
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 2, FEBRUARY 2010 641

Adaptive Linearly Constrained
Minimum Variance Beamforming for Multiuser
Cooperative Relaying Using the Kalman Filter

Amr El-Keyi and Benoı̂t Champagne

Abstract—In this paper, we consider a wireless communication
scenario with multiple source-destination pairs communicating
through several cooperative amplify-and-forward relay termi-
nals. The relays are equipped with multiple antennas that receive
the source signals and transmit them to the destination nodes. We
develop two iterative relay beamforming algorithms that can be
applied in real-time. In both algorithms, the relay beamforming
matrices are jointly designed by minimizing the received power
at all the destination nodes while preserving the desired signal
at each destination. The first algorithm requires the existence
of a local processing center that computes the beamforming
coefficients of all the relays. In the second algorithm, each relay
can compute its beamforming coefficients locally with the help
of some common information that is broadcasted from the other
relays. This is achieved at the expense of enforcing the desired
signal preservation constraints non-cooperatively. We provide
two extensions of the proposed algorithms that allow the relays
to control their transmission power and to modify the quality
of service provided to different sources. Simulation results are
presented validating the ability of the proposed algorithms to
perform their beamforming tasks efficiently and to track rapid
changes in the operating environment.

Index Terms—Adaptive signal processing, cooperative relay
beamforming, Kalman filtering.

I. INTRODUCTION

COOPERATIVE relaying systems have received consid-
erable attention in the recent years, see [1]–[3], and the

references therein. The basic idea of cooperative relaying is
to introduce intermediate nodes (relays) that collaboratively
forward the received data from the source to the destination.
Cooperative relaying brings several advantages to wireless
communication systems [3]. For instance, it increases the
range of communication [4] and provides spatial diversity
which can be exploited by applying distributed space-time
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coding [5]. Cooperative relaying can also be used to pro-
vide spatial multiplexing in multiuser communication systems
where multiple signal sources are targeting one or more
destination nodes [1].

Many noncooperative multiuser zero-forcing relay beam-
forming algorithms have appeared in the literature, e.g., [6]
and [7]. Multiuser cooperative zero-forcing relay beamforming
was also proposed in [8]. All these relaying techniques use
beamforming to eliminate the interference between different
source-destination pairs. They require perfect knowledge of all
the source-relay and relay-destination channels. This channel
state information can be estimated using orthogonal pilot
sequences transmitted from all the source and destination
nodes. However, zero-forcing beamforming is known to be
suboptimal when the signal-to-noise ratio (SNR) of the sources
is relatively low as it results in increased noise power at the
destination nodes [9].

In [10], we have developed a multiuser cooperative relay
beamforming algorithm for wireless communication networks.
In this algorithm, the beamforming matrices of the relay
terminals are jointly designed such that both the noise received
at each destination node and the interference caused by the
sources not targeting this node are minimized. Each source
signal is preserved at its targeted destination node via linear
constraints. The resulting optimization problem was formu-
lated as a convex second-order cone program (SOCP) that
could be efficiently solved with polynomial complexity using
interior point methods [11], [12]. However, the shortcoming
of the algorithm in [10], and also of the cooperative zero-
forcing beamforming algorithm in [8], is that it does not have
a direct online implementation. Hence, every time one of the
source-relay or relay-destination channels changes, the relay
beamforming matrices have to be recomputed. This might
not be computationally efficient, specially in nonstationary
environments, e.g., with mobile signal sources.

In this paper, we develop iterative beamforming algorithms
for cooperative amplify-and-forward MIMO-relaying wireless
systems with multiple source-destination pairs. We assume
that the relays can estimate their relay-destination channels
with enough accuracy, for example, through training1. This
assumption is well justified in e.g., outdoor wireless commu-
nication scenarios where the relays and the destination base
stations are not mobile. The relay-destination channel informa-

1See also our related work on cooperative training-based adaptive beam-
forming for multiuser relaying wireless systems in [13].
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tion can be obtained using channel reciprocity in time division
multiple access systems or by feedback from the destination
nodes. We also assume that the relays can estimate and track
the source-relay channels [14], [15]. We develop two adaptive
relay beamforming algorithms using linearly constrained min-
imum variance (LCMV) beamforming. In these algorithms,
the received power at all the destination nodes is minimized
subject to linear constraints on the relay beamforming matrices
[16]. These constraints are used to prevent the cancellation of
the desired signal at each destination node. As a result, the
sum of the interference and noise forwarded by the relays
to the destination nodes is minimized [17]. The proposed
beamforming algorithms can be applied in real time using
Kalman filtering [18]. In both algorithms, we use a state-
space modelling approach to solve the underlying LCMV
optimization problem similar to the approach used in [19].

In the first algorithm, we assume the existence of a local
processing center that is wired to the relays. The processing
center receives all the required data from the relays, computes
the beamforming coefficients, and feeds them back to the
relays. This centralized algorithm requires a considerable
amount of data exchange between the processing center and
the relays every time the relay beamforming matrices are
updated. In the second algorithm, each relay can estimate
its beamforming coefficients locally using its received data,
its local channel estimates, and some information that is
broadcasted from the other relays. The relay beamforming
matrices are designed such that they cooperatively minimize
the received power at each destination node. However, in order
to allow the decentralized computation of the beamforming
coefficients, we impose the signal preservation constraints
non-cooperatively, i.e., each relay beamformer is constrained
such that it preserves the desired component of the received
signal at each destination node due to its transmission only. In
contrast, in the centralized beamforming algorithm, the desired
signal component received at each destination node due to the
aggregate transmission of all the relays is preserved. Hence,
the distributed relay beamforming algorithm has fewer degrees
of freedom for interference suppression than those available
in the centralized algorithm. We also present two extensions
of the proposed algorithms that allow the relays to control
their transmission power and to modify the quality of service
(QoS) provided to different sources. We provide numerical
simulations that validate the efficacy of the proposed algo-
rithms and their ability to track rapid changes in the operating
environment.

The remainder of this paper is organized as follows. In
Section II, we present the signal model and formulate the mul-
tiuser relay beamforming problem. Sections III and IV present
the proposed centralized and decentralized beamforming algo-
rithms, respectively. Section V contains the power control and
QoS modification algorithms. Numerical simulation results are
presented in Section VI. Finally, the paper is concluded in
Section VII.

II. PROBLEM FORMULATION

We consider a wireless communication scenario as depicted
in Fig. 1 with 𝐽 sources communicating with 𝐽 destination
nodes through 𝐾 relay terminals, where the 𝑗th source is

Fig. 1. System model.

targeting the 𝑗th destination node only. We assume that the
𝑘th relay is equipped with an 𝑚𝑘-element antenna array that
is used for receiving from the sources and transmitting to the
destination nodes. The relays operate in half duplex mode, i.e.,
we consider a relaying strategy that uses a two-hop relaying
protocol in which signal reception and transmission at the
relays are time-division duplexed. At the 𝑛th time instant,
communication between the source and destination nodes
occurs in two phases. In the first phase, the sources forward
their data to the relays, and in the second phase, the relays
transmit the processed data to the destination nodes. Let 𝒉(𝑗)

𝑘

denote the 𝑚𝑘×1 vector containing the channel coefficients
(including the path loss) from the 𝑗th source to the 𝑘th relay.
The 𝑚𝑘 × 1 received signal vector at the 𝑘th relay terminal
after the first phase of the 𝑛th time instant can be written as

𝒙𝑘(𝑛) =
𝐽∑

𝑗=1

√
𝑃𝑗𝒉

(𝑗)
𝑘 𝑠𝑗(𝑛) + 𝒏(r)

𝑘 (𝑛) (1)

where 𝑠𝑗(𝑛) is the unit-power signal transmitted by the 𝑗th
source, 𝑃𝑗 is the transmission power of the 𝑗th source, 𝒏(r)

𝑘 (𝑛)
is the 𝑚𝑘 × 1 vector of white Gaussian noise with zero-mean
and covariance matrix 𝜎(r)2

𝑘 𝑰 , and (⋅)(r)𝑘 refers to the 𝑘th relay
terminal.

The received signal vector by the 𝑘th relay at the 𝑛th time
instant is linearly processed by the 𝑚𝑘 × 𝑚𝑘 beamforming
matrix 𝑾 𝑘(𝑛) and then transmitted to the destination nodes.
Note that we consider an amplify-and-forward relaying sce-
nario, and hence, the relays do not need to decode or separate
the data streams of the sources.

In this work, we assume that each of the 𝐽 destination
nodes is equipped with a single antenna2. Let 𝒈

(𝑗)
𝑘 be the

𝑚𝑘×1 vector containing the complex conjugate of the channel
coefficients from the 𝑘th relay to the 𝑗th destination node
(targeted by the 𝑗th source). Therefore, we can write the

2The extension to the case of multiple antenna destinations where multiple
sources are targeting the same destination node will be considered in our
future work. In this case, the relay beamforming matrices and the destination
receive beamformers have to be jointly designed.
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received signal at the 𝑗th destination after the second phase
of the 𝑛th time instant as

𝑦𝑗(𝑛) =

𝐾∑
𝑘=1

𝒈
(𝑗)𝐻

𝑘 𝑾𝐻
𝑘 (𝑛)𝒙𝑘(𝑛) + 𝑛(d)

𝑗 (𝑛) (2)

where 𝑛(d)
𝑗 (𝑛) is the white Gaussian noise with zero-mean

and variance 𝜎(d)2

𝑗 induced at the 𝑗th destination node, (⋅)(d)
𝑗

refers to the 𝑗th destination node, and (⋅)𝑇 and (⋅)𝐻 denote
the transpose and Hermitian transpose, respectively.

The function of the relay beamforming matrices is to deliver
each of the 𝐽 source signals to its destination with minimum
noise and interference from the other sources. We define the
received signal to interference-plus-noise ratio (SINR) at the
𝑗th destination node as the ratio between the desired signal
power and the total power of interference (caused by the
sources not targeting the 𝑗th destination) and noise (both
forwarded by the relays and generated at the destination
nodes). Equation (3) at the bottom of this page provides an
expression for the received SINR at the 𝑗th destination.

For a single source-destination pair, maximizing the re-
ceived SINR at the destination can be achieved using LCMV
optimization, in which we constrain the numerator and mini-
mize the denominator of (3). In this paper, we will adopt an
LCMV design approach for the relay beamforming problem
with multiple source-destination pairs. We impose the follow-
ing linear constraints on the relay beamforming matrices at
every time instant

𝐾∑
𝑘=1

𝒈
(𝑗)𝐻

𝑘 𝑾𝐻
𝑘 (𝑛)𝒉

(𝑗)
𝑘 = 1 ∀𝑗 = 1, . . . , 𝐽. (4)

The above constraints have the effect of preserving the desired
component of the received signal at the destination nodes.
They are commonly referred to as signal preservation con-
straints [20].

In [10], we have presented a cooperative beamforming
algorithm that employs the constraints in (4) while minimizing
both the interference power received at the destination nodes
and the power of the noise forwarded by the relays to the desti-
nations. For a given set of source-relay channels

{
𝒉
(𝑗)
𝑘

}
𝑘,𝑗

and

relay-destination channels
{
𝒈
(𝑗)
𝑘

}
𝑘,𝑗

, this algorithm calculates
the beamforming coefficients {𝑾 𝑘}𝑘 that solve

min
{𝑾 𝑘}𝐾

𝑘=1

𝐽∑
𝑗=1

∑
𝑖∕=𝑗

𝑃𝑖

∣∣∣
𝐾∑

𝑘=1

𝒈
(𝑗)𝐻

𝑘 𝑾𝐻
𝑘 𝒉

(𝑖)
𝑘

∣∣∣2

+
𝐽∑

𝑗=1

𝐾∑
𝑘=1

𝜎
(𝑟)2

𝑘

∥∥𝑾 𝑘𝒈
(𝑗)
𝑘

∥∥2

s.t.
𝐾∑

𝑘=1

𝒈
(𝑗)𝐻

𝑘 𝑾𝐻
𝑘 𝒉

(𝑗)
𝑘 = 1 ∀𝑗 = 1, . . . , 𝐽. (5)

The above optimization problem was formulated as an SOCP
that can be efficiently solved with polynomial complexity

using interior point methods with a worst-case computational
load of 𝒪

(
𝐽

3
2 (𝑀 + 𝐽)(𝑀2 + 𝐽)2

)
where 𝑀 =

∑
𝑘 𝑚𝑘

is the total number of relay antennas [10]–[12]. One of the
advantages of this formulation is that any convex constraints
can be easily incorporated into the problem. Examples of such
constraints include power constraints on the relay terminals
and QoS constraints on the received SINR at the destination
nodes [21]. However, the shortcoming of the algorithm in
[10], is that it does not have a direct online implementa-
tion. Hence, every time one of the source-relay or relay-
destination channels changes, the beamforming matrices have
to be recomputed. This might not be efficient, specially in
nonstationary environments.

In this paper, we present two adaptive relay beamforming
algorithms that can be implemented in real-time. We design
the relay beamforming matrices such that the received power
at the 𝐽 destination nodes is minimized subject to the signal
preservation constraints in (4). This is equivalent to minimiz-
ing, under the same constraints, the interference and noise
power forwarded by the relays to the destination nodes [20],
i.e., the denominator of (3) is minimized. Thus, we can write
the relay beamforming problem at the 𝑛th time instant as

min
{𝑾 𝑘(𝑛)}𝐾

𝑘=1

𝐽∑
𝑗=1

∣∣∣∣∣
𝐾∑

𝑘=1

𝒈
(𝑗)𝐻

𝑘 𝑾𝐻
𝑘 (𝑛)𝒙𝑘(𝑛)

∣∣∣∣∣
2

s.t.
𝐾∑

𝑘=1

𝒈
(𝑗)𝐻

𝑘 𝑾𝐻
𝑘 (𝑛)𝒉

(𝑗)
𝑘 = 1 ∀𝑗 = 1, . . . , 𝐽. (6)

One of the advantages of the above problem formulation
is that it allows the development of real-time adaptive relay
beamforming algorithms. For this purpose, it is convenient
to reformulate (6) more compactly as follows. Let 𝒘𝑘(𝑛)=
vec {𝑾 𝑘(𝑛)} where vec {⋅} is the vectorization operator that
stacks the columns of a matrix on top of one another. Using
the matrix identity vec {𝑨𝑩𝑪} = (𝑪𝑇 ⊗𝑨)vec {𝑩} where
⊗ denotes the Kronecker product of two matrices, we can
write the relay beamforming design problem in (6) as

min
{𝒘𝑘(𝑛)}𝐾

𝑘=1

𝐽∑
𝑗=1

∣∣∣∣∣
𝐾∑

𝑘=1

𝒂
(𝑗)𝑇

𝑘 (𝑛)𝒘𝑘(𝑛)

∣∣∣∣∣
2

s.t.
𝐾∑

𝑘=1

𝑪𝐻
𝑘 𝒘𝑘(𝑛) = 1𝐽 . (7)

where the 𝑚2
𝑘 × 1 vector 𝒂(𝑗)

𝑘 (𝑛) = 𝒈
(𝑗)
𝑘 ⊗𝒙∗

𝑘(𝑛), the 𝑚2
𝑘 × 𝐽

matrix 𝑪𝑘 =
[
𝒄
(1)
𝑘 , . . . , 𝒄

(𝐽)
𝑘

]
, 𝒄(𝑗)𝑘 = 𝒈

(𝑗)∗
𝑘 ⊗ 𝒉

(𝑗)
𝑘 , 1𝐽 is the

𝐽×1 vector containing ones, and (⋅)∗ denotes the complex
conjugate operator. Throughout this work, we assume that
each relay can estimate its relay-destination channels and
the channels from the desired sources. Therefore, the 𝑘th
relay terminal can compute the vectors

{
𝒂
(𝑗)
𝑘 (𝑛)

}𝐽

𝑗=1
using

its knowledge of the channel vectors of the destination nodes

SINR𝑗(𝑛) =
𝑃𝑗

∣∣∑
𝑘 𝒈

(𝑗)𝐻

𝑘 𝑾𝐻
𝑘 (𝑛)𝒉

(𝑗)
𝑘

∣∣2∑
𝑖∕=𝑗 𝑃𝑖

∣∣∑
𝑘 𝒈

(𝑗)𝐻

𝑘 𝑾𝐻
𝑘 (𝑛)𝒉

(𝑖)
𝑘

∣∣2 +∑
𝑘 𝜎

(𝑟)2

𝑘

∥∥𝑾 𝑘(𝑛)𝒈
(𝑗)
𝑘

∥∥2
+ 𝜎(d)2

𝑗

. (3)
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and the received data vector at the 𝑛th time instant. It can
also compute the matrix 𝑪𝑘 using its estimate of the source-
relay and relay-destination channels. In the next two sections,
we will develop two adaptive algorithms that can be used to
estimate the beamforming matrices of the relays iteratively.

III. CENTRALIZED ADAPTIVE BEAMFORMING

In this section, we derive an adaptive algorithm to solve the
relay beamforming problem in (7). We assume the existence
of a local processing center that is connected to all the relays.
The relays send their estimates of the source and destination
channels to the processing center. Also, at the 𝑛th time instant,
each relay transmits its received data vector 𝒙𝑘(𝑛) to the
processing center. The processing center then computes the
relay beamforming matrices and feeds them back to the relays.

Let us define the (
∑

𝑘 𝑚
2
𝑘)×1 stacked beamforming vector

at the 𝑛th time instant as 𝒘(𝑛) = [𝒘𝑇
1 (𝑛), . . . ,𝒘

𝑇
𝐾(𝑛)]𝑇 . We

can write the problem in (7) as

min
𝒘(𝑛)

𝐽∑
𝑗=1

∣∣∣𝒂(𝑗)𝑇(𝑛)𝒘(𝑛)
∣∣∣2 s.t. 𝑪𝐻𝒘(𝑛) = 1𝐽 (8)

where 𝒂(𝑗)(𝑛)=
[
𝒂
(𝑗)𝑇

1 (𝑛), . . . ,𝒂
(𝑗)𝑇

𝐾 (𝑛)
]𝑇

and the
∑

𝑘 𝑚
2
𝑘×𝐽

matrix 𝑪 =
[
𝑪𝐻

1 , . . . ,𝑪𝐻
𝐾

]𝐻
which is assumed to be

full row-rank. We start by eliminating the linear equality
constraints in (8) using the equivalent generalized sidelobe
canceller implementation of the LCMV algorithm [22], [23].
Let 𝒘(𝑛) = 𝑵𝒗(𝑛) +𝒘0, where the columns of the matrix
𝑵 span the null space of the matrix 𝑪 , i.e., 𝑪𝐻𝑵 = 0, the
(
∑

𝑘 𝑚
2
𝑘− 𝐽)× 1 vector 𝒗(𝑛) is the new design vector at the

𝑛th time instant, and 𝒘0 = 𝑪
(
𝑪𝐻𝑪

)−1

1𝐽 . Therefore, we
can write the beamforming design problem in (8) as

min
𝒗(𝑛)

𝐽∑
𝑗=1

∣∣∣𝒂(𝑗)𝑇(𝑛) (𝑵𝒗(𝑛) +𝒘0)
∣∣∣2 . (9)

We will use a state-space modelling approach to minimize
the cost function in (9) similar to that used in [19]. We can
write the process equation of the state-space model describing
the relay beamforming design problem as

𝒗(𝑛+ 1) = 𝒗(𝑛) + 𝒏𝑣(𝑛) (10)

where the
(∑

𝑘 𝑚
2
𝑘 − 𝐽

)×1 vector 𝒗(𝑛) is the state vector and
𝒏𝑣(𝑛) is the process noise. The process noise allows tracking
of the beamforming vector in nonstationary environments
and is assumed to be white Gaussian with zero-mean and
covariance 𝑸 = 𝜎2

𝑣𝑰 .
The measurement equation associated with (10) is given by

𝒛(𝑛) = 𝑩(𝑛)𝒗(𝑛) + 𝒏𝑚(𝑛) (11)

where the 𝐽×1 measurement vector 𝒛(𝑛) is given by

𝒛(𝑛) = [−𝒂(1)𝑇(𝑛)𝒘0, . . . ,−𝒂(𝐽)𝑇(𝑛)𝒘0]
𝑇 , (12)

and the 𝐽 × (∑
𝑘 𝑚

2
𝑘 − 𝐽

)
measurement matrix

𝑩(𝑛)=
[
𝑵𝑇𝒂(1)(𝑛) . . . 𝑵𝑇𝒂(𝐽)(𝑛)

]𝑇
. (13)

In the above state-space model, the 𝐽×1 vector 𝒏𝑚(𝑛) is the
measurement noise and is assumed to be white Gaussian with
zero-mean and covariance 𝑹 = diag

{
𝜎2
𝑚,1, . . . , 𝜎

2
𝑚,𝐽

}
and

independent of the process noise.
Based on the above state-space model, a state estimator,

e.g., the Kalman filter, can be used to estimate and track
the design vector 𝒗(𝑛). The estimator will yield a vector
that minimizes the mean square values of the components of
the measurement noise, i.e., the noise and interference power
received at the 𝐽 destination nodes. Hence, the cost function
in (9) will be minimized. The parameters of the state-space
model should be chosen as follows. The process noise variance
𝜎2
𝑣 should be selected to reflect the degree of nonstationarity

of the environment. For example, setting 𝜎2
𝑣 = 10−6 means

that we expect each component of the vector 𝒗(𝑛) to change
by the order of 10−3 every time instant. Also, the value of
𝜎2
𝑚,𝑗 at the 𝑛th time instant can be calculated as the mean

square value of the 𝑚th component of the vector 𝒏𝑚(𝑛), i.e.,

𝜎2
𝑚,𝑗(𝑛) = E

{∣∣∣𝒂(𝑗)𝑇(𝑛) (𝑵𝒗(𝑛) +𝒘0)
∣∣∣2
}

= E

⎧⎨
⎩
∣∣∣∣∣
𝐾∑

𝑘=1

𝒈
(𝑗)𝐻

𝑘 𝑾𝐻
𝑘 (𝑛)𝒙𝑘(𝑛)

∣∣∣∣∣
2
⎫⎬
⎭ (14)

≈ 𝑃𝑗 +

𝐾∑
𝑘=1

𝜎(r)2

𝑘 𝒈
(𝑗)𝐻

𝑘 𝑾𝐻
𝑘 (𝑛)𝑾 𝑘(𝑛)𝒈

(𝑗)
𝑘 (15)

where E{⋅} denotes the statistical expectation and the approxi-
mation in (15) comes from the assumption that the interference
from the sources that are not targeting the 𝑗th destination node
is effectively blocked by the relay beamforming matrices. Note
that the expression in (15) requires knowledge of the optimum
beamforming matrices {𝑾 𝑘(𝑛)}𝐾𝑘=1 at every time instant.
Such information may not available in practice. However, it
will be shown through numerical simulations that the Kalman
filtering algorithm is not very sensitive to the choice of the
values of the parameters

{
𝜎2
𝑚,𝑗

}𝐽

𝑗=1
. Hence, satisfactory per-

formance can still be obtained over a wide range of selection
of these parameters.

The recursion for the estimated weight vector starts with an
initial random weight vector estimate �̂�(0) together with its
associated covariance 𝑷 (0∣0) = 𝑰 . The weight vector estimate
is updated through

�̂�(𝑛) = �̂�(𝑛− 1) +𝑮(𝑛)
(
𝒛(𝑛)−𝑩(𝑛)�̂�(𝑛− 1)

)
(16)

where �̂�(𝑛) is the state vector estimate at the 𝑛th time instant
and the filter gain 𝑮(𝑛) is given by

𝑮(𝑛) = 𝑷 (𝑛∣𝑛− 1)𝑩𝐻(𝑛)𝑺−1(𝑛). (17)

The innovation covariance matrix 𝑺(𝑛) and the covariance
matrix of the predicted weight vector 𝑷 (𝑛∣𝑛 − 1) are given
respectively by

𝑺(𝑛) = 𝑩(𝑛)𝑷 (𝑛∣𝑛− 1)𝑩𝐻(𝑛) +𝑹 (18)

𝑷 (𝑛∣𝑛− 1) = 𝑷 (𝑛− 1∣𝑛− 1) +𝑸, (19)

and the updated state covariance matrix is given by

𝑷 (𝑛∣𝑛) = 𝑷 (𝑛∣𝑛− 1)−𝑮(𝑛)𝑺(𝑛)𝑮𝐻(𝑛). (20)
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The above iterative algorithm in (16)–(20) estimates the
adaptive portion of the beamforming matrices of the 𝐾
relays jointly. The estimation process is performed at a local
processing center which employs a Kalman filter having a
computational complexity of 𝒪

(
𝐽
(∑

𝑘 𝑚
2
𝑘

)2)
per iteration.

The processing center then computes the stacked beamforming
vector �̂�(𝑛) = 𝑵�̂�(𝑛)+𝒘0 and feeds back the beamforming
matrix �̂� 𝑘(𝑛) to the 𝑘th relay. Thus, a total number of∑

𝑘 𝑚
2
𝑘 coefficients are fed back from the processing center

at every update of the relay beamforming matrices3. The 𝑘th
relay then uses its beamforming matrix to transmit the vector
�̂� 𝑘(𝑛)𝒙𝑘(𝑛) in the second phase of the 𝑛th time instant to the
destination nodes allowing the relays to operate in real-time
provided that the processing center can compute and feedback
the beamforming coefficients to the relays at a rate higher
than the required update rate of the beamforming matrices.
For practical values of {𝑚𝑘}𝐾𝑘=1 and 𝐽 , the complexity
of the proposed scheme is well within the reach of real-
time implementation on currently available DSP hardware
technology. Furthermore, the number of parameters that has to
be transmitted from the 𝑘th relay to the processing center is
only 𝑚𝑘 parameters (the received signal vector). Note that
the relays have to send their estimates of the source and
destination channels to the processing center and update them
every time these channels change. On the other hand, the
processing center sends 𝑚2

𝑘 parameters to the 𝑘th relay every
time the beamforming matrices are updated.

IV. DECENTRALIZED ADAPTIVE BEAMFORMING

The centralized beamforming algorithm presented in the
previous section requires the existence of a local processing
center that performs a considerable amount of data exchange
with the relay terminals. This might not be feasible in some
communication systems where the number of relay antenna
elements is large. In this section, we will develop a de-
centralized adaptive beamforming algorithm that allows each
relay terminal to compute its beamforming matrix locally with
limited amount of data exchange with the other relays.

We assume that the 𝑘th relay terminal has access only
to its received data vector 𝒙𝑘(𝑛) and the estimates of its
source-relay channels

{
𝒉
(𝑗)
𝑘

}𝐽

𝑗=1
, and relay-destination chan-

nels
{
𝒈
(𝑗)
𝑘

}𝐽

𝑗=1
. Note that the joint enforcement of the signal

preservation constraints in (4) requires each relay to know the
channel vectors and beamforming matrices of the other relays.
In order to decrease the amount of data exchanged between the
relays and to facilitate the development of the decentralized
beamforming algorithm, we replace the joint constraints on the
beamforming matrices of the 𝐾 relays in (4) by the following
individual signal preservations constraints imposed on each of
the 𝐾 relay terminals

𝒈
(𝑗)𝐻

𝑘 𝑾𝐻
𝑘 (𝑛)𝒉

(𝑗)
𝑘 =

1

𝐾
∀𝑗 = 1, . . . , 𝐽, 𝑘 = 1, . . . ,𝐾. (21)

The above constraints non-cooperatively preserve the desired
signals at the destination nodes as the contribution of each re-

3We note that the update rate of the relay beamforming matrices is dictated
by the rate of change of the beamforming vector estimate which can be much
lower than the data rate especially near convergence.

lay to the desired signals received at the destinations is fixed4.
Nevertheless, we design the 𝑘th relay beamforming matrix
such that we minimize the power of the signal received at the
destination nodes due to the aggregate transmissions of all the
relays. This allows the relays to cooperate in suppressing the
interference signals at the destination nodes. Hence, we can
write the distributed relay beamforming problem as

min
{𝒘𝑘(𝑛)}𝐾

𝑘=1

𝐽∑
𝑗=1

∣∣∣∣∣
𝐾∑

𝑘=1

𝒂
(𝑗)𝑇

𝑘 (𝑛)𝒘𝑘(𝑛)

∣∣∣∣∣
2

s.t. 𝑪𝐻
𝑘 𝒘𝑘(𝑛) =

1

𝐾
1𝐽 ∀𝑘 = 1, . . . ,𝐾. (22)

Comparing the above decentralized problem formulation–
for the 𝐾 relays–with the centralized one in (8), we notice
that the total number of design variables is the same, i.e.,∑

𝑘 𝑚
2
𝑘. However, the signal preservation constraints in (22)

consume 𝐾𝐽 degrees of freedom from the relay beamforming
matrices whereas the signal preservation constraints in (8)
consume only 𝐽 degrees of freedom. The decrease in the
degrees of freedom available for beamforming is the price we
have paid for preserving the desired signals at the destinations
through the use of the noncooperative constraints in (21). As
a result, we can expect the performance of the decentralized
beamforming algorithm to be inferior to that of the centralized
one especially when the SNR of the sources is high.

We start by eliminating the linear constraints in (22). Let
𝒘𝑘(𝑛) = 𝑵𝑘𝒗𝑘(𝑛) +𝒘0,𝑘 where the columns of the matrix
𝑵𝑘 span the null space of 𝑪𝑘, the (𝑚2

𝑘−𝐽)×1 vector 𝒗𝑘(𝑛)

is the new design vector, and 𝒘0,𝑘 = 𝑪𝑘

(
𝑪𝐻

𝑘 𝑪𝑘

)−1

1𝐽/𝐾 .
Therefore, we can write (22) as the following unconstrained
optimization problem

min
{𝒗𝑘(𝑛)}𝐾

𝑘=1

𝐽∑
𝑗=1

∣∣∣∣∣
𝐾∑

𝑘=1

𝒂
(𝑗)𝑇

𝑘 (𝑛) (𝑵𝑘𝒗𝑘(𝑛) +𝒘0,𝑘)

∣∣∣∣∣
2

. (23)

We will consider the design problem for the 𝑖th relay
terminal. The 𝑖th relay can compute its quiescent beamforming
vector 𝒘0,𝑖 and the matrix 𝑵 𝑖 using its local channel state
information. It employs a Kalman filter that iteratively esti-
mates the adaptive component of its beamforming coefficients,
i.e., the vector 𝒗𝑖(𝑛). The process equation for the adaptive
beamforming coefficients of the 𝑖th relay terminal is given by

𝒗𝑖(𝑛+ 1) = 𝒗𝑖(𝑛) + 𝒏𝑣𝑖(𝑛) (24)

where 𝒏𝑣𝑖(𝑛) is the process noise associated with the beam-
forming vector of the 𝑖th relay. It is also assumed to be
white Gaussian with zero-mean and covariance 𝑸𝑖 = 𝜎2

𝑣𝑖𝑰 .
In order to minimize the cost function in (23), we define the
measurement equation associated with the process equation in

4Theoretically, it is possible to modify the constraint in (21) to become

𝒈
(𝑗)𝐻

𝑘 𝑾𝐻
𝑘 𝒉

(𝑗)
𝑘 = 𝛽

(𝑗)
𝑘 where {𝛽(𝑗)

𝑘 } are some additional optimization

variables. These variables have to be constrained such that
∑𝐾

𝑘=1 𝛽
(𝑗)
𝑘 = 1

in order to prevent the cancellation of the desired signal at the 𝑗th destination.
However, enforcing this constraint and/or finding the optimal values of the
parameters 𝛽

(𝑗)
𝑘 can only be done using centralized processing.
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(24) as

𝒛𝑖(𝑛) = 𝑨𝑖(𝑛)𝑵 𝑖𝒗𝑖(𝑛) +
∑
𝑘 ∕=𝑖

𝑨𝑘(𝑛) (𝑵𝑘𝒗𝑘(𝑛) +𝒘0,𝑘)

+ 𝒏𝑚(𝑛). (25)

where the 𝐽 ×𝑚2
𝑙 matrix

𝑨𝑙(𝑛) = [𝒂
(1)
𝑙 (𝑛), . . . ,𝒂

(𝐽)
𝑙 (𝑛)]𝑇 (26)

and the 𝐽 × 1 measurement vector 𝒛𝑖(𝑛) is given by

𝒛𝑖(𝑛) = −𝑨𝑖(𝑛)𝒘0,𝑖. (27)

The 𝑖th relay can compute the matrix 𝑨𝑖(𝑛) using its
received data vector at the 𝑛th time instant and the estimates
of its 𝐽 relay-destination channels. However, it does not have
access to the received data vectors or channel estimates of
the other relays. In what follows, we will propose a scheme
that allows each relay terminal to estimate its beamforming
matrix locally with limited information exchange with the
other relays. We can write the optimal adaptive beamforming
vector of the 𝑘th relay at the 𝑛th time instant as

𝒗𝑘(𝑛) = 𝒗𝑘(𝑛− 1) + 𝒏𝑣𝑘(𝑛− 1) (28)

= �̂�𝑘(𝑛− 1) + �̃�𝑘(𝑛− 1) + 𝒏𝑣𝑘(𝑛− 1) (29)

where (28) was obtained using the state equation (24) for
the adaptive beamforming vector of the 𝑘th relay, and in
(29), we have decomposed the optimal beamforming vector
𝒗𝑘(𝑛−1) into the sum of its estimate �̂�𝑘(𝑛−1) and the error
vector �̃�𝑘(𝑛 − 1) associated with this estimate. Substituting
with the above expansion for the 𝐾−1 beamforming vectors
{𝒗𝑘(𝑛)}𝑘 ∕=𝑖 into (25), we can write the measurement equation
associated with the beamforming vector of the 𝑖th relay as

�̃�𝑖(𝑛) = 𝑨𝑖(𝑛)𝑵 𝑖𝒗𝑖(𝑛) + �̃�𝑚𝑖(𝑛) (30)

where the 𝐽 × 1 modified measurement vector �̃�𝑖(𝑛) is given
by

�̃�𝑖(𝑛) = 𝒛𝑖(𝑛)−
∑
𝑘 ∕=𝑖

𝑨𝑘(𝑛) (𝑵𝑘�̂�𝑘(𝑛− 1) +𝒘0,𝑘) (31)

and the modified measurement noise �̃�𝑚𝑖(𝑛) is given by

�̃�𝑚𝑖(𝑛) =
∑
𝑘 ∕=𝑖

𝑨𝑘(𝑛)𝑵𝑘

(
�̃�𝑘(𝑛− 1) + 𝒏𝑣𝑘(𝑛− 1)

)

+ 𝒏𝑚(𝑛). (32)

The covariance matrix of the modified measurement noise can
be approximated as

�̃�𝑖(𝑛) ≈
∑
𝑘 ∕=𝑖

𝑨𝑘(𝑛)𝑵𝑘

(
𝑷 𝑘(𝑛− 1∣𝑛− 1)+𝑸𝑘

)
𝑵𝐻

𝑘 𝑨𝐻
𝑘 (𝑛)

+ 𝑹 (33)

where 𝑷 𝑘(𝑛∣𝑛) is the covariance matrix of the estimated
beamforming vector of the 𝑘th terminal at the 𝑛th time instant.
Note that in (33), we have made the approximation that the
errors in the estimated beamforming vectors of different relay
terminals are uncorrelated, i.e., E

{
�̃�𝑘(𝑛− 1)�̃�𝐻

𝑙 (𝑛− 1)
}
= 0

for all 𝑘 ∕= 𝑙. This is equivalent to setting the off-diagonal sub-
matrices of the covariance matrix of the stacked beamforming
vector, 𝑷 (𝑛∣𝑛) in (20), to zero.

Based on the state equation given in (24) and the modified
measurement equation in (30), the 𝑖th relay terminal employs
a Kalman filter to estimate its beamforming coefficients itera-
tively. The computational complexity associated with one iter-
ation of the Kalman filter at the 𝑖th relay is of 𝒪 {

𝐽𝑚4
𝑖

}
. At

each time instant, each relay computes 𝐽2+𝐽 parameters using
its received data vector, the estimates of its relay-destination
channels, and its previous state estimate and covariance. These
parameters are broadcasted to the other relays to be used in the
next iteration. The steps of one iteration of the decentralized
algorithm at the 𝑛th time instant for the 𝑖th relay beamformer
can be summarized as follows:

1) The relay receives the data transmitted by the sources in
the first phase of communication, i.e., the vector 𝒙𝑖(𝑛)
is received.

2) Using its previous estimate �̂�𝑖(𝑛− 1) and its associated
covariance matrix 𝑷 𝑖(𝑛− 1∣𝑛− 1), the relay computes
and broadcasts to the other relays the 𝐽×1 measurement
correction vector 𝑨𝑖(𝑛) (𝑵 𝑖�̂�𝑖(𝑛− 1) +𝒘0,𝑖) and the
𝐽 × 𝐽 measurement noise covariance correction matrix
𝑨𝑖(𝑛)𝑵 𝑖

(
𝑷 𝑖(𝑛− 1∣𝑛− 1) +𝑸𝑖

)
𝑵𝐻

𝑖 𝑨𝐻
𝑖 (𝑛).

3) The relay receives the measurement correction vectors
{𝑨𝑘(𝑛) (𝑵𝑘�̂�𝑘(𝑛− 1) +𝒘0,𝑘)}𝑘 ∕=𝑖 broadcasted by
the other relays and the covariance correction matrices{
𝑨𝑘(𝑛)𝑵𝑘

(
𝑷 𝑘(𝑛− 1∣𝑛− 1) +𝑸𝑘

)
𝑵𝐻

𝑘 𝑨𝐻
𝑘 (𝑛)

}
𝑘 ∕=𝑖

.

4) The relay uses the broadcasted parameters to update its
modified measurement vector in (31) and the modified
measurement noise covariance in (33).

5) Using the state-space model in (24) and (30), the relay
performs one iteration of the Kalman filter to estimate
the vector �̂�𝑖(𝑛) and its associated covariance 𝑷 𝑖(𝑛∣𝑛).

6) The relay computes the beamforming coefficients
�̂�𝑖(𝑛) = 𝑵 𝑖�̂�𝑖(𝑛) +𝒘0,𝑖 and forms the beamforming
matrix �̂� 𝑖(𝑛).

7) The relay transmits the vector �̂� 𝑖(𝑛)𝒙𝑖(𝑛) to the
destination nodes in the second phase of communication.

Note that at each iteration, each relay broadcasts only 𝐽2 + 𝐽
parameters (the measurement correction vector and its co-
variance) to the other relays. This is the only amount of
information that has to be exchanged and there is no need
to exchange the received data by the relays. The number of
parameters that has to be exchanged scales gracefully with
the number of source-destination pairs and is independent of
the number of antennas at each relay terminal. For moderate
number of source-destination pairs the number of parameters
is not prohibitively large. Furthermore, if the relays are in
close proximity of each other they can be connected by wires.
With sufficient transmission power and enough coding, the
broadcasted information can be considered error-free. It is
worth mentioning that the effects of the information exchange
error and quantization should be investigated. However, they
fall outside the scope of this paper.

V. PRACTICAL DESIGN CONSIDERATIONS

In this section, we derive an adaptive power control algo-
rithm that can be used to limit the transmission power of each
relay. We also extend the problem formulation in (7) to allow
the relays to modify the QoS offered to the sources.
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A. Power Control

The relay transmission power is often bounded due to prac-
tical hardware implementation and regulation issues. However,
the problem formulation in (7) does not provide any explicit
constraints on the transmission power of the relays. Note that
including such constraints directly in the problem formulation
will hinder the development of the proposed real-time algo-
rithms as the Kalman filter will not be able to handle the
resulting second-order inequality constraints [10].

The average transmission power of the 𝑘th relay at the 𝑛th
iteration, 𝑃 (r)

𝑘 (𝑛), is given by

𝑃 (r)
𝑘 (𝑛)= tr

{
𝑾𝐻

𝑘 (𝑛)
( 𝐽∑

𝑗=1

𝑃𝑗𝒉
(𝑗)
𝑘 𝒉

(𝑗)𝐻

𝑘 + 𝜎(r)2

𝑘 𝑰𝑚𝑘

)
𝑾 𝑘(𝑛)

}

(34)
where tr{⋅} denotes the trace of a matrix. In order to motivate
the proposed power control approach, we define the relay
beamforming efficiency for the 𝑗th source-destination pair as
the ratio between the received desired signal power and the
power of the interference-plus-noise (only that forwarded from
the relays) at the 𝑗th destination. The mathematical expression
for the beamforming efficiency of the 𝑗th pair is given by (35)
at the bottom of this page. The relay beamforming efficiency
is an upper bound on the received SINR in (3) as it does
not consider the noise generated at the destination. It depends
only on the signal components controlled by the relays, i.e.,
it measures the quality of the signal forwarded by the relays
to the destination nodes.

For a single source-destination pair, the LCMV design
approach adopted in this paper is equivalent to maximizing the
beamforming efficiency [20]. Note that the relay beamforming
efficiency does not change if all the beamforming matrices
{𝑾 𝑘(𝑛)}𝐾𝑘=1 are multiplied by a scalar. On the other hand,
the received SINR increases and approaches the beamforming
efficiency as the norm of the beamforming matrices increases,
i.e., as the relay transmission power increases. Hence, the relay
beamformer that maximizes the received SINR at a single
destination node under an aggregate relay power constraint
is a scaled version of the solution to the LCMV problem such
that the power constraint is satisfied.

Motivated by these considerations, we next propose a
suboptimal adaptive algorithm that can be used to enforce
individual power constraints on each relay terminal in the
case where there are multiple source-destination nodes. Let
the transmission power of the 𝑘th relay be constrained such
that 𝑃 (r)

𝑘 ≤ 𝛾𝑘 where 𝛾𝑘 represents the maximum allowed
transmission power for the 𝑘th relay. The main steps of the
power control strategy can be summarized as follows:

1) After the 𝑛th iteration, each relay estimates its average
transmission power using (34).

2) Each relay broadcasts the power correction factor 𝜁𝑘(𝑛)

to the other relays, which for the 𝑘th relay is defined as

𝜁𝑘(𝑛) = 𝑃 (r)
𝑘 (𝑛)/𝛾𝑘. (36)

3) After receiving the power correction factors, the relays
normalize their filtering estimates as follows:

�̂�𝑘(𝑛) ←− 1√
𝜁(𝑛)

�̂�𝑘(𝑛) (37)

𝑷 𝑘(𝑛∣𝑛) ←− 1

𝜁(𝑛)
𝑷 𝑘(𝑛∣𝑛). (38)

where 𝜁(𝑛) = max{𝜁1(𝑛), 𝜁2(𝑛), . . . , 𝜁𝐾(𝑛)}. The re-
lays also normalize the nonadaptive component of the
beamforming vector as

𝒘0,𝑘(𝑛)←− 1√
𝜁(𝑛)

𝒘0,𝑘(𝑛). (39)

Using the above correction algorithm scales down the
beamforming matrices such that transmission power of any
relay does not exceed the maximum allowable limit. Fur-
thermore, the beamforming efficiency is not affected by the
above weight correction algorithm as all the beamforming
matrices are scaled by the same factor, and hence, efficient
relay beamforming is maintained.

B. QoS Modification

Although the above problem formulation in (6) does not
include any QoS constraints on the received signals at the
destinations, we can extend the adaptive relay beamforming
problem to improve the QoS received at some destination
nodes. This can be achieved by introducing the scalar non-
negative parameters {𝛼𝑗}𝐽𝑗=1 and rewriting the beamforming
problem as

max
{𝑾 𝑘(𝑛)}𝐾

𝑘=1

𝐽∑
𝑗=1

𝛼𝑗SINR𝑗(𝑛) (40)

where 𝛼𝑗 > 0,
∑𝐽

𝑗=1 𝛼𝑗 = 𝐽 , and SINR𝑗(𝑛) is defined in
(3). A high value of 𝛼𝑗 will emphasize the importance of
the received SINR at the 𝑗th destination, and hence, the 𝑗th
destination will receive better QoS. Using the same LCMV
approach we have adopted in this paper, we can include the
constants {𝛼𝑗}𝐽𝑗=1 in the constraints of the LCMV problem
and rewrite the problem as

min
{𝒘𝑘(𝑛)}𝐾

𝑘=1

𝐽∑
𝑗=1

∣∣∣∣∣
𝐾∑

𝑘=1

𝒂
(𝑗)𝑇

𝑘 (𝑛)𝒘𝑘(𝑛)

∣∣∣∣∣
2

s.t.
𝐾∑

𝑘=1

𝑪𝐻
𝑘 𝒘𝑘(𝑛) = 𝜶. (41)

where the 𝐽×1 vector 𝜶 is given by 𝜶 =
[√

𝛼1, . . . ,
√
𝛼𝐽

]𝑇
.

A higher value for 𝛼𝑗 will provide higher gain to the desired
signal of the 𝑗th source, and thus, its QoS will be improved.

𝜂𝑗(𝑛) =
𝑃𝑗

∣∣∑
𝑘 𝒈

(𝑗)𝐻

𝑘 𝑾𝐻
𝑘 (𝑛)𝒉

(𝑗)
𝑘

∣∣2∑
𝑖∕=𝑗 𝑃𝑖

∣∣∑
𝑘 𝒈

(𝑗)𝐻

𝑘 𝑾𝐻
𝑘 (𝑛)𝒉

(𝑖)
𝑘

∣∣2 +∑
𝑘 𝜎

(𝑟)2

𝑘

∥∥𝑾 𝑘(𝑛)𝒈
(𝑗)
𝑘

∥∥2 . (35)
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Fig. 2. Average received SINR versus iteration number.

Note that the optimization parameters in (41) do not include
the parameters {𝛼𝑗}𝐽𝑗=1. Hence, the above centralized and
decentralized algorithms derived in the previous sections can
be applied directly to the modified beamforming problem
in (41). The effectiveness of this approach to modify the
QoS at individual destination nodes is demonstrated through
numerical simulations in Section VI.

VI. SIMULATION RESULTS

We consider a wireless communication scenario with two
source-destination pairs, i.e., 𝐽=2, where each source is com-
municating with a distinct destination node. The two sources
are transmitting QPSK symbols5. The transmitted signals by
the sources are received by 𝐾=2 relay terminals with 5 and
6 antennas each. The channels from the sources to the relays
and from the relays to the destinations are modelled as Ricean
flat fading with Ricean K-factor equal to 0.1 and random LOS
arrival angles uniformly distributed in the interval [0, 2𝜋]. The
scattered component of the received signal at the relays and
the destination nodes has a Laplacian power-angle-profile with
random mean angle of arrival uniformly distributed in [0, 2𝜋]
and random angular spread uniformly distributed between 0∘

and 10∘ [24]. The noise power at the relays is selected as
𝜎(r)2

𝑘 = 1, the noise power at the destination nodes is given by
𝜎(d)2

𝑗 = 0.5, and the received SNRs of the sources at the relays

are all equal to −5 dB, i.e., 𝑃𝑗/𝜎
(r)2

𝑘 = 10
−5
10 . Simulation

results are averaged over 1000 Monte Carlo runs.
We first investigate the convergence behaviour of the pro-

posed algorithms under a stationary signal environment. Fig. 2
shows the average received SINR at the destination nodes—
given by (3)—for the proposed iterative algorithms versus
time. It also shows the average received SINR of the non-
iterative centralized SOCP-based algorithm of [10] which we
use as a benchmark to compare the performance of the pro-
posed algorithms with. The parameters of the Kalman filters

5The proposed algorithms do not make use of any properties of the signal
constellation. Hence, it is possible to use any constellation type and we are
not limited to QPSK.
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Fig. 3. Average transmitted power versus iteration number.

employed in the proposed algorithms are chosen as 𝜎2
𝑣 = 0,

as we consider time-invariant radio propagation channels, and
𝜎2
𝑚,𝑖=10−3. We can clearly see from Fig. 2 that the proposed

adaptive algorithms converge to yield nearly the same SINR
provided by the non-iterative SOCP-based algorithm. We can
also notice from Fig. 2 that the decentralized Kalman filter-
based algorithm has a slower convergence rate than that of the
centralized one.

Fig. 2 also shows the received SINR versus iteration num-
ber for the centralized and distributed adaptive beamforming
algorithms with the power control modification proposed in
Section V. The transmission power constraint factors are
selected as 𝛾1 = 𝛾2 = 40. As one would expect, constraining
the transmission power of the relays reduces the received
SINR. Fig. 3 shows the average relay transmission power for
one relay versus the iteration number for different algorithms.
We can clearly see that the proposed adaptive power control
algorithms can effectively limit the transmission power of
the relays over time. In fact, it can be verified that the
power-constrained adaptive algorithms have almost the same
beamforming efficiency as the unconstrained ones, and hence,
efficient relay transmission is maintained by the power control
algorithm.

Next, we explore the sensitivity of the proposed algorithms
to the choice of the measurement noise covariance parameters{
𝜎2
𝑚,𝑖

}2

𝑖=1
. We select 𝜎2

𝑚,1 = 𝜎2
𝑚,2 = 𝜎2

𝑚. We declare the
convergence of the Kalman filter at the 𝑛𝑐th time instant if
∥�̂�(𝑛𝑐)− �̂�(𝑛𝑐 − 1)∥∞ ≤ 5× 10−4 where ∥ ⋅ ∥∞ denotes the
infinity norm of a vector. Fig. 4 shows the average received
SINR after convergence of the Kalman filters versus the
value of the parameter 𝜎2

𝑚. We can see from Fig. 4 that the
performance of the two proposed algorithms does not severely
degrade over a large range of the parameter 𝜎2

𝑚. In particular,
the Kalman filtering algorithms show improved steady state
performance for 𝜎2

𝑚 ∈ [10−10, 1]. It is worth mentioning that
for very small values of 𝜎2

𝑚, i.e., 𝜎2
𝑚 < 10−10, the Kalman

filter considers the measurement vector a perfect measurement,
as a result, the convergence speed of the filter decreases
substantially. On the other hand, for high values of 𝜎2

𝑚, i.e.,
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Fig. 4. Average received SINR versus 𝜎2
𝑚.
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Fig. 5. Average number of iterations required for convergence versus 𝜎2
𝑚.

𝜎2
𝑚 > 1, the cost function is not sufficiently minimized

and the performance of the proposed algorithms deteriorates.
Fig. 5 shows the average number of iterations required for
convergence of each algorithm, i.e., the value of 𝑛𝑐, versus the
value of 𝜎2

𝑚. We can see from Fig. 5 that the decentralized
algorithm requires more iterations for convergence than the
centralized one due to the approximations in its state-space
model in (33).

Next, we investigate the performance of the proposed
algorithms for different values of the SNR of the sources.
The SNRs of all the sources are kept equal and are varied
between −20 and 5 dB. The value of 𝜎2

𝑚 is chosen as 10−3.
Fig. 6 shows the average received SINR of the two sources
after convergence of the Kalman filter versus different values
of the SNR of the sources. We can see from Fig. 6 that
the proposed centralized beamforming algorithm has good
performance for all values of the SNR. On the other hand, at
high SNR, above 0 dB, the performance of the decentralized
beamforming algorithm degrades. This can be attributed to the
decrease in the degrees of freedom due to enforcing the signal
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Fig. 6. Average received SINR versus the SNR of the sources.
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Fig. 7. Average received SINR of each source versus the parameter 𝛼1.

preservation constraints noncooperatively. Another reason for
the deterioration of the performance of the decentralized
beamformer at high SNR is due the assumption we have
made in (33) that the errors in the estimated beamforming
vectors of different terminals are uncorrelated. In fact, as the
SNR of the sources increases, the relay beamforming matrices
focus more on suppressing the interference received at the
destination nodes than on reducing the received noise power.
Since the interference suppression is accomplished by the
relay terminals cooperatively, the errors in the beamforming
vectors of different relays are more correlated as the SNRs of
the sources increase. This leads to performance degradation
of the distributed Kalman filtering beamforming algorithm as
these correlations are not modelled in the state-space model.

In the next simulation, we explore the effect of changing the
parameters {𝛼𝑗}2𝑗=1 in (41) on the QoS of the two sources.
We consider the same signal environment considered in the
previous examples. The SNRs of the two sources is chosen as
−5 dB. The value of the parameter 𝛼1 is varied between 0.2
and 1.8 and the value of 𝛼2 = 𝐽 −𝛼1 = 2−𝛼1. Fig. 7 shows
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Fig. 8. Average received SINR versus iteration number.

the average received SINR for each source at its destination
node versus the parameter 𝛼1. We can see that as the value of
𝛼1 increases, the received SINR of the first source increases
at the expense of the received SINR of the second source.
This simulation shows the efficacy of using the parameters
{𝛼𝑗}𝐽𝑗=1 in (40) in improving the QoS of some sources.

Finally, we consider a nonstationary signal environment.
The simulation setup is similar to the one we have considered
in the previous simulation in terms of the configuration of
the sources, relays, and destination nodes. The source-relay
channels and relay-destination channels are fixed during the
first 500 time instants. At iteration time 500, we suddenly
switch to a new, independent set of channel realizations that
remain in use until the end of the simulation experiment at
iteration 1000. This type of experiments is commonly used
in the adaptive filtering literature to evaluate the ability of
an algorithm to track rapid changes in the underlying signal
environment, e.g., [25]. The SNRs of the sources are all
equal to −5 dB. The parameters of our Kalman filter-based
algorithms are selected as 𝜎2

𝑣 = 10−8 and 𝜎2
𝑚 = 10−3.

Fig. 8 displays the average received SINR of the two sources
versus iteration number. We can clearly see the capability
of the proposed beamformers to readapt to the new signal
environment and rapidly converge back to yield satisfactory
performance.

VII. CONCLUSION

We have presented two adaptive cooperative beamforming
algorithms for MIMO-relaying wireless systems with multiple
source-destination pairs. The beamforming matrices of the
relays are jointly designed by minimizing the total power
received at all the destination nodes subject to linear con-
straints that preserve the desired signal at each destination.
Both algorithms are based on Kalman filtering and can be
applied iteratively in real-time. In the first algorithm, a local
processing center computes the beamforming coefficients of
all the relays which requires a significant amount of com-
munication between the processing center and the relays. In
the second algorithm, each relay can compute its beamforming

coefficients locally using its received data, its relay-destination
channel estimate, and some information that is broadcasted
by the other relays. We have also extended the proposed
algorithms to allow the relays to control their transmission
power and to modify the QoS provided to different sources.
Simulation results have been presented that validate the ability
of the proposed algorithms to yield a performance comparable
to that of the non-iterative centralized SOCP-based algorithm
at low and medium SNRs.
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