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Abstract—Finding a tight ellipsoid that contains the intersec-
tion of a finite number of ellipsoids is of interest in positioning
applications for wireless sensor networks (WSNs). To this end, we
propose a novel geometrical method in 2-dimensional (2-D) space.
Specifically, we first find a tight polygon, which contains the
desired region and then obtain the tightest ellipse containing the
polygon by solving a convex optimization problem. For demon-
strating the usefulness of this method, we employ it in a distributed
algorithm for elliptical outer-approximation of feasible sets in
co-operative WSNs. Through simulations, we show that the pro-
posed method gives a tighter bounding ellipse than conventional
methods, while having similar computational cost.

Index Terms—Computational geometry, localization, non-line-
of-sight, optimization.

I. INTRODUCTION

L OCALIZATION of sensor nodes in a wireless sensor net-
work (WSN) is of great interest in many public safety and

commercial applications [1]. In particular, cooperative localiza-
tion has received special attention since it can improve localiza-
tion accuracy and coverage [2]. In contrast to non-cooperative
WSN, in which only measurements between the sensors being
localized and anchors with known positions are performed,
cooperative WSNs also use sensor-to-sensor measurements.

In non-line-of-sight (NLOS) situations, in which the range
measurements become positively biased, the unknown location
of each sensor is restricted to the intersection of multiple balls
(or discs in 2-dimensional (2-D) space), with centres corre-
sponding to the locations of neighbouring nodes, i.e., anchors
and sensors, and with radii equal to the biased range mea-
surements. The intersection of these balls is a convex feasible
set, which can serve as a rough approximation of the uncer-
tainty in the true sensor’s position. However, since this feasible
set cannot be generally described by a few parameters, outer-
approximating it by a simple shape, e.g., a ball or an ellipsoid,
is needed.
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In cooperative WSNs, finding outer-approximations of these
feasible sets is not straightforward as the centres of the balls
corresponding to the locations of the neighbouring sensors
are unknown. To address this issue, a distributed iterative
algorithm was proposed in [3], where a ball is used for an
outer-approximation of a feasible set. The algorithm has been
improved in [4] by using ellipsoids instead of balls, on the
basis that an ellipsoid can generally capture a complex con-
vex set more tightly due to its additional degrees of freedom.
The core operation in [4] is the outer-approximation of multiple
ellipsoids by a tight ellipsoid.

Finding the tightest ellipsoidal outer-approximation of the
intersection of multiple ellipsoids is NP-hard [5], and to the
best of our knowledge, there is no algorithm to find the opti-
mal solution. However, there are several sub-optimal solutions,
including the ones considering two ellipsoids [6]–[9], as well
as standard convex optimization methods for a larger number of
ellipsoids [5, p.44], [10, p.414]. In [4], the method from [10] has
been employed, where first, the largest volume ellipsoid con-
tained in the intersection of multiple ellipsoids is determined
by solving a convex optimization problem. Then by expanding
this ellipsoid with the dimension of the space, an ellipsoid that
covers the intersection region can be found.

The sub-optimal methods from [5], [10] are based on convex
relaxations and may not generally offer a tight enough ellip-
soid. As the localization problems can often be considered in a
2-D space (i.e., unknown latitude and longitude), there is a spe-
cial interest in developing geometrical methods in 2-D that can
find tighter ellipses. To this end, we propose a novel method, in
which we first efficiently determine a tight polygon containing
the intersection of ellipses, and then solve a convex optimiza-
tion problem to obtain the tightest ellipse covering the vertices
of the polygon. We employ the proposed method in the dis-
tributed algorithms considered in [4] for outer-approximations
of 2-D feasible sets in cooperative WSNs and show that it offers
significant improvements in tightness with similar computa-
tional cost, compared to the case that the method from [10] is
employed.

Notation: The vector 2-norm is denoted by ‖ · ‖. The set of
ν × ν symmetric positive-definite matrices is denoted by S

ν++.

II. SYSTEM MODEL AND BACKGROUND

A. System Model

We consider a 2-D WSN with N sensor nodes at
unknown locations denoted by xi ∈ R

2 for i ∈ {1, . . . , N },
and M anchors with known locations ai ∈ R

2, for i ∈ {N +
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1, . . . , N + M}. Two nodes are regarded as neighbours if they
are within communication range, i.e., they are within the given
distance Rmax of each other. For each sensor node j we
define two sets A j and S j which include the indices of all
the neighbouring anchors and sensors, respectively. The range
measurements of the j-th sensor are modelled as

ri j = ‖ai − x j‖ + bi j + ni j , i ∈ A j (1)

ri j = ‖xi − x j‖ + bi j + ni j , i ∈ S j (2)

where ni j are measurement noises, and bi j > 0 represent the
biases due to the NLOS, while for LOS measurements bi j = 0.
The noise terms are often assumed to be independent iden-
tically distributed Gaussian random variables with zero-mean
and variance σ 2

n , while the bias terms bi j have been modelled
as exponential [11], or uniformly distributed random variables
[12]. We assume that (1) and (2) correspond to the NLOS
measurements only, which can be identified from LOS ones
using NLOS identification techniques, as done in [11], [12].1

Furthermore, to make our algorithm more robust, no knowledge
is assumed about the distribution of ni j and bi j . In many appli-
cations, the bias dominates over the measurement noise [13],
so that bi j + ni j ≥ 0. Hence it follows that each sensor x j is
restricted to be inside the intersection area of multiple discs,2

defined as

DA
i j = {x ∈ R

2 : ‖x − ai‖ ≤ ri j }, i ∈ A j (3)

DS
i j = {x ∈ R

2 : ‖x − xi‖ ≤ ri j }, i ∈ S j (4)

Therefore, x j ∈ D j where

D j =
⎛
⎝ ⋂

i∈A j

DA
i j

⎞
⎠ ⋂

⎛
⎝ ⋂

i∈S j

DS
i j

⎞
⎠ . (5)

Our objective is to determine an outer-approximation of the
convex feasible set D j for every sensor x j through a dis-
tributed approach.3 Note that each DA

i j is available to sensor

j , while each DS
i j is not a-priori available since xi is unknown.

Therefore, the solution is not straightforward.

B. Definition of Ellipsoids

An ellipsoid ξi in ν-dimensional space R
ν can be defined in

many different ways [10], including:
(i) The image of the unit ball under an affine transformation:

ξi = {
x = Pi y + xc,i : ‖y‖ ≤ 1, y ∈ R

ν
}
, (6)

where xc,i is the centre of the ellipsoid, and without loss
of generality Pi ∈ S

ν++.
(ii) A quadratic form:

1The LOS measurements can later be used in conventional localization algo-
rithms (e.g., nonlinear least-squares or SPAWN [2]) by taking advantage of the
bounds obtained in this work.

2If the condition bi j + ni j ≥ 0 can not be guaranteed (e.g., due to large σn ),
a constant can be added to each ri j in the right hand side of (3) and (4) [14] to
ensure that the position of each sensor is restricted to the intersection of discs
with neighbouring nodes as centres.

3We assume that for every sensor j , there is at least one neighbouring node
with pairwise measurement ri j such that D j is not empty.

ξi = {
x ∈ R

ν : ‖Bi x + di‖ ≤ 1
}
, (7)

where Bi ∈ S
ν++ and di ∈ R

ν is a translation vector.
When Bi = P−1

i and di = P−1
i xc,i , the two ellipsoids in

(6) and (7) are identical.

III. OUTER-APPROXIMATION OF FEASIBLE SETS

In this section, we first describe the proposed method for
outer-approximation of the intersection of ellipses, and then
apply it to the distributed bounding algorithm given in [4].

A. Tight Outer-Approximation of the Intersection of Ellipses

We show how it is possible to efficiently find a tight polygon,
represented by m̃ vertices w(l) for l = 1, . . . , m̃, to cover the
intersection of ellipses. The ellipses are denoted with ξi for i =
1, . . . , p, and their intersection with E, i.e., E = ∩p

i=1ξi . The
smallest area ellipse that contains these vertices (and hence con-
tains E) is found by solving the following convex optimization
problem [10], [15]:

min
B,d

log det(B−1)

s.t. B ∈ S
2++, ‖Bw(l) + d‖ ≤ 1, l = 1, . . . , m̃, (8)

where det(B−1) is proportional to the area of the ellipse. Since
each inequality in (8) can be written as a linear matrix inequal-
ity, this optimization problem can be formulated as a standard
semi-definite programming (SDP) problem. For the ellipse to
tightly bound E, the polygon which bounds E has to be tight.
Hence, the problem reverts to the determination of a polygon
that covers E tightly. We propose below a method with three
steps to achieve this:

Step 1 (generating discrete points): We first generate a num-
ber of discrete points on the boundary of E. One way to do so is
to generate a fixed number of points on the boundary of each ξi

forming E and then reject those that do not lie on E. Harnessing
the fact that an ellipse is an image of the unit disc under an
affine transformation, we first generate m points y(l) for l =
{1, . . . , m}, uniformly on a unit circle and then map these points
onto the desired ellipse ξi as defined in (6), through the trans-
formation z(l)

i = Pi y(l) + xc,i . After rejecting the points among
those m × p points that are not on the boundary of E, we denote
the remaining points by z̃(l) for l = {1, . . . , m̃} and the associ-
ated ellipse index for each point by i (l). The remaining points
are shown with white color in Fig. 1.

Step 2 (generating half planes): Utilizing the form (7), the
tangent lines to the i-th ellipse at the points z̃(l) can be obtained,
and hence the half planes are formed

(Bi (l) z̃
(l) + di (l) )

T (Bi (l)x + di (l) ) ≤ 1, l = 1 . . . , m̃. (9)

Step 3 (determining the vertices of a polygon) : For a suffi-
cient number of points z̃(l), the intersection of these half planes
forms a closed polygon covering E. One way to find this poly-
gon is to obtain the intersection point of every pair of tangent
lines by solving a linear system of two equations, and to verify
if this point is inside the intersection region of all the remain-
ing half-planes, i.e., if it satisfies all the remaining m̃ − 2 affine
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Fig. 1. The diagram of the intersecting ellipses and the half-planes forming a
closed convex polygon. The white, dark blue, and red points correspond to z̃(l),
zmean, and w(l), respectively.

inequalities. Note that there is a total of m̃(m̃ − 1)/2 of such
linear systems. The complexity of the above procedure is O(m̃3)

flops. Hence, this procedure might be very time consuming
when m is large. Herein, we make use of the fact that ν = 2
to develop a more efficient approach.

• Step 3a: Given the points z̃(l) for l = {1, . . . , m̃}, we
first compute the average zmean = 1

m̃

∑m̃
l=1 z̃(l) ∈ E, which

is shown with dark blue color in Fig. 1. The vectors
v(l) = z̃(l) − zmean connecting zmean to the points z̃(l) are
sorted according to the angles α(l) ∈ [0, 2π), measured
with respect to the horizontal axis. This sorting imposes
an order to the points z̃(l).

• Step 3b: For any two sequential points z̃(l) in the ordering,
we determine the intersection point of the corresponding
two tangent lines. The obtained intersection points, w(l)

for l = {1, . . . , m̃}, which are shown with red color in
Fig. 1, form the vertices of the polygon and are used as
an input to (8).

In terms of complexity, in Step 3, the proposed technique
requires solving m̃ linear systems of two equations to find the
polygon, hence the computational cost is O(m̃).

We note that some degenerate cases can occur in this method
such that a closed and convex polygon that covers the intersec-
tion of ellipses cannot be formed. This problem can be avoided
if m is large enough. In practice, a proper value of m can be
chosen by preliminary experiments.

B. Distributed Outer-Approximation for Positioning

In the first iteration of the distributed bounding algorithm,
each sensor with index j , finds a tight ellipse that contains the
intersection of multiple discs corresponding to the neighbour-
ing anchors, with each disc DA

i j described in (3). While in [4],
the method from [10, p.414] has been employed, we obtain an
ellipse using the method described in Section III-A, by solving
(8) and finding the parameters B j and d j .4 Then, each sen-
sor exchanges the information of its bounding ellipse with its
neighbouring sensors through the communication link.

4If a sensor has no neighbouring anchors, then an arbitrary large ellipse that
contains the area under study is employed to represent its uncertainty.

In the second and next iterations, each sensor j uses the infor-
mation of the neighbouring sensors with index i ∈ S j as well to
reduce the area of the ellipse obtained so far. Since DS

i j is not a-
priori available, the bounding ellipse of node i , which has been
obtained so far as

{x : ‖Bi x + di‖ ≤ 1} , i ∈ S j (10)

is expanded by ri j along its semi-axes, and thus is guaranteed
to contain x j . The semi-axes of the i-th ellipse in (10) are
the eigenvalues of Pi = B−1

i . Let Pi = Vi�iVT
i be the eigen-

decomposition of Pi where �i = diag(λ1,i , λ2,i ). In order to
expand the ellipse by ri j , we replace Pi by P̃i j = Vi �̃ijVT

i

where �̃i j = diag(λ1,i , λ2,i ) + ri j I2. Then for every i ∈ S j the
expanded ellipse (calculated at node j) is

{
x : ‖B̃i j x + d̃i‖ ≤ 1

}
, i ∈ S j (11)

where B̃i j = P̃
−1
i j and d̃i = P̃

−1
i j Pi di .

Then, the next step for every sensor is to find a tight ellipse
that contains the intersection of multiple discs corresponding
to the neighbouring anchors, and multiple expanded ellipses
corresponding to the neighbouring sensors. Therefore, the pro-
posed method in Section III-A is employed again so that each
sensor updates its current bounding ellipse. Then each sensor
exchanges its updated ellipse parameters with the neighbouring
sensors. This procedure continues iteratively until convergence
or when a predefined number of iterations K , which is cho-
sen by the user according to the time and accuracy constraints,
is reached. The distributed iterative bounding algorithm is
summarized in Algorithm 1.

Algorithm 1. Distributed Outer-approximating Algorithm

1: for k = 1 until convergence (or predefined K ) do
2: for j = 1, . . . , N in parallel do
3: if k = 1 then
4: for all i ∈ A j do
5: Generate m points z(l)

i on the discs in (3).
6: end for
7: Reject the points outside E j , i.e., the intersection of

discs in (3).
8: else
9: for each i ∈ S j do

10: Expand the i-th ellipse in (10) to obtain (11).
11: Generate m points z(l)

i on the ellipses in (11).
12: end for
13: Reject the points outside E j , i.e., the intersection of

discs in (3) and ellipses in (11).
14: end if
15: Find the half planes tangent to E j at z̃(l), i.e., (9).
16: Calculate zmean, v(l), and α(l) for l = {1, . . . , m̃}.
17: Sort the vectors v(l) according to the angles α(l).
18: Find the intersection point of the tangent lines of every

two neighbouring points to obtain w(l).
19: Find B j and d j by solving (8).
20: Exchange the updated B j and d j with neighbours.
21: end for
22: end for
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Fig. 2. Comparison of the average area of bounding ellipses as a function of
the iteration index k for different N .

TABLE I
COMPARISON OF COMPUTATION TIMES PER SENSOR

IV. NUMERICAL PERFORMANCE EVALUATION

We consider three scenarios where 10 anchors are located
on a 100 m × 100 m 2-D area while 50, 100, and 200 sen-
sors, respectively, are distributed uniformly within this area.
The communication range is set to Rmax = 50 m and the mea-
surement between each pair of neighbouring nodes is obtained
by adding to the true range an exponentially distributed positive
error with mean equal to 5 m, and zero-mean Gaussian noise
with σn = 0.5 m. For solving the optimization problems, we
use the CVX toolbox [16] in Matlab. We set m = 256 since with
smaller m, sometimes degenerate cases could occur. The perfor-
mance is evaluated in terms of the average area of the ellipses
in each iteration, quantified by det(B−1

j ). As a benchmark, we
use the method presented in [4].

In Fig. 2, we show the average area of the covering ellipses
versus the iteration number for different numbers of sensors
N . The results show that the distributed algorithm converges
rapidly for both outer-approximation methods, although our
proposed method converges to outer-approximating ellipses
with almost half the area.

In Table I, we compare the computation time of each algo-
rithm for the three scenarios after convergence, i.e., the CPU
time required such that the difference between average areas in
two consecutive iterations is less than 0.01m2. Since the results
are obtained by processing the information centrally on a CPU,
we divide the computation time by the number of sensors N to
have a better insight of the computation time in a distributed
WSN. The results show that the proposed method has simi-
lar computation time compared to the one in [4]. Therefore,
in terms of the trade-off between accuracy and computational
cost, the proposed method is clearly preferred.

V. CONCLUSION

In this letter, we developed a method for tight outer-
approximation of the intersection of multiple ellipses in 2-D
space. This method was used as part of a distributed algorithm
in cooperative WSNs for outer-approximation of the feasible
sets containing the positions of the sensors. Through simu-
lations, it was shown that the proposed method results in a
tighter approximation of the feasible sets compared to existing
techniques, while having a similar computational cost.
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