estimation in (50).
(c) MSE of noise variance estimation in (51) (SNR = −3 dB).

itself can actually provide some insights on how to determine a
practical threshold, although it is not necessarily optimal for
the EM-JDE. From (47), we observe that the threshold can
be sensitive to the sensing interval M , the probability of false
alarm via αk, the entries of the instantaneous fading channel
vector Hk, and the noise variance ςk,n.

V. SIMULATION EXPERIMENTS

The performance of the proposed JDE scheme based on the
EM algorithm is evaluated through its ROC curves. Throughout
our simulations, we assume a CR network of N SUs, where
each SU is equipped with P receive antennas and operates in
a wideband frequency spectrum with K subbands. Since the
estimation of the unknown parameters is performed indepen-
dently for each subband, our results are presented for a selected
subband, e.g., k = 0. Moreover, Bk is estimated on a block-
by-block basis in which the channel vector Hk has a constant
value within a block of M samples6 and changes independently
from a block to the next. Our results are produced for M = 50
samples, and the channel vector Hk is modeled as complex
Gaussian vector with zero mean and covariance σ2

hI. We as-
sume that the noise variance ςk,n is constant over the P receive
antennas of each SU. In this case, the average SNR per receive
antenna of each SU in the kth subband is given by SNR =
(Bkσ

2
h/ςk,n). For each choice of the detection threshold γk in

(24), 105 trials are used to estimate the performance metrics
of the proposed EM-JDE scheme. Except for the results in
Fig. 4, where T = 1, we run the EM algorithm for S = 4 stages,
where each stage comprises T = 5 iterations; initialization is
performed as explained in Section III-B3.

6In practice, the value of M can be determined according to the coherence
time of the channel.
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Fig. 5. Probability of missed detection versus SNR of the proposed EM-based
spectrum sensing schemes for N = 1 SU with P = 2 antennas over time-
varying Rayleigh fading channels (Pf,k(γk) = 0.05).

Fig. 6. ROCs of different spectrum sensing schemes for the CR scenario with
N = 1 SU equipped with P = 2 antennas (SNR = −3 dB).

In Figs. 4–6, we first study the performance of the proposed
spectrum sensing techniques for the basic CR configuration
with N = 1 SU equipped with P = 2 antennas. Subsequently,
some of these parameters will be varied. In Fig. 4, we show
the convergence of the proposed EM-JDE scheme for the basic
CR configuration; the value of the log-likelihood function of
the complete data (9) is plotted in Fig. 4(a), whereas the MSE
of channel estimation and noise power estimation, which are
defined as

1
P

P∑
p=1

E
[
|Hk0,0,p − Ĥk0,0,p|2

]
(50)

1
P

P∑
p=1

E
[
|ςk0,0,p − ς̂k0,0,p|2

]
(51)

respectively, are plotted in Fig. 4(b) and (c). The results show
that the value of the log-likelihood function increases mono-
tonically and reaches a local maximum within a few iterations,
whereas simultaneously, the channel and noise parameter esti-
mates converge to stationary points.

For the same configuration as earlier, Fig. 5 examines the
performance of spectrum sensing techniques over time-variant
Rayleigh fading channels with a perfect estimation of Hk and
ςk for a fixed probability of false alarm Pf,k(γk) = 0.05. We
also include the optimum detector proposed in [14] as a perfor-
mance benchmark.7 We first note that the IdML-SS outperforms
the optimum detector [14] with significant gains in PU’s signal
detection. The better performance of the IdML-SS is due to
the fact that it uses estimates of the average transmit power as
decision statistics [see (39)], which in turn is independent of
the time-varying channel gains. The proposed IdEM-SS also
outperforms the optimum detector [14] by a wide margin in
the time-variant case, with the probability of missed detection
converging to that of the IdML-SS as the number of iterations
i increases. On this figure, as a lower bound on the missed
detection performance of the spectrum sensing detectors, we
also present results for the case of time-invariant channels,
where Hk is constant over all sensing intervals. Both the IdML-
SS and the optimum detector achieve the same performance
in this ideal situation. Comparing the results for time-varying
channels to those for time-invariant channels, we conclude that
user mobility can have a major impact on, i.e., significantly de-
grade the achievable detection performance, spectrum sensing
schemes.

Still for the case of N = 1 SU with P = 2 antennas,
Fig. 6 evaluates the performance of the proposed EM-JDE
scheme over time-variant Rayleigh fading channels in the prac-
tical case where Hk and ςk are unknown by the SU. For the
purpose of comparison, we also include the ROC curve of the
blind general likelihood ration detector (GLRD) proposed in
[14]. The results show that the EM-JDE scheme enhances the
spectrum detection process compared with the blind GLRD.
As a benchmark on the performance of the proposed scheme,
we add the ROC curve of the IdEM-SS with the same simu-
lation parameters assuming perfect channel and noise variance
estimations. We note that, in this case, the performance of the
proposed JDE scheme with unknown Hk and ςk comes very
close to the results obtained for this ideal case, whereas the
validity of the theoretical results derived in Section IV-B is
demonstrated.

Fig. 7 presents the performance of the proposed JDE scheme
for multiantenna CR networks with N ∈ {1, 2, 3, 4} spatially
distributed SUs, where each SU has P = 2 antennas. The
simulation results show that the proposed JDE scheme can
significantly enhance the spectrum detection by exploiting the
spatial diversity of the CR network. In Fig. 8, the performance
of the EM-JDE scheme for a CR network with N = 3 SU, each

7The optimum detector in [14] refers to the Neyman–Pearson detector
under the assumption of known and time-invariant channel gain and noise
variance parameters. This detector implements an LRT based on a Gaussian
signal model, where the detection threshold γk is adjusted to minimize the
probability of missed detection Pm,k(γk), which is subject to a constraint on
the probability of false alarm, i.e., Pf,k(γk) < α.
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Fig. 7. ROC of the proposed EM-JDE scheme for a multiuser CR network with
N ∈ {1, 2, 3, 4} SUs, each equipped with P = 2 antennas (SNR = −3 dB).

Fig. 8. ROC of the proposed EM-JDE scheme with centralized and distributed
implementations for a CR network with N = 3 SUs, each with P = 2 antennas
(SNR = −3 dB).

with P = 2 antennas, is presented, considering two different
implementation approaches, that is centralized versus distrib-
uted spectrum sensing. The results show that the performance
of the two schemes almost match with each other. Consider-
ing the challenges of physical implementations, one needs to
consider the tradeoff between the communications overhead
and the hardware complexity in choosing between these two
different options.

Fig. 9 studies the effect of increasing the number of samples
available for sensing, as represented here by the parameter
M , on the performance of the proposed EM-JDE scheme for
a CR network with N = 2 SUs, each equipped with P = 2
antennas. The plotted curves represent the relationship between
the probability of missed detection in subband k Pm,k(γk) =
1 − Pd,k(γk) against M for a fixed value of the probability of
false alarm Pf,k(γk) = 0.05. The results show that the values
of Pm,k(γk) are reduced significantly by increasing M .

Fig. 9. Effect of M on the performance of the proposed EM-JDE scheme for a
CR network with N = 2 SUs, each with P = 2 antennas (Pf,k(γk) = 0.05,
and SNR = −3 dB).

Fig. 10. Effect of P on the performance of the proposed EM-JDE scheme for
a CR network with N = 2 SUs, each with P = 2 antennas (Pf,k(γk) = 0.05,
and SNR = −3 dB).

Finally, Fig. 10 shows the effect of increasing the number
of antennas P on the performance of the proposed EM-JDE
scheme for a CR network with N = 2 SUs. Given Pf,k(γk) =
0.05, Pm,k(γk) is plotted versus different values of P in the
case of time-variant Rayleigh fading channels. From the results,
we notice that increasing the number of antennas at the SUs
can significantly enhance the ability of the proposed scheme
to efficiently sense the available spectrum in cooperative CR
networks.

VI. CONCLUSION

In this paper, a cooperative spectrum sensing scheme based
on the EM algorithm for multiantenna CR networks has been
proposed. In this scheme, a binary hypothesis test is applied
on estimates of the average power transmitted by the PU over



1242 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 65, NO. 3, MARCH 2016

a wideband frequency spectrum during the sensing interval,
making the decision on the spectral occupancies independent
of the channel states. However, knowledge of CSI and noise
variance at each SU is crucial to obtain reliable estimates of
the PU’s transmitted power over different frequency subbands.
Therefore, the FC employs the EM algorithm in a nontrivial
way to jointly estimate the unknown continuous parameters in
each subband along with the PU detection, thereby forming
an EM-JDE scheme for multiuser multiantenna CR networks.
Various aspects of this proposed EM-JDE scheme were in-
vestigated, including a reliable initialization strategy to en-
sure convergence under practical conditions and a distributed
implementation to reduce communication overhead. We also
introduced an analytical evaluation of the IdML-SS based on
the Neyman–Pearson criterion as a lower bound on the missed
detection performance of cooperative spectrum sensing. The
results show that the proposed EM-JDE scheme can provide
a significant improvement in the PU spectrum detection, par-
ticularly for time-variant channels. This paper has extended
the application of advanced JDE schemes, which are widely
employed in the design of modern wireless communication
systems, to the topic of spectrum sensing in wideband CR
networks.

APPENDIX

Here, we derive a closed-form expression for
E[ζk,n(m)ζk,n′ (m)∗] in (44). First, we expand the product
ζk,n(m)ζk,n′ (m)∗ as

ζk,n(m)ζk,n′ (m)∗

= ς−1
k,nς

−1
k,n′Rk,n(m)HHk,nH

H
k,n′Rk,n′(m)

= ς−1
k,nς

−1
k,n′

P−1∑
p=0

P−1∑
p′=0

Hk,n,pH
∗
k,n′,p′Rk,n,p(m)∗Rk,n′,p′(m).

(52)

The expectation of the cross term Rk,n,p(m)∗Rk,n′,p′(m) is
given by

E [Rk,n,p(m)∗Rk,n′,p′(m)]

= H∗
k,n,pHk,n′,p′Bk+ςk,nδn,n′δp,p′ . (53)

Using (53), we can obtain E[ζk,n(m)ζk,n′ (m)∗] in

E [ζk,n(m)ζk,n′ (m)∗]

= ς−1
k,nς

−1
k,n′

⎛
⎜⎝Bk

P−1∑
p=0

P−1∑
p′=0

|Hk,n,p|2|Hk,n′,p′ |2

+ ςk,n

P−1∑
p=0

|Hk,n,p|2δn,n′

⎞
⎟⎠

= ς−1
k,nς

−1
k,n′‖Hk,n‖2

(
‖Hk,n′‖2Bk + ςk,nδn,n′

)
. (54)
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