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Joint Channel Estimation and Robust Beamforming
Design for AF Relaying Using IMM Kalman Filters
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Abstract—This paper addresses the joint problem of
recursive channel estimation and robust beamformer de-
sign in peer-to-peer communication through a network of
relays over time-varying radio channels. Using observed
signal samples at the relay and receiver nodes, the Channel
State Information (CSI) is estimated centrally by tak-
ing advantage of a Markov model for the transmitter-
relay and relay-receiver channels, and employing either
the Extended Kalman Filter (EKF) or the Cubature
Kalman Filter (CKF). Based on the estimated CSI, two
robust approaches are conceived for designing the relay
beamforming where the aim is to minimize the total
transmission power of the relays subject to Signal-to-
Interference plus Noise Ratio (SINR) constraints at each of
the receiver nodes. Furthermore, the Interacting Multiple
Model (IMM) approach for mixing non-stationary and
stationary Markov models is employed to extend the time-
varying robust beamforming design to non-stationary en-
vironments. Through numerical simulations, the recursive
CSI estimation methods are shown to be efficient, i.e.,
unbiased and converging to the Cramer-Rao Lower Bound
(CRLB). Furthermore, the results confirm the better
performance of the proposed robust relay beamforming
design algorithms compared to existing methods in terms
of relevant transmission metrics, including relay power
consumption and spectral efficiency.

Index Terms—Cramer-Rao-Lower-Bound, Cubature
Kalman Filter, Extended Kalman Filter, Imperfect channel
state information, Interacting Multiple Models.

I. INTRODUCTION

Cooperative communication has received significant
interest in recent years as it offers a promising way of
achieving spatial diversity without using Multiple-Input-
Multiple-Output (MIMO) processing [1], [2]. However,
due to the dynamic nature of the wireless channels
and the mobility of users, degradations of the required
channel state information (CSI) are inevitable, which in
turn negatively impact the communication reliability and
transmission rate [3]. Employing relay nodes between
the transmitter-receiver pairs can reduce the effects
of channel degradations and help mitigate inter-user
interference, thereby allowing reliable communication
between each transmitter-receiver pair.
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Among existing relaying schemes, such as Amplify-
and-Forward (AF) [4], [5], [6], [7], [8], Decode-and-
Forward (DF) [9], and Coded-cooperation-and-Forward
(CF) [10], AF is much more attractive due to its rela-
tively low implementation complexity and high security.
A network of AF relays can be used to implement
distributed peer-to-peer beamforming, i.e., a cooperative
scheme wherein each one of the paired transmitter-
receiver links in the network is enhanced through spatial
processing [11], [12]. Indeed, while interference from
other pairs can decrease the Signal-to-Interference plus
noise (SINR) at a target receiver, relay beamforming can
be exploited to mitigate the interference and improve the
SINR. Besides traditional mobile wireless communica-
tions, distributed peer-to-peer relay beamforming finds
applications in ad hoc Device-to-Device (D2D) networks
[13], [14] and internet-of-things (IoT) use cases [15].

A major problem in the practical implementation of
the above distributed relay schemes occurs when the
various nodes comprising the network (i.e., transmitters,
receivers, and especially relays) are moving relative to
each other and their environment. In this case, and
depending on the velocity of motion, the relevant CSI1

cannot be well estimated as it contains errors due to lim-
ited channel- state feedback quantization and feedback
delays. This issue becomes particularly challenging in
the case of rapidly changing doubly-selective channels,
since both the coherence time and coherence bandwidth
can be affected. Thus, designing beamforming weights
robust against CSI errors under such conditions is of
great practical interest. Besides, optimal allocation of
power among different relays also relies on accurate CSI
estimation. Hence, optimizing the spatial relay beam-
forming and power allocation is a challenging task under
temporal channel variations.

In the literature on cooperative robust relay beamform-
ing, it is assumed that an initial estimation of the required
channel coefficients is available, albeit with some errors.
While these errors are unknown, their size (as repre-
sented by the variance or other error mode parameters)
is constant over time and does not decrease as addi-
tional measurements are made. Within this framework,
two different types of robust peer-to-peer beamforming
design approaches have been proposed, depending on the
particular way in which the CSI error is modeled, that is:

1Note that in this paper, the CSI stands for the actual channel
coefficients.
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stochastic-based methods as in [6], [5]; and worst-case
methods as in [16], [17]. In particular, a stochastic-based
robust method for adjusting the relays’ beamformer
weights is proposed in [6], while in [5] and [7], related
approaches with reduced complexity are presented for
tackling the robust beamformer design problem. One
important aspect that has not been considered in these
studies is the possibility of reducing CSI uncertainty
over time by exploiting new signal observations made
at the relays and the receivers. While such an approach
allowing dynamic modeling of the channel error has
been recently undertaken in [18], the proposed method
requires solving a non-convex optimization problem and
its convergence is somewhat sensitive to initial condi-
tions.

Parametric models of channel variations can be
broadly classified as stationary (or time-invariant) and
non-stationary (time-variant). Stationary models are well
suited for situations where the channel varies slowly
while the delay and Doppler spreads do not change
appreciably; in fact, the mobile speed is assumed to
remain constant at each time step [19]. In contrast, non-
stationary models are typically employed when both
the coherence time and the coherence bandwidth of the
channel are time-varying. In the case of fast variations,
recursive feedback channel models may not satisfy the
Lyapunov stability condition [20]. Hence, as time passes,
channel estimates derived from these improper models
may greatly differ from the true values, since the esti-
mation error can grow unboundedly.

Considering the wide spectrum of possible channel
conditions, it becomes extremely important to devise
channel estimation techniques that can learn and track
the channel parameters of mobile users under a variety of
conditions, including both stationary and non-stationary
situations. This kind of learning-based techniques has
not been considered in previous stochastic or worst-case
approaches to robust beamforming design. For instance,
in previous work [6], it was assumed that the random
channel estimation errors obey an invariable known
distribution. Such a model innately cannot track the non-
stationary behavior of the wireless channel statistics.

In this paper, we therefore address the joint problem
of recursive channel estimation and robust beamformer
design in peer-to-peer communication through a network
of relays over time-varying radio channels. In effect,
cooperative relaying provides a form of space division
multiple-access, whereby spatial channel characteristics
of the different peer-to-peer links are exploited to miti-
gate interference and improve SINR. In [8], the authors
have shown that this approach can outperform other
common schemes, including Time Division (TDMA),
Code Division (CDMA) and Frequency Division Mul-
tiple Access (FDMA). We assume that there exists a
processing (or fusion) center that has access to a subset
of the signal samples observed at the relays and the

receivers with the ability to fuse information from these
two sources. The information provided to the processing
center, which is referred to as measurements in the
sequel, is used to estimate the channel coefficients,
whose evolution is represented by a parametric state-
space model. The measurements are a function of beam-
forming weights which are optimized at each time step2.
Due to the non-linear nature of the measurements at the
relays and receiver nodes with respect to the channel
state vector, we have utilized the Cubature Kalman Filter
(CKF) [21] as well as the Extended Kalman Filter (EKF)
[22] for tracking the channel state information.

While the EKF is attractive due to its simplicity, the
CKF is known to have a better performance in non-
linear state space models compared to other non-linear
approximations of the Kalman filter (KF) [21]. The main
contributions and distinguishing features of this paper
are summarized as follows:

• Two different robust optimization approaches for
beamformer design are proposed in which the total
transmission power of the relays is minimized sub-
ject to, respectively, probabilistic and approximated
mean SINR constraints at the receiver nodes.

• We apply two KF-based methods i.e., EKF and
CKF, for estimating the CSI required by the robust
beamformers. In contrast to previous studies [6],
[5], [16], our proposed approaches are recursive and
seek to mitigate the channel errors at each time step
dynamically by using sample measurements at the
relays and receivers.

• In our approach, the convergence of the channel
estimation method does not depend on the initial
conditions. In fact, in [18], although the robust ap-
proach is adaptive, the beamforming vector design
highly depends on having proper initial conditions.

• We propose an innovative approach based on the
Interacting Multiple Models (IMM) for Markov
models, in order to jointly handle both stationary
and non-stationary channel behaviors.

• We evaluate the computational complexity of our
proposed approaches in detail. We also derive the
Cramer-Rao Lower Bound (CRLB) for CSI estima-
tion in the considered framework.

• The results of extensive numerical simulations show
that our proposed methods are unbiased and achieve
the CRLB, thereby demonstrating their statistical
efficiency in practice.

The remainder of this paper is organized as follows.

2We emphasize that in our proposed method, the rate at which the
observed samples are forwarded to the processing center is different
from the sampling or symbol rate of the communication system.
That is, only a subset of the available received samples, as obtained
from sub-sampling at a much lower rate consistent with the rate of
change of the channel, need to be forwarded to the central processor.
Typically, only a few samples per coherence interval will be needed,
which represents a very small fraction of the received data. Hence,
the proposed scheme will not entail a substantial overhead in practice.
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Figure 1: Point-to-point relay system model.

In Section II, the system model and problem formulation
are presented. In Section III, two different robust opti-
mization approaches for solving the beamforming prob-
lem are proposed. Subsequently, the channel estimation
based on EKF and CKF is investigated in Section IV.
In Section V, the IMM method for combining the non-
stationary and stationary models is discussed. Section
VI delves into performance considerations, including
the complexity analysis of the proposed algorithms
and derivation of a simplified CRLB for channel state
vector estimation. Simulation results are presented and
discussed in Section VII. Finally, conclusions are drawn
in Section VIII.

Notations: In this paper, uppercase and lowercase bold
letters are used to denote matrices and vectors, respec-
tively, while superscripts (.)∗, (.)T , (.)H denote, complex
conjugate, transpose, Hermitian (conjugate transpose),
respectively. The notations vec (.), Tr (.), ⊙, and ⊗
respectively, denote vectorization operator, matrix trace
operator, element-wise (or Hadamard) matrix product
and Kronecker matrix product. The operator diag (A)
represents a column vector which contains the diagonal
elements of square matrix A, while diag (a) denotes
a diagonal matrix with the elements of vector a on its
main diagonal. The notation BD(A1, . . . ,An) represents
a block diagonal matrix with matrices A1, . . . ,An on its
main block diagonal. Furthermore CN (µ, σ2) denotes a
complex circular Gaussian distribution with mean and
variance µ and σ2, respectively.

II. SYSTEM MODEL AND PROBLEM
STATEMENT

A. System Model

We consider a network for point-to-point communi-
cation between M transmitter-receiver pairs, through a
layer of L relays operating in parallel, as illustrated in
Fig. 1. The transmitters {Si}Mi=1, relays {Rr}Lr=1, and
receivers {Di}Mi=1, are all assumed to be equipped with
a single antenna. In this paper, we focus on half-duplex

relayed communications from the sources Si to the
destinations Di; however, full-duplex3 communications
between the two sets of users can be achieved by means
of time division duplexing (TDD) or frequency division
duplexing (FDD) schemes. We let fpr(k), and grp(k)
denote the complex Rayleigh flat fading channel gain
coefficients between the pth transmitter and the rth relay,
and between the rth relay and the pth receiver at the
kth time step, respectively; there exists no direct link
between the transmitters and the receivers. For notational
simplicity, we shall temporarily drop the time step index
k from the channel coefficients (e.g., fpr ≡ fpr(k),
grp ≡ grp(k)); hence, all the equations in this and the
next section are for the kth time step4. At the given time
step, the vector of signal samples observed at the relays
is expressed as

x =

M∑
p=1

fpsp + vx
m (1)

where x = [x1, x2, . . . , xL]
T ∈ CL, vx

m =
[vxm1, v

x
m2, . . . , v

x
mL]

T is a vector of Additive White
Gaussian Noise (AWGN) at the relays with com-
plex circular Gaussian distribution CN (0, σ2

xI), fp =

[fp1, fp2, . . . , fpL]
T and {sp}Mp=1 are the transmitted in-

formation symbols. The latter are assumed to be un-
correlated with zero mean and variance Pp = E{|sp|2}.
The rth relay multiplies its received signal by a complex
weight w∗

r , then retransmits the resulting product to the
receivers. Hence, the vector of transmitted signals by the
L relays can be written as

t = WHx (2)

where W = diag(w) and w = [w1, w2, . . . , wL]
T . The

observed signal sample at the jth receiver node is

yj= gj
T t+ ηj , ∀j ∈ J ≜ {1, . . . ,M} (3)

= gT
j W

Hfjsj + gj
TWH

M∑
p ̸=j

fpsp + vyj
m

where gj = [gj1, . . . , gjL]
T , vyj

m = gT
j W

Hvx
m + ηj is

the total noise at the jth receiver, and ηj ∼ CN (0, σ2
η).

3Traditionally, the term full-duplex refers to the use of bilateral
channels (whether single or shared media) for simultaneous transmis-
sion of information in both directions between two end-points [23].
This includes the use of TDD and FDD, which are intrinsically half-
duplex (one-way) modes of communication, to emulate full-duplex or
two-way communications by interlacing the two different directions
of transmission over time or frequency, respectively. In recent years,
with advances in RF hardware and DSP technologies, there has been a
growing body of research on so-called full-duplex relaying, wherein
two-way relayed communications can be achieved simultaneously
over the same frequency band through advanced self-interference
cancellation techniques [24]. In the above statement, more traditional
interpretation of the term full-duplex is implied.

4The index k will be reintroduced in Section IV when investigating
recursive channel estimation.
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The SINR at the jth receiver node is written as

SINRj =
P j
S

P j
N + P j

I

, j ∈ J (4)

where P j
S , P j

I , P j
N are the desired signal, interference,

and noise power, respectively. By using (2), the total
transmit power of the relays is

PT = E{∥t∥2} = wHDw (5)

where D = diag([Rx]1,1[Rx]2,2 . . . [Rx]L,L) and Rx =

E
{
xxH

}
is the correlation matrix of the received signals

at the relays. The latter matrix can be expressed as

Rx =

d∑
p=1

Ppfpf
H
p + σ2

xI (6)

Using (3), the power of the jth desired signal can be
written as

P j
S =E

{
gT
j W

Hfjf
H
j Wg∗

j

}
E{|sj |2} =wHRj

hw (7)

where hj
j and Rj

h are defined as

Rj
h

∆
= Pjh

j
jh

j
j
H , hj

j
∆
= gj ⊙ fj

Similarly, the interference power at the jth receiver can
be written as

P j
I=E{g

T
j W

H
M∑
p ̸=j

M∑
q ̸=j

fpf
H
q sps

∗
qWg∗

k}=wHQjw (8)

where

Qj
∆
=

M∑
p ̸=j

Pjh
p
j (h

p
j )

H
, hp

j
∆
= gj ⊙ fp,

Similarly, the noise power at the jth receiver is

P j
N= E

{
(gT

j W
Hvx

m + ηj)(g
T
j W

Hvx
m + ηj)

H
}

= wHDjw + σ2
η (9)

where Dj
∆
= σ2

xdiag(g
∗
j )diag(gj). Hence, the SINR at

the jth receiver is

SINRj =
wHRj

hw

wH (Qj +Dj)w + σ2
η

=
Aj

Bj
, j ∈ J

(10)
where Aj ≜ wHRj

hw and Bj≜ wH (Qj +Dj)w + σ2
η .

B. Problem Statement

Our aim is to design the beamforming weights at the
relays so that power consumption is minimized while
preserving a desired level of QoS at the receiver nodes.
However, and in contrast to earlier works, we will seek
to exploit a priori knowledge of the channel dynamics
to improve the performance of the beamformer as the
radio channels undergo time variations.

The proposed joint channel estimation and beamform-
ing design procedure is illustrated in Fig. 2, where

Figure 2: Joint channel estimation and beamforming design at each time step

the designed beamforming weights at the relays are
functions of the CSI. At each time step, we first update
the CSI, which consists of the relevant channel vectors,
by using a non-linear form of Kalman filter (either EKF
or CKF), and then use the updated channel vectors to
solve for the optimal relaying beamforming weights.
Hence, the channel estimation and beamforming de-
sign are done jointly, but in an alternative manner,
which is a common approach for solving complex high-
dimensional optimization problems, see e.g. [25], [26].
Interestingly, for the particular relaying problem with
time-varying channels under consideration in this work,
the alternations are applied over consecutive time steps,
which leads to an adaptive procedure. More specifically,
the CSI needs to be estimated in order to solve the
following optimization problem for the relaying weights

min
w

wHDw (11a)

s.t. SINRj ≥ γj , ∀j ∈ J (11b)

where γj is a preselected SINR threshold value at
the jth receiver node. Due to rapid changes in CSI,
optimization problem (11) should be solved in real-time,
i.e. at each specific time step, as the estimates of the
various channel vectors are updated. Furthermore, due to
unavoidable CSI uncertainties in the estimation, a robust
design approach is favoured in lieu of the deterministic
formulation (11).

In [6], the authors solved a stochastic version of the
robust beamforming design problem by assuming perfect
knowledge of the distribution of the channel estimation
error (including the mean and covariance of this distribu-
tion). However, in the case of time-varying channels with
possible non-stationary model parameters, such detailed
knowledge about the propagation environment is rarely
available. In [18], the authors proposed a joint approach
for the prediction of beamforming weights and CSI, by
reformulating a non-convex optimization problem as a
constrained least squares problem. The major drawbacks
of this solution are its high complexity and the need for
a reliable initial estimation of the beamforming weights,
which may not be possible in practical scenarios.
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In contrast to previous studies [16], [18] the robust
approaches for beamformer design proposed in this
work are recursive in nature and seek to mitigate the
channel errors at each time step dynamically. This is
achieved by incorporating KF-based methods within the
processing pipeline, in order to better exploit sample
measurements at the relays and receivers. Consequently,
in our approach, the convergence of the channel esti-
mation method does not strongly depend on the initial
conditions. In the presence of CSI uncertainty, the vector
of channel coefficients between the pth transmitter and
the relay nodes can be expressed as

fp = f̄p +∆fp, p ∈ J (12)

where fp, f̄p and ∆fp stand for the estimated, actual
and error vectors, respectively. Similarly, the vector of
channel coefficients between the relays and the jth
receiver is expressed as

gj = ḡj +∆gj , j ∈ J (13)

where gj , ḡj and ∆gj stand for estimated, actual and
error vectors, respectively. In both (12) and (13), the er-
ror vectors ∆fp and ∆gj are assumed to follow complex
circular Gaussian distributions. In accordance with (12)-
(13), the expectation operator in e.g. CN (0, σ2

fI) and
CN (0, σ2

gI), respectively. The model equations derived
in part A remain valid provided that the operator E{.} is
interpreted as a conditional expectation, given particular
realizations of the CSI errors ∆fp and ∆gj . The newly
proposed robust beamformer design strategies (given the
updated CSI) are described in details in Section III;
while the non-linear KF-based channel estimation and
tracking (given updated beamformer measurements) is
described in Section IV (with extension to IMM in
Section V). At each time iteration, as explained above,
new beamforming weights are designed using a robust
procedure, which is followed by channel vector updating
using non-linear KF. Hence, the beamforming weights
and channel vectors are jointly enhanced in an alternative
manner over time.

III. ROBUST BEAMFORMING DESIGN STRATEGY

In this section, two different variations of problem
(11) are proposed and developed for making the relay
beamforming solution robust against CSI errors.

A. Maximizing First-Order Approximate Mean of SINR
Under Imperfect CSI

It has been proved that assuming exact CSI in situa-
tions where CSI is afflicted by uncertainty may severely
degrade system performance [6]. In this sub-section, we
reformulate (11) as a robust optimization problem based
on the approximation of the mean method (AMM) for
the SINR. Using the approach in [27], the expected value

of the SINR in (10) is approximated by a Taylor series
around the mean values of Aj and Bj :

SINRj = SINRj

(
Āj , B̄j

)
+ ∂SINRj

∂Aj

(
Aj − Āj

)
+∂ SINRj

∂Bj

(
Bj − B̄j

)
+ h.o.t.

(14)

where h.o.t. denotes the higher order terms. Taking the
expectation of (14), we have

E(SINRj) = SINR(Āj , B̄j) +
∫ ∫

(∂SINRj

∂Aj

(
Aj − Āj

)
+∂SINRj

∂Bj

(
Bj − B̄j

)
)f (Aj , Bj) dAjdBj + h.o.t.

(15)
where f (Aj , Bj) denotes the joint probability density
function of Aj and Bj . In [27], the first-order approx-
imation of (15) is further simplified as E(SINRj) ∼=
SINR(Āj , B̄j) + 2SINR(Āj ,B̄j)

B̄2
j

, while the second and
higher order terms do not have a sensible impact on the
final result. It is also shown through numerical analysis
that the above expression provides a tight lower-bound
of true SINR under the low channel uncertainty error
condition.

Our first proposed method relies on the use of the first
term in (15)5. Specifically, in light of (11b), we have

SINRj(Āj , B̄j)=(
wHR̄j

hw

wH(Q̄j + D̄j)w+σ
2
η

)≥γj (16)

where R̄j
h = Pj(h̄

j
j(h̄

j
j)

H + σ2
hj
I) , D̄j =

σ2
xdiag(ḡj ḡ

H
j + σ2

gI), Q̄j =
M∑
p ̸=j

Pp(h̄
p
j (h̄

p
j )

H + σ2
hI),

h̄j
j = E(gj ⊙ fj) = ḡj ⊙ f̄j and h̄p

j = ḡj ⊙ f̄p. Hence,
an optimum beamforming weight vector can be obtained
by solving the following problem:

min
w

wHDw (17a)

s.t. wH(R̄j
h−γj(Q̄j + D̄j))w ≥ σ2

ηγj ∀j∈J (17b)

which is indeed equivalent to

min
X

Tr (DX) (18a)

s.t. Tr(R̄j
h−γj(Q̄j+D̄j)X) ≥ σ2

ηγj ∀j∈J (18b)

Rank(X) = 1 (18c)

where X = wwH . After dropping the rank one con-
straint in (18c) which is non-convex, this can be rewritten
in relaxed form as follows:

min
X

Tr (DX) (19a)

s.t. Tr((R̄j
h−γj(Q̄j+D̄j))X) ≥ σ2

ηγj ∀j∈J (19b)

Problem (19) is a convex Semi-Definite Program (SDP)
which can be easily solved by CVX software [28]. As

5The reason for not including the term 2SINR(Āj ,B̄j)

B̄2
j

is twofold:

the denominator B̄2
j contains 4th power terms with respect ro w

which makes the problem non-convex; in low uncertainty error
regime, this term does not have a significant effect on the overall
SINR term, as we show by simulations in Section VII.
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mentioned in [29], the SDP problems in form (19) do
not admit a closed-form solution and cannot be solved
analytically.

We shall first seek to extract beamforming weights
w from the solution of (19), which provides a lower
bound to the solution of (18), since the feasibility region
(18b-c) of the non-convex problem is a subset of the
relaxed feasibility region (19b). In general, the solution
of the relaxed problem (19), denoted as Xopt, may have
a arbitrary rank. If the rank of Xopt is one, the principal
eigenvector of Xopt is the optimal solution to the original
problem. Otherwise, if the rank of the matrix Xopt is
higher than one, an approximation technique is needed to
obtain a rank one solution from the relaxed problem. To
this end, we can employ an effective procedure known
as randomization in the literature [8], [6], [7]. The idea
behind this technique is to generate a candidate set of
beamforming vectors from the optimal solution of (19)
and conducting finite search over those that fall in the
feasibility region. The solution obtained by means of this
procedure can provide a tight lower bound to the relaxed
problem.

To design a randomization procedure for our problem,
let Xopt = UVUH denotes the eigenvalue decom-
position of Xopt. The candidate vectors wc can be
chosen as wc = UV

1

2 ξ , where ξ ∼ CN (0, I), so that
E(wcw

H
c ) = Xopt. A feasible solution can be obtained

by generating a sufficiently large number of realizations
of wc, and then simply choosing the best feasible solu-
tion. Then, one way to generate the candidate solution
of problem (18) is to scale wc by an appropriate factor.
This scaling factor is obtained by solving the following
linear optimization problem:

min
λ

λ

s.t. λ ≥ σ2
ηγjT −1

j , ∀j ∈ J
(20)

where Tj = Tr(R̄j
h−γj(Q̄j + D̄j)wcw

H
c ). The random

vector generation process is repeated until Nmax feasible
candidates have been found. Among these, we select
the vector which yields the minimum objective value
in the optimization problem (18). The main steps of this
randomization method are summarized under Algorithm
1, where in line (6), equation (20) is solved.

B. Statistically Robust Design

In this section, we introduce our stochastic method
(SM) as second proposed variation of problem (11),
which relies on a stochastic formulation of the QoS con-
strained to achieve robustness of the solutions. Specifi-
cally, we aim to solve the following optimization prob-
lem:

min
w

wHDw (21a)

s.t Pr (SINRj ≤ γj) ≤ εj , ∀j ∈ J (21b)

where εj is a maximum threshold outage probability at
the jth receiver node. Let us define an auxiliary variable
Zj as follows:

Zj = wH
(
Rj

h − γjQj − γjDj

)
w (22)

Hence, constraint (21b) can be equivalently expressed as

Pr
(
Zj ≤ γjσ

2
η

)
≤ εj , ∀j ∈ J (23)

It can easily be verified that (22) contains only terms
up to order four in ∆fp, and ∆gj . In [6], It was shown
that the third and forth order error terms in a similar ex-
pression be neglected. Guided by these observations, the
following theorem can be applied to obtain a tractable
convex approximation, in the form of second order cone
constraints, to the chance constraints (23).

Theorem 1. Let ξ1, ξ2, ..., ξm be independent stan-
dard Gaussian random variables. Consider the function
Q : Rn × Rm → R defined via

Q(x, ξ) = −a0(x) +
m∑
i=1

ξiai(x) +
m∑

i,j=1
ξiξjai,j(x)

+
m∑

i,j,k=1

ξiξjξkai,j,k(x) +
m∑

i,j,k,l=1

ξiξjξkξlai,j,k,l(x)

(24)
where a0 (.) is affine and ai (.), ai,j (.), ai,j,k (.),
ai,j,k,l (.) are linear in their arguments. Consider the
chance constraint

P (Q (x, ξ) ≥ 0) ≤ ε (25)

where ε > 0 is given. Set

q̄ (ε) =

{
− ln ε+

√
(ln ε)2−8 ln ε
4 , ε ≤ e−8

2, else
(26)

and Q̄ (x, ξ)=Q (x, ξ) + a0 (x). Then, the following
propositions hold:
(a) For all x ∈ Rn, ξ ∈ Rm, for some function U :
Rm → Rn × Rn, we have Q̄(x, ξ)2 = xTU (ξ)x
(b) Let U = E{U (ξ)} ≻ 0 and

c (ε) =

{
(q̄(ε)− 1)2 exp( 2q̄(ε)

q̄(ε)−1), ε ≤ e−8

1√
ε
, else

(27)

The second-order cone constraint

a0 (x) ≥ c(ε)
∥∥∥U 1

2x
∥∥∥ (28)

serves as a tractable safe6 approximation of the chance
constraint (25).

Proof. By assumption, for each ξ ∈ Rm, the function
Q̄ (x, ξ) is linear in x ∈ Rn. This implies that Q̄ (x, ξ)

2

is a non-negative homogeneous quadratic polynomial in

6The term safe indicates that this approximation does not violate
the pre-defined outage probability ε or pre-defined SINR level γj
when applied to (21b).
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x ∈ Rn, which establishes (a). To prove (b), we invoke
[30] (Theorem 5.10), which states that for any q ≥ 2:

E{
∣∣Q̄ (x, ξ)

∣∣q} 1

q ≤ (q − 1)2E{
∣∣Q̄ (x, ξ)

∣∣2} 1

2 (29)

This, together with Markov’s inequality and the result in
(a), implies that for any q ≥ 2

Pr
(∣∣Q̄ (x, ξ)

∣∣ ≥ t
)
≤ t−qE{

∣∣Q̄ (x, ξ)
∣∣q} (30)

=
[
t−1(q − 1)2

∥∥∥U 1

2x
∥∥∥]q

By setting q = q̄(ε) ≥ 2 and t ≥ c (ε)
∥∥∥U 1

2x
∥∥∥, it follows

from (30) that

Pr (Q (x, ξ) ≥ 0) = Pr
(
Q̄ (x, ξ) ≥ a0 (x)

)
(31)

≤ Pr
(∣∣Q̄ (x, ξ)

∣∣ ≥ a0 (x)
)

≤ ε

whenever (28) holds. In that sense, the second-order
cone constraint (28) is a safe (and tractable) approxi-
mation of (25).

Here, we aim to apply the result of Theorem 1 to the
non-convex problem (21). The auxiliary variable Zj can
be simplified as

Zj =∆fHQf∆f +∆gH
j Qf ,g∆f +∆fHQH

f ,g∆gj

+∆gT
j

⌢

Qf ,g∆f +∆fH
⌢

Q
H

f ,g∆g∗
j +∆gH

j Qg∆gj

+cHg ∆gj+∆gH
j cg+c

H
f ∆f+∆fHcf+dj+h.o.t. (32)

By neglecting higher order terms in the third and fourth
powers of ∆f ≜

[
∆fT1 , . . . ,∆fTM

]T and ∆gj , we can
reformulate the latter as

Zj = ∆HH
j Q̃∆Hj + 2Re

{
r̃j∆HH

j

}
+ dj (33)

where Q̃
∆
=

[
RI RIQ

RIQ RQ

]
, RI

∆
=

[
Qf QH

f ,g

Qf ,g Qg

]
, RI,Q

∆
=[

0 0
⌢

Q
H

f ,g0

]
, RQ

∆
= 0, ∆HH

j
∆
=

[
∆hH

j ∆hT
j

]
, ∆hT

j
∆
=[

∆fT ∆gT
j

]
, r̃j

∆
= 1

2

[
cHcT

]
, cH ∆

=
[
cf

Hcg
H
]

and the

other matrices Qf ,Qg,Qf ,g,
⌢

Qf ,g, cf , cg, and dj have
been defined in Appendix. From (33), it follows that

E{|Zj |2} = E{∆HH
j Q̃∆Hj∆HH

j Q̃∆Hj} (34)

+ 4E{∆HH
j rjr

H
j ∆Hj}

We note that ∆Hj ∼ CN (0,Σ), where Σ can be derived
as

Σ = E(∆Hj∆HH
j ) = BD(σ2

fI, σ
2
gI, σ

2
fI, σ

2
gI) (35)

After some algebraic manipulations (34) can be ex-
pressed in the equivalent form

E{|Zj |2} = vec(X)HUjvec(X) (36)

where X = wwH and the expression of Uj is developed
in Appendix II. The affine term in (33) can also be
expressed as

dj = vec(X)Hvec(Pjh̄
j
j(h̄

j
j)

H) (37)

− γjσ
2
xvec(X)Hdiag(vec(I))vec(gjg

H
j )

− γjvec(X)Hvec(

M∑
p ̸=j

Pph̄
p
j (h̄

p
j )

H
)

At this point, based on Theorem 1, the following set
of second-order cone constraints serves as a convex
approximation of the chance constraint (23):

dj ≥ c(ε)
∥∥∥U 1

2

j X
∥∥∥ , ∀j ∈ J (38)

Consequently, optimization problem (21) can be simpli-
fied as

min
X

Tr(DX) (39a)

s.t. dj ≥ c(ε)
∥∥∥U 1

2

j X
∥∥∥ , ∀j ∈ J (39b)

Rank(X) = 1 (39c)

The rank constraint in (39) is not convex. By dropping
this constraint and using SDP relaxation the problem
becomes convex and can be solved efficiently using
CVX software [28]. The relaxed SDP problem is

min
X

Tr(DX) (40a)

s.t. dj ≥ c(ε)
∥∥∥U 1

2

j X
∥∥∥ , ∀j ∈ J (40b)

Moreover, the randomization procedure described for
problem (19) can be used in a similar way to extract
the desired beamfoming weights from the solution of
problem (40). The only difference between the the
application of this procedure to (19) and (40) lies in the
determination of the parameter λ. For (40), the following
optimization problem should be solved:

min
λ

λ

s.t. λaj − c(ε)bj ≥ 0, ∀j ∈ J
(41)

where

aj = vec(wcw
H
c )Hvec(Pjh̄

j
j(h̄

j
j)

H)

−γjσ
2
xvec(wcw

H
c )diag(vec(I))vec(gjg

H
j )

−γjvec(wcw
H
c )Hvec(

M∑
p ̸=j

Pph̄
p
j (h̄

p
j )

H
)

bj =
∥∥∥U 1

2

j wcw
H
c

∥∥∥
The proposed method can also be implemented as per
Algorithm 1, but this time solving problem (40) in step
6.
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Algorithm 1 Robust beamforming design with random-
ization method
Input: Xopt

Output: The rank one solution of Xopt, w
1: Compute SVD decomposition X = UVUH after solving (19) or (40)
2: i = 1
3: while i ≤ Nmax do
4: Generate a complex Gaussian random vector ξ ∼ CN (0, I)
5: Generate a candidate vector as wi

c = UV1/2ξ
6: Solve the optimization problem (20) or (41) and obtain λi

7: if the optimization problem is infeasible then
8: discard and return to step 4
9: else

10: Store wi
c and the corresponding λi and relay transmit power

λi
(
wi

cDwi
c

)
11: i = i+ 1
12: end if
13: end while
14: Select λopt = λi and wopt

c = wi
c in which λi and wi

c correspond to
the minimum relay transmit power

15: Output best candidate vector is wopt =
√
λoptwopt

c and the minimum
objective function λopt

(
wopt

c Dwopt
c

)

IV. CHANNEL ESTIMATION

In practice, when considering (19) and (40), the re-
quired CSI for both types of channels, i.e., from the
transmitters to relays and from relays to receivers, is
not readily available. In this Section, we focus on the
estimation of the unknown channel coefficients and their
covariance matrices using a KF formalism.

The observation equations at time step k can be
expressed as

zjm(k) = h (f(k),gj(k)) + vj
m(k), ∀j ∈ J (42)

where f(k) =
[
fT1 (k), . . . , f

T
M (k)

]T , zjm(k) =

[x(k), yj(k)]
T , vj

m(k) = [vx
m(k)T ,v

yj
m(k)]T , h(·, ·) is a

non-linear function of states, and the subscript m denotes
the measured values. We note that at each time step,
once we have solved the optimization problems in (19)
or (40), the new (i.e., updated) weight vector causes the
measurements in (42) to be updated, which justifies the
presence of a the feedback loop in Fig. 2. By invoking
the Markov model, the recursive update for the channel
coefficients from transmitters to relays and from relays
to jth receiver are respectively formulated as

f (k + 1)= αf (k) + vf
s(k) (43)

gj (k + 1)= βgj (k) + vgj
s (k), ∀j ∈ J (44)

where α = J0(2πFRTs) and β = J0(2πFDTs) are the
temporal correlation coefficients and J0(·) is the Bessel
function of the first kind of order zero. For a constant
symbol duration Ts, the parameters FR and FD are the
Doppler frequency shifts, which characterize the effect
of mobility at the relays and receiver nodes, respectively.
We note that these correlation coefficients should have
a magnitude less than unity, i.e. |α|, |β| < 1, to ensure
system stability. The collection of state variables at time

step k is represented by ξj(k) =
[
fT (k) gT

j (k)
]T

which
is an (LM + L)×1 column vector. In light of (43)-(44),
the state equations at time step k are

ξj (k + 1) = Fξj (k) + vj
s(k), ∀j ∈ J (45)

where F = BD(αILM , βIL), and vj
s(k) =

[vf
s(k)

T ,v
gj
s (k)T ]T is the state noise which has a

Gussian distribution with covariance matrix Q = σ2
sI.

Here, the subscript s denotes the state equation. In
(42), the observations are not a linear function of the
channel coefficients, so we need to utilize the non-linear
versions of the KF for CSI estimation. In the following
sub-sections, we specifically consider the use of the
EKF and CKF for overcoming the non-linearity of the
observation equations.

A. Extended Kalman Filtering Approach

The EKF linearizes the nonlinear measurement func-
tions locally using the Taylor series expansion at the cur-
rent best estimate of the state. By proceeding in this way,
Kalman’s original theory can be adapted to nonlinear
systems. The Jacobian matrix of (42), Hj(k) =

∂h
∂ξj(k)

,
is represented as

Hj(k) =

 s⊗ IL 0L

s⊗ gT
j (k − 1)WH

M∑
p=1

spf
T
p (k − 1)WH


(46)

where s =
[
s1, s2, ..., sM

]
and j ∈ J . In this way, the

observation equations could be regarded as

zjm (k) = Hj (k) ξj (k) + vj
m(k) (47)

By using the extended Kalman filtering approach, we
have

ξj (k) = ξj (k − 1) +Ω (k)
(
zjm(k)− zj (k |k − 1)

)
(48)

where Ω (k) is the Kalman gain at time step k. The
predicted measurement and Kalman filter gain are given
by

zj (k |k − 1) = h(αfp (k − 1) , βgj (k − 1)) (49)

Ω (k) = P (k|k − 1)Υk(ξj(k))S(k)
−1 (50)

where Υk(ξj(k)) = HH
j

(
k,FT ξj(k)

)
=

∂h
∂ξj(k)

∣∣
ξj(k)=FT ξj(k) . Introducing index l = k − 1,

the covariance matrices can be obtained from

S(k) = Υk(ξj(l))
HP (k|l)Υk(ξj(l)) +R(l) (51)

P (k|l) = FTP (l|l)F+Q(l) (52)

P(k|k) = ψkP(k|l)ψH
k +Ω(k)R(l)Ω(k)H (53)

where ψk = {I−Ω(k)Υk(ξj(k))
H}. The recursive al-

gorithm for CSI estimation starts with an initial channel
vector estimate ξj(0) with associated covariance matrix
P(0|0), and then proceeds by udpating the channel
vector estimate ξ(k) and related quantities at each time
step k. Although the EKF is popular due to its simplicity,
it suffers from the following limitations:

• It diverges in ‘highly’ nonlinear systems, pointing
to its limited approximation capability.

• It often yields an underestimated error covariance.
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• Its application is limited to differentiable functions.

Because of these drawbacks, we next consider the CKF
method for the purpose of CSI estimation.

B. Cubature Kalman Filter Approach

The CKF method provides an approximation to the
optimal Bayesian filter; it has been shown to attain
a better performance than EKF and the Unscented
Kalman Filter (UKF) [21]. A single iteration of the
CKF algorithm for the CSI estimation problem under
consideration is presented in Algorithm 2. The parameter
n, which denotes the number of cubature points is set
to 5000 in our simulation study.

The worst case complexity of EKF for our estimation
problem is given by O((LM +L)2) [22], and the worst
case complexity of CKF is on the same order as EKF.
In general, the CKF method exhibits faster convergence
towards the optimal solution since it does not need to
calculate the Jacobian of the non-linear functions. We
emphasize that in the current application, the complexity
order of channel estimation is negligible compared to
that of the power allocation problem.

V. MULTIPLE MODELS CHANNEL ESTIMATIONS

In this section, we introduce a channel estimation
method based on the mixture of multiple Kalman filter
models in order to extend the robust beamformer design
to non-stationary environments. Consider a situation
where the statistical properties of the radio environment
vary too rapidly. In this case, the difference between the
measurement vector and its prediction remains large and
the stationary model cannot track the CSI. To overcome
this limitation, we need to employ a modeling approach
that can cover both stationary and non-stationary condi-
tions. In the literature, the Interacting Multiple Models
(IMM) method has been utilized in many applications
involving the interaction of multiple processes with dif-
ferent dynamic behaviors, e.g., maneuvering target track-
ing [31], etc. The IMM algorithm runs several Kalman
filters in parallel, wherein the individual filters are ini-
tialized at each step using a mixture of results from the
previous steps [22]. As seen in Fig. 3, which illustrates
the main processing steps of the IMM algorithm, the
overall state estimation at the output is a mixture of the
individual filter estimates. The IMM algorithm processes
all the models simultaneously and switches between
them according to their updated weights. In effect, this
method resolves the dynamic model uncertainty by using
multiple models simultaneously and sensibly combining
their outputs.

Assume that at each time step, the output of the true
time-varying model may be the result of one among
N possible models with different dynamics (N = 2

Algorithm 2 Single iteration of CKF algorithm for CSI
estimation
For ease of notation, we let l = k − 1. We also indicate the time step index
by means of subscripts (e.g. ξj (k|k) → ξj

k|k).

1: j = 1
2: while j ≤ 2n do
3: Evaluate the cubature points:

χj
l|l = ξl|l +

√
Pl|lζj

where ζj=
√
nej , and {ej}2n−1

j=0 defines a complete symmetric set
of cubature points7.

4: Evaluate the propagated cubature points through the dynamic model:

χj
k|l = Fχj

l|l + vs

5: j = j + 1
6: end while
7: Estimate the predicted state and error covariance matrix:

ξk|l =
1

2n

2n∑
i=1

χi
k|l

Pk|l = 1
2n

2n∑
i=1

((χi
k|l − ξk|l)(χ

i
k|l − ξk|l)

H)

8: i = 1
9: while i ≤ 2n do

10: Form the cubature points:

χi
k|l =

√
Pk|lFζi + ξk|l

11: Propagate cubature points through the measurement model:

Zi
k|l = h(χi

k|l)

12: i = i+ 1
13: end while
14: Estimate the predicted measurement:

z (k|l) =
1

2n

2n∑
i=1

Zi
k|l

15: Estimate the innovations covariance matrix:

Sk = 1
2n

2n∑
i=1

(Zi
k|l − zk|l)(Z

i
k|l − zk|l)

H +Rk

16: Estimate the cross-covariance matrix:

Ck = 1
2n

2n∑
i=1

(χi
k|l − ξk|l)(Z

i
k|l − zk|l)

H

17: Estimate the cubature Kalman gain:

Ωk = CkS
−1
k

18: Estimate the updated state:

ξk|k = ξk|l +Ωk(zm − zk|l)

19: Estimate the error covariance:

Pk|k = Pk|l −ΩkSkΩ
T
k

in our case). A closed-form solution at time step k
requires running Nk permutation of Kalman filters for
each possible history of states, which is not feasible. In
the IMM approach, at time step k, the state estimate is
computed under N ≥ 2 models, with each filter using a

7The cubature points ej can be obtained by permutating and
changing the sign of the generator in all possible ways. For
example, ej ∈ R2 is taken from the following set of points:{[

1
0

]
,

[
0
1

]
,

[
−1
0

]
,

[
0

−1

]}
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Figure 3: Block diagram of a single step of the IMM algorithm for N = 2
interacting models.

different combination of the previous model conditional
estimates. The model switching process is assumed to
follow a Markov chain with known transition probability
matrix [pij ]. Application of the IMM algorithm requires
three components. The first is a set of N Kalman filters,
one for each models or modes of operation. The second
is a probability vector, that contains the probabilities that
the ith model is in effect at the current time step, k.
The third is a transition probability matrix that specifies
how probable it is to jump from model i at time k to
model j at time k + 1. A single iteration of the IMM
filtering method is presented as Algorithm 3. In our
implementation of this algorithm, we set N = 2, where
our aim is to allow for the combination of a stationary
model and a non-stationary one.

VI. PERFORMANCE CONSIDERATIONS

A. Complexity Analysis

In this section, we evaluate the computational com-
plexity of our proposed optimization algorithms and
compare it with that of the non-robust and existing robust
methods. Let us define a mixed conic matrix variable X
as X = [Xq,Xs]

T , where Xq belongs to a quadratic
cone KQ and Xs belongs to a semi-definite cone KS .
Generally, a mixed semi-definite programming (SDP)
and second-order cone programming (SOCP) optimiza-
tion problem for a linear objective function f , can be
formulated as a standard linear conic problem with the
following structure:

min
X

f(X) (54a)

s.t. Ai ◦X+ bi = 0 ∀i = 1, 2, . . .M (54b)

X ∈ KQ ×KS (54c)

where Ai◦X stands for the inner product of matrices Ai

and X. Generally, the worst-case complexity for solving
mixed SD/SOCP using the interior point method (IPM)

Algorithm 3 Single iteration of IMM filter for mixing
stationary and non-stationary models (N = 2)
For ease of notation, we let l = k − 1 and we show the time index by a
subscript (e.g. ξj (k|k) → ξj

k|k).

Input: The previous sufficient statistics
{
ξj
l|l,P

j
l|l, µ

j
l

}N

j=1

Output: The current sufficient statistics
{
ξj
k|k,P

j
k|k, µ

j
k

}N

j=1

1: i = 1, j = 1
2: while i ≤ N do:
3: while j ≤ N do:
4: Mixing:

• Calculate the mixing probabilities µij
l|l as:

µij
l|l =

pjiµ
j
l

N∑
m=1

pliµ
m
l

• Calculate the mixed estimates ξ0i
l|l and covariance P0i

l|l as

ξ0i
l|l =

N∑
j=1

µji
l|lξ

0j
l|l

P0i
l|l =

N∑
j=1

µji
l|lP

0j
l|l + (ξ0j

l|l − ξ0i
l|l)(ξ

0j
l|l − ξ0i

l|l)
H

5: j = j + 1
6: end while
7: Mode Matched Prediction Update: For ith model calculate the

predicted estimate ξi
l|l and the covariance Pi

l|l

ξil|l = Fiξ0il|l

Pi
l|l = FiP0i

l|lF
iT +Ql

8: Mode Matched Measurement Update: For ith model calculate:
• the updated estimate ξi

k|k and covariance Pi
k|k

ξik|k = ξik|l +Ωi
k(z

i
m − zik|l)

Pi
k|k = Pi

k|l −Ωi
kS

i
k

(
Ωi

k

)H
zik|l = Hiξik|l

Si
k = HiPi

k|lH
iH +Rl

Ωi
k = Pi

k|lH
iH(Si

k)
−1.

• the updated mode probability µi
k as

µi
k =

N (zk; z
i
k|k−1

,Si
k)

N∑
j=1

pjiµ
j
k−1

N∑
m=1

(N (zk; z
m
k|l ,S

m
k )

N∑
j=1

pjmµj
m)

9: Output Estimate Calculation: Calculate the overall estimate ξk|k and
covariance Pk|k as

ξk|k =

N∑
i=1

µi
kξ

i
k|k

Pk|k =
N∑
i=1

µi
k(P

i
k|k + (ξik|k − ξk|k )(ξik|k − ξk|k )

H
)

10: i = i+ 1
11: end while
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[32], in terms of required floating point operations
(flops), is given by

O(n′(m2

Nsoc∑
i=1

nsoc
i +m2

Nsd∑
i=1

(nsd
i )

2
+m

Nsd∑
i=1

(nsd
i )

3
+m3) log(1/δ))

(55)
where δ denotes the accuracy of the optimal solution,
n′ denotes the number of iterations, m is the number
of equality constraints, Nsd and Nsoc are the numbers
of SDP and SOCP constraints, respectively and nsd

i

and nsoc
i are the dimensions of the ith SDP cone and

the second order cone, respectively. In Table I, we
compute the values of n′, m, nsoc

i , nsd
i , Nsd, Nsoc of

the problems (19) and (40) and of the optimization
problems in [8], [16], [6], [18], respectively. In order to
obtain the computational complexity of each optimiza-
tion problem, one needs to rewrite it in the standard
form of (54). In order to better illustrate the meaning
of the various component terms presented in Table I,
let us consider a network with L = 15 relay nodes and
M = 3 source-destination pairs, and set the number of
iterations to and the desired accuracy of the optimal
solution to n′ = 10 and δ = 0.1%, respectively. In
Table II, we compare the computational complexity of
different methods for this special choice of parameters.
It is observed from this Table that the complexity of
the proposed AMM method based on (19) is similar
to that of the the non-robust method in [8], due to its
SDP problem structure, while the complexity of our SM
method based on (40) exceeds that of AMM by a small
margin. The proposed methods clearly exhibit the lowest
complexity, and by several orders of magnitudes, when
compared to the worst case method [16], SD/SOCP
method [6] and adaptive approach [18]. We note that
the above complexity analysis only focuses on solving
the optimization problem. The complexity of the channel
estimation should be included as well to obtain the
total complexity. As it is well known, the computational
bottleneck of the EKF estimation method is (53), which
requires O(L3) multiplications (the other formulas in
(47)-(52) can be computed in O(L2)). However, based
on [22], (53) can be replaced with:

P (k|k) = P (k|k − 1)−Ω (k)S (k)ΩH (k) (56)

whose complexity is only O(L2). Similarly, the worst-
case complexity of CKF estimation is on the same order,
i.e. O(L2). Consequently, when compared to the solution
of the optimization problem, with complexity order
O(M2L3.5), the complexity of the channel estimation
is negligible, even for moderate values of M and L.
Finally, due to linear nature of the optimization problems
in (20) or (41), the computational complexity of the
randomization technique is also negligible compared to
the optimization in (19) or (40).

B. Channel Estimation Accuracy

It is well known that the Kalman filter is a Best Linear
Unbiased Estimator (BLUE) [22]. We shall assume that
the unbiasedness property extends to the EKF and CKF,
which is well supported by simulation experiments. Let
us rewrite the observation vectors in (42) in concatenated
form as

zm (k) = h (ξ (k)) + vm(k) (57)

where ξ represents the unknown state vector at time
k. Hence, for a given value of the unknown parameter
vector ξ ≡ ξ(k), we have zm (k)∼ CN (h(ξ),R), where
R denote the covariance matrix of the measurement
noise, assumed to be constant. Under these conditions,
the Fisher information matrix for an unbiased estimator
of ξ can be represented as [22]:

J(ξ) = E{[∂h (ξ)

∂ξ
]HR−1[

∂h(ξ)

∂ξ
]}+ 1

2
Tr(R−1∂R

∂ξ
)2)

(58)
For the problem proposed in Section IV, the Fisher
information matrix is

J (ξ) = HH
ξ R−1Hξ (59)

where Hξ = [∂h(ξ)∂ξ ] is obtained by stacking the matrices
Hj(k) in (46) for j ∈ J . Then, the covariance matrix
of any unbiased estimator of the channel state vectorξ,
denoted as Ĉ (ξ), satisfies

Ĉ (ξ) ⪰ J−1 (ξ) (60)

which sets a lower bound on the state covariance matrix
of our Bayesian estimator [22]. In this work, we employ
the above simplified form of the CRLB based on a
single KF iteration, where the calculations are made by
averaging observed values of the Hξ during steady-state,
i.e, after convergence of the CKF algorithm8. Beyond
the above CRLB derivation, the general convergence
analysis of the proposed algorithms remains very com-
plex because of the intricate and coupled nature of
the joint channel estimation and beamforming system
under study. Some of the methods and theorems pre-
sented in [34] and [35] could be used to derive general
conditions under which local convergence is possible.
However, these theorems are based on assumptions that
are difficult to demonstrate in practice. Nevertheless, this
remains an interesting avenue for future work.

8For the dynamic state-space channel model under consideration,
the CRLB should exhibit a time-varying behavior during the transient
period following the onset of operation, i.e., gradually decreasing
towards its steady-state value as additional observations become
available. In fact, such recursive behavior of the CRLB has been
studied in [33] for the special case of real-valued linear state-
space models; however, the results are not directly applicable to the
complex-valued EKF and CKF considered in this work.
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Table I: Parameters of computational complexity of different methods

parameters n′ m nsoc
i Nsoc nsd

i Nsd

SD/SOCP [6] O
(
L0.5

)
M L2 + 1 M


M 1 ≤ i ≤ M
4LM M + 1 ≤ i ≤ 2M
M 2M + 1 ≤ i ≤ 3M
L i = 3M + 1

3M + 1

Non-Robust [8] O
(
L0.5

)
M 0 0

{
M i = 1
L i = 2

2

Worst case [16] O
(
L0.5

)
M + L L2 5M + 4L

{
M i = 1
L i = 2

2

Adaptive approach [18] O
(
L0.5

)
M 0 0

{
L2 + 1 1 ≤ i ≤ M
L i = M + 1

M + 1

AMM in (19) O
(
L0.5

)
M 0 0

{
M i = 1
L i = 2

2

SM in (40) O
(
L0.5

)
M L2 + 1 M 0 0

Table II: Computational complexity of different methods (in flops)

Different methods SD/SOCP [6] Non-Robust [8] Worst case [16] Adaptive approach [18] AMM in (19) SM in (40)
Computational complexity 1.6× 109 3.7× 105 1.7× 108 6.96× 1010 3.7× 105 4.2× 105

VII. SIMULATION RESULTS

In this section, we present the results of Monte-
Carlo simulations in order to illustrate the merits of our
proposed approaches and compare their performance to
various benchmarks.

A. Methodology

We consider a network with two transmitter-receiver
pairs (M = 2) and L = 20 relays. We make the
following assumptions about the data transmission9: As
indicated in Section II.A, independent complex Rayleigh
flat fading channel gains are employed to model the
various radio links. There is no direct link between
the transmitters and the receivers. The noise variance
is −10 dBw, the source power is 0 dBw and the error
variance of each channel is −20 dB. The true channel
vectors are generated according to model (43)-(44) with
parameters α = β = 0.99, which corresponds to slowly-
varying channels. BPSK modulation is assumed for data
transmission.

Unless otherwise specified, the SINR threshold γj in
(11b) is set to 5dB. To implement the IMM method,
we consider a mixture of two models, referred to as
Model-1 and Model-2 and respectively characterized
with: F(1) = BD(α(1)ILM , β(1)ILM ) and F(2) =
BD(α(2)ILM , β(2)ILM ) where α(1) = β(1) = 0.99,
α(2) = β(2) = 0.9, and the measurements noise matrices
are R1 = σ2

1IL+1 and R2 = σ2
2IL+1 where σ2

1 = −10
dBw, and σ2

2 = 5 dBw. Model-1 indeed corresponds
to the true slowly-varying channel generation model,
while Model-2 corresponds to an incorrect fast-varying

9We do not mention the exact values of operating frequency and
signal bandwidth, as they do not directly affect the conclusions of
our study and may be adjusted in practice as per the specific needs of
an application. While our simulation models target modern 4G and
5G wireless systems operating at higher frequencies, our simulation
setup has been properly normalized so that it does not rely on
specific choices of transmission frequency or signal bandwidth (e.g.,
signals are modeled in terms of their complex baseband analytic
representations, spectral efficiency is normalized by the system
bandwidth, etc.).

channel model. The matrix of transition probabilities for

the IMM is chosen as [pij ] =

[
0.98 0.02
0.02 0.98

]
, with initial

model probabilities [0.9 0.1].
The following methods are compared:
• SDP/SOCP: The robust method in [6] which is a

combination of SDP and SOCP problems.
• Full-CSI: The non-robust method in [8] which uses

the true channel coefficients.
• Adaptive: The robust adaptive approach in [18].
• SM: Stochastic beamforming method in (40).
• AMM: Approximate mean method in (19).

In our experiment, we compare the performance of the
EKF, CKF, IMM-EKF and IMM- CKF methods for
channel estimation when used in connection with the
proposed AMM and SM robust beamforming methods.
For IMM EKF and IMM CKF, we use the parameter
settings described above for Model-1 and Model-2. For
EKF and CKF, we consider two different implemen-
tations of these algorithms respectively based on the
parameters settings of (true) Model-1 and (incorrect)
Model-2; we refer to the corresponding implementations
as EKF/CKF Model-i, where i = 1, 2.

B. Evaluation

In Fig. 4, we plot the minimum transmission power
required at the relays versus the target SINR. It can be
seen that, as the measurement error covariance increases,
more power is required. We first note that for both
proposed beamforming methods, the use of CKF for
channel tracking outperforms the EKF. Moreover, both
proposed methods outperform the methods in [18] and
[6] in terms of power consumption and feasibility region.
This figure also shows that the performance of the
proposed real-time channel estimation using CKF for
both of beamforming methods is comparable with that
of the Full-CSI method in [8]. As indicated earlier, both
robust optimization problems formulated in (19) and (40)
are NP hard and cannot be solved without resorting
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to approximations. Nevertheless, the above simulation
results provide strong support for our proposed sub-
optimal solution approaches, suggesting that they pro-
vide good approximations to the (unattainable) optimum
solutions of the original NP problems.

The results of root mean square error (RMSE) for
different channel estimation methods are compared in
Fig. 5 and 6. We used the following definition for RMSE
for channel estimation:

RMSE = lim
k→∞

1

M

M∑
j=1

√
E(∥ξj(k)− ξ̂j(k)∥22) (61)

where the ensemble average E is obtained by averaging
over multiple channel realizations. We only use AMM
for this comparison, but similar results are obtained
with SM. In Fig. 5, we plot the RMSE for different
approaches and channel models as a function of the KF
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error

2
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E
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Figure 6: RMSE versus the measurement error level

iteration number. It is observed that he best results are
obtained with CKF Model-1, closely followed by EKF
Model 1. This is plausible since in this case, the parame-
ters of the CKF and EKF trackers are perfectly matched
to those of the true channel. Conversely, the worst
results are obtained with CKF Model-2 and EKF Model-
2 (in fact, the result for the latter algorithm are not
shown as the filter diverges). In this case, the mismatch
between the true and assumed model parameters results
in significant deviations between the estimated and true
channel state vectors. Interestingly, the RMSE for the
proposed IMM-CKF and IMM-EKF methods achieves
a useful compromise between the performance of the
CKF Model-1 and CKF Model-2 filters (with IMM-CKF
showing slightly better performance than IMM-EKF).
This shows that by mixing multiple models for slowly
and rapidly varying channels, IMM can effectively avoid
severe performance degradations due to model mis-
match. The steady-state CRLB calculated in [18] is also
shown as a dashed horizontal line in this figure. We can
see that the CKF Model-1, EKF Model-1, IMM-CKF
and IMM-EKF all reaches the CRLB as the number
of iterations increases, illustrating the efficiency of the
proposed methods. channel model (Model-1), and IMM-
CKF achieve the CRLB which shows the efficiency of
the proposed method. However, the CKF Model-2 does
not reach the CRLB due to model mismatch. It is indeed
quite remarkable that the IMM allows convergence to the
CRLB.

Fig. 6 evaluates the performance of the different
channel estimation methods versus measurement error
level. As shown in this figure, CKF Model-1 whose
parameters are matched to the true model achieves the
best performance, closely followed by IMM-CKF. For
larger values of measurement errors, the performance
of EKF Model-1 and IMM EKF deviate in a more
pronounced way from the CRLB. The deleterious effects
of severe parameter mismatch are clearly exemplified by
the overall poor performance of CKF Model-2. The re-
sults for EKF Model-2 are not shown since the algorithm
diverges. These results further demonstrate the benefits
of combining multiple state-space models through the
IMM framework.

In Fig. 7, we plot the spectral efficiency (SE) of the
proposed methods as a function of the minimum relay
transmission power. Based on the definition in [36], the
SE for a Gaussian channel can be expressed as10:

SE =
1

W

M∑
j=1

Dj =

M∑
j=1

log (1 + SINRj) (62)

where Dj and W denote the data rate at the jth receiver
and the system bandwidth, respectively. The results show

10For a channel with bandwidth W , the corresponding channel
capacity C can be obtained as C = WSE.
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that the SE for AMM CKF comes very close to that
of the Full CSI approach over a wide range of relay
transmission powers. For low to moderate levels of
transmission power, the other approaches also exhibit
similar SE levels. Moreover, Table III compares the ratio
of system throughput to total power consumption for the
different system configuration under study. In Fig. 8, we

Table III: Comparing the ratio of system throughput to total relay power
consumption

PT (dBw) SM-EKF SM-CKF AMM-EKF AMM-CKF Full-CSI
-3 -0.50 -0.79 -1.05 -1.20 -1.29
-2 -0.81 -1.26 -1.72 -2.08 -2.32

compare AMM and SM methods by using CKF as a CSI
estimator by using BER metric. As the result of this
comparison shows, both of the proposed optimization
approaches are almost identical with Full CSI method for
low and moderate minimum relays transmission power.

VIII. CONCLUSION

In this paper, we proposed different methods for joint
channel estimation and robust beamforming in a peer-to-
peer communications system using a network of relays.
Our methods were based on EKF and CKF for esti-
mating the transmitter-relay and relay-receiver channels.

The estimated CSI were used through a feedback mech-
anism for solving two robust beamforming problems,
wherein the aim is to minimize the total transmission
power of the relays subject to SINR constraint at each
of the receiver nodes. Moreover, the IMM approach
for mixing the non-stationary and stationary channel
models was employed. Through numerical simulations,
the proposed recursive CSI estimation methods were
shown to be efficient, i.e., unbiased and converging to the
steady-state. Furthermore, our results confirm the better
performance of the proposed robust relay beamforming
design algorithms compared to existing methods in terms
of relevant transmission metrics, including relay power
consumption and spectral efficiency.

While our approach assumes narrow-band flat fading
channels, it can be extended to wide-band transmissions
by applying it independently to individual sub-carriers
of a multi-carrier system. However, this may require
additional modeling assumptions (related to, e.g., relay
power allocation or use of KF-based tracking across
multiple subbands) and hence, further studies are needed
to characterize the potential merits of this approach.
Finally, we note that transmission delays within the
feedback loop between the relays and the CPU will
introduce additional network latency. In this regard,
solving the problem in a distributed way instead of using
a CPU would reduce network latency, at the cost of
possible loss in performance. This remains an interesting
avenue for future studies.

APPENDIX I: DEFINITION OF MATRICES

Let F̄p = diag
(
f̄p
)
, Ḡj = diag

(
ḡj

)
, H̄p

j =

diag
(
h̄p
j

)
, X = wwH , W = WWH , Hp

j =

h̄p
j h̄

p
j
H , where j, p ∈ J and j ̸= p. The matrices

Qf ,Qg,Qf ,g,
⌢

Qf ,g, cf , cg, and scalar dj which have
been derived in [6], are defined as:

Qf = BD([Qf ]11, [Qf ]22, . . . , [Qf ]jj , . . . , [Qf ]MM )
(63)

[Qf ]jj = Pj(ḠjXḠ
H
j )− γj

M∑
p ̸=j

PpḠpXḠH
p

Qgj
=

1

M
BD(Q′

gj
,Q′

gj
, . . . ,Q′

gj
) (64)

Q′
gj

= PjF̄
H
j XF̄j − γjσ

2
xW − γj

M∑
p ̸=j

PpF̄
H
p XF̄p

Qf ,g=BD
(
[Qf ,g]11, [Qf ,g]22, . . . , [Qf ,g]MM

)
(65)

[Qf ,g]jj = PjF̄
H
j XḠj − γj

M∑
p ̸=j

PpF̄
H
p XḠp

⌢

Q
H

f ,g = BD([
⌢

Q
H

f ,g]11, [
⌢

Q
H

f ,g]22, . . . , [
⌢

Q
H

f ,g]MM
) (66)

[
⌢

Q
H

f ,g]jj = Pjdiag(w)HH̄j
jdiag(w)−γj

M∑
p ̸=j

PpW
HH̄p

pW
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cf = BD[[cf ]
H
11 . . . [cf ]

H
jj . . . [cf ]

H
MM] (67)

[cf ]
H
jj = Pj(h̄

j
j)

HXḠj − γi

M∑
p ̸=j

Pj

(
h̄p
j

)H
XḠj

cg =
1

M
(PjF

H
j Xh̄

j
j − γj

M∑
p ̸=j

PpF
H
p Xh̄

p
j−γjσ

2
xWḡj)

(68)

dj=wHPjHj
jw−γjσ

2
xḡ

H
j Wḡj−γjwH

M∑
p ̸=j

PpHp
jw (69)

APPENDIX II: DERIVATION OF MATRIX Uj

In this section, we derive the expression of the matrix
Uj . The following Lemma is assumed.

Theorem 2. Let A ∈ Rp×q, B ∈ Rq×r, C ∈ Rr×s,
D ∈ Rs×t be matrices which jointly have a multivariate
Gaussian distribution. Then the following result holds:

E{ABCD} = E{AB}E{CD}

+
r∑

k=1

E{eTkC⊗A}E{D⊗Bek}

+E{AE{BC}D} − 2E{A}E{B}E{C}E{D} (70)

where ek denote a vector having element one at the kth
position and zero elsewhere. For r = 1 the mentioned
expression is simplified to:

E{ABCD}=E{AB}E{CD}+E{C⊗A}E{D⊗B}
+E{AE{BC}D}−2E{A}E{B}E{C}E{D} (71)

Proof. The proof of this theorem can be found in
[37]. Note that A,B,C,D may consist of elements
which are complex-valued variables. The assumption
of Gaussianity is maintained. This means that the real
and imaginary parts of the entries of A,B,C,D are
assumed to be jointly Gaussian distributed. Under these
conditions, Theorem 2 continues to hold for complex
A,B,C,D matrices. This claim has also been proved
in [37].

By applying (71) with A = ∆HH
j Q̃

1

2 , B = AH ,
C = A, and D = AH , the first term of (34) can be
written as:

E{∆HH
j Q̃∆Hj∆HH

j Q̃∆Hj}
= Tr(E{∆HH

j Q̃∆Hj}E{∆HH
j Q̃∆Hj})

+Tr(E{∆HH
j Q̃

1

2 ⊗∆HH
j Q̃

1

2 }E{∆HjQ̃
1

2 ⊗∆HjQ̃
1

2 })
+Tr(E{∆HH

j Q̃ΣQ̃∆Hj}) (72)

Let us now focus on simplifying the term
E{∆HH

j Q̃∆Hj}; other terms can be simplified
by following a similar procedure.

E{∆HH
j Q̃∆Hj} = Tr(E{∆HH

j Q̃∆Hj}) (73)

= Tr(E{∆Hj∆HH
j }Q̃)

= Tr(ΣQ̃)

= Tr
(
σ2
fRI + 2σ2

fgRIQ + σ2
gRQ

)
= Tr

(
σ2
fQf + σ2

gQg

)
= σ2

fvec
H (X) vec(ϕ1)

+
σ2
g

M
vecH (X) vec(ϕ2)

The matrix Uj is then calculated as

Uj
∆
= δ1 + δ2 + δ3 + δ4 + δ5 (74)

where

δ1
∆
= 2σ4

fvec(ϕ
1)vecH(ϕ1) (75)

δ2
∆
= 2σ4

gvec(ϕ
2)vecH(ϕ2) (76)

δ3
∆
= 4σ2

fσ
2
gvec(ϕ

1)vecH(ϕ2) (77)

δ4
∆
= σ4

fvec(ϕ
3)vecH(ϕ3) (78)

δ5
∆
=

σ4
g

M2
vec(ϕ4)vecH(ϕ4) (79)

and

ϕ1 ∆
=

M∑
j=1

PjḠjḠ
H
j − γj

M∑
p ̸=j

PpḠpḠ
H
p (80)

ϕ2 ∆
=

M∑
j=1

PjF̄jF̄
H
j −γjσ

2
xdiag (I)−γj

M∑
p ̸=j

PpF̄pF̄
H
p (81)

ϕ3 ∆
=

M∑
j=1

PjḠj(h̄
j
j)

H − γi

M∑
p ̸=j

PjḠj

(
h̄p
j

)H
(82)

ϕ4 ∆
=

M∑
j=1

Pjh̄
j
jF

H
j−γj

M∑
p ̸=j

Pph̄
p
jF

H
p −γjσ2

xdiag(I)ḡj (83)
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