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Abstract— This work studies the joint problem of content
placement, remote radio head (RRH) clustering and beamformer
design, in a cache-enabled cloud-radio access network (C-RAN).
In the considered system, downlink users are cooperatively served
by multiple RRHs, in turn connected to a centralized baseband
unit (BBU) pool via fronthaul links. Each RRH is equipped with a
local cache from which it can directly acquire the requested user
contents, without utilizing the fronthaul links. We aim to jointly
optimize the aforementioned three aspects, in order to strike
a balance between fronthaul traffic reduction and transmission
power minimization. To this end, we propose to employ the ratio
between these two important system utilities as the objective
function, referred to as caching efficiency. Two joint design
algorithms are presented to address the resulting nonconvex
optimization problem, which features coupling constraints and
mixed-integer variables, namely: the penalty concave-convex pro-
cedure (P-CCCP) and penalty dual decomposition (PDD) based
algorithms. Furthermore, since content placement is usually
updated over a larger timescale, we propose a two-timescale
joint design algorithm, where the P-CCCP and PDD-based
algorithms can be employed for efficient initialization as well as
for establishing performance limits. Simulation results validate
the efficiency of the proposed algorithms.
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I. INTRODUCTION

W ITH the increasing demand for high-speed data traffic,
especially content sharing and video streaming, wire-

less network operators are faced with formidable challenges
in attempting to provide high throughput and low latency
services to large populations of mobile users. To meet these
new service requirements, local caching of popular data at
base stations (BSs) has been proposed recently as a promising
solution for massive content delivery [2]–[8]. This approach
essentially brings key information contents closer to the users,
which in turn reduces fronthaul utilization costs and also elim-
inates a significant amount of backhaul traffic. Furthermore,
as service providers move favored contents to intermediate
nodes in the network, the access delay is reduced which
improves the quality of experience for users.

A. Technical Literature Review

To support the ever increasing data traffic and computational
demands of users, another key technology is that of cloud
radio access network (C-RAN), which refers to an emerging
network architecture that can improve the spectrum and energy
efficiency of current wireless networks [9]–[12]. In C-RAN,
several low-cost low-power remote radio heads (RRHs) are
deployed to replace the traditional high-cost BSs. Since most
of the signal processing tasks are handled by a centralized
baseband unit (BBU) pool that connects to the RRHs via
digital fronthaul links,1 joint data processing and precoding
are possible to improve system performance.

With regard to fronthaul/backhaul traffic reduction, RRH
clustering and cooperative beamforming are attractive
approaches since the popular data of each user only need to
be assigned to a small cluster of serving RRHs, instead of all
RRHs. In the literature, several recent works have investigated

1Note that in the C-RAN context, the backhaul portion of the network
comprises the intermediate links between the core network and the BBU
pool, while the links between the BBUs and the RRHs at the edge of the
network are usually referred to as fronthaul links. In general, content caching
at the RRHs would save both fronthaul and backhaul costs. However, for
conciseness, we will only mention fronthaul in the following.
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the dynamic BS clustering and beamforming problem [10],
[11], [13], [14]. Specifically, in [10], the authors formulated the
problem from a sparse optimization perspective, and proposed
an efficient algorithm based on iteratively solving a sequence
of group least absolute shrinkage and selection operator
(LASSO) problems. In [11], a group sparse beamformer was
proposed by adopting the weighted l1/l2-norm minimization
to induce sparsity. A network utility maximization problem
with per-BS backhaul capacity constraints was considered in
[13]. In [14], the joint clustering and beamforming problem
was formulated as a mixed integer nonlinear program, which
was addressed by relaxing the discrete clustering function
with a continuous exponential. Note that these works took a
user-centric or connection-centric point of view for the joint
design, and as such the impact of content placement was not
considered.

As previously indicated, to further improve the delivery rate
and decrease fronthaul costs and latency for mobile users,
a promising solution is to cache popular contents at the
RRHs. This content delivery service can be conducted by
carefully designing content placement such that the users can
seize various transmission opportunities and fully exploit the
caching gain [15]. The potential benefits of distributing and
storing popular contents across the whole network have been
investigated by many researchers, as discussed below.

In [3], the authors introduced the concept of FemtoCaching
in order to increase the throughput of wireless video delivery
networks, and further investigated the wireless distributed
caching problem with the aim to minimize the total average
delay of all users. The NP-hardness of the caching problem
was proved and numerical algorithms for its approximate
solution were presented. The problem of content placement
in Fog-RANs was considered in [16], by taking into account
different file preferences and diverse transmission opportuni-
ties for each user. The joint optimization of data placement
and beamforming vectors in backhaul limited networks was
investigated in [17] by establishing the connection between
data assignment and sparsity-inducing norm. In [18] and
[19], it was reported that three distinct benefits can be
achieved from caching, that is: load balancing gain, inter-
ference cancellation gain, and interference alignment gain.
Distributed caching algorithms based on belief propagation
were developed in [15], [20], [21] in order to minimize the
downloading latency. The tradeoffs between small BS density
and total cache size were investigated in [7], where it was
shown that significant gains in terms of outage probability
and average delivery rate are possible by employing cache-
enabled small BSs. The joint design of content-centric BS
clustering and multicast beamforming in the cache-enabled
cloud RAN was investigated in [22] by assuming that the con-
tent placement is fixed according to a given caching strategy.
Joint optimization of user association and content placement
was investigated in [23], where the aim was to reduce the
backhaul traffic in a densely deployed wireless access net-
work. In [24], the interplay between cloud processing and
edge caching was addressed from an information-theoretic
viewpoint.

B. Motivation

While making significant advances, the aforementioned
studies do not approach the problem of content placement,
RRH clustering and downlink beamformer design by con-
sidering all three aspects jointly. In this work, we study the
joint optimization of a generic content-aware C-RAN along
these three critical design dimensions, aiming to strike a
more favorable balance between the reduction of fronthaul
traffic and transmission power. To this end, we shall seek
to maximize the ratio between these two important system
utilities, termed caching efficiency, subject to quality of ser-
vice (QoS), clustering and caching constraints.2 The joint
design problem is quite challenging due to the facts that
the fractional objective function and the constraints are both
nonconvex, the optimization variables are tightly coupled and
the latter contain nontrivial discrete variables. By exploiting
the problem structure, we propose two algorithms which both
take advantage of the Dinkelbach method [27]. To derive
the first algorithm, we first transform the discrete constraints
into alternative inequality constraints; then, by combining
the benefits of the penalty method [28] and the concave-
convex procedure (CCCP) [29], the transformed problem can
be efficiently solved. This approach leads to a so-called
penalty CCCP (P-CCCP) algorithm3 which iterates over two
steps, i.e.: approximately solving the penalized subproblem
and updating the penalty parameter and Dinkelbach vari-
able. To derive the second algorithm, we utilize the penalty
dual decomposition (PDD) framework [31] and show that
by carefully introducing auxiliary variables, the joint design
problem can be tackled by iterating over a sequence of
simple and efficient updates in the individual design vari-
ables. While these two algorithms exhibit similar perfor-
mance in simulations, each one offers different advantages.
In particular, the P-CCCP algorithm can converge in fewer
iterations, while the PDD-based algorithm admits a simpler
implementation.

Furthermore, since content placement is typically updated
over a larger timescale than RRH clustering and beamforming,
we propose a two-timescale joint design algorithm, which
is based on the two-stage online successive convex approx-
imation (TOSCA) framework in [32]. The aforementioned
P-CCCP and PDD-based algorithms can be employed within
this context as powerful initialization methods, while they can
also be modified without any difficulty to solve the underlying
short-term subproblems.

2Note that the definition of caching efficiency here is different from [25]
and [26], where the cache hit ratio, the offloading gain and degrees of freedom
gain per unit cache size are interpreted as measures of caching efficiency. The
main motivation to take caching efficiency as the objective function is based on
the observation that with increased transmission power, larger serving clusters
can be formed, which further reduces the fronthaul utilization.

3While a general framework for the P-CCCP algorithm was presented in
[30], our work is very different from the latter due to the following facts:
1) the system model is very different, which leads to distinct optimization
problems; 2) in the proposed algorithm, we handle discrete constraints by
transforming them into inequality constraints, while [30] does not involve
discrete variables; 3) we integrate the Dinkelbach method into the P-CCCP
algorithm under the proposed framework.
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C. Our Contributions

The main contributions of this work can be summarized as
follows:

1) A general optimization framework for content-aware
transceiver design in cache-enabled C-RAN systems is pro-
posed. The ratio between the fronthaul traffic reduction and
transmission power, referred to as caching efficiency, is pro-
posed as a new objective function, which is jointly optimized
along the three critical design dimensions of content place-
ment, RRH association and downlink beamforming.

2) Two joint design algorithms, i.e., the P-CCCP and the
PDD-based algorithms, are proposed to address the result-
ing highly nonconvex problem with mixed-integer variables.
A detailed complexity analysis of these two algorithms and
their respective advantages and limitations are exposed. Fur-
thermore, a two-timescale joint design algorithm is pro-
posed, where the content placement is updated over a larger
time interval. In the proposed two-timescale caching strategy,
the long-term content placement is adaptive to the slowly-
varying channel statistics, while the short-term beamforming
and RRH clustering are adaptive to the instantaneous channel
state information (CSI). The interrelationship between the
single-timescale and two-timescale algorithms is discussed in
detail.

3) Computer simulations are carried out to validate the
effectiveness of the proposed algorithms. The necessity of
the proposed single-timescale algorithms is also demonstrated,
i.e., employing them as initialization methods for the two-
timescale algorithm can accelerate its convergence remarkably.
Moreover, we show that the proposed two-timescale algorithm
outperforms those with heuristic caching strategies, such as
the popularity-aware caching (PopC) and probabilistic caching
(ProC) [22].

D. Organization of the Paper

The rest of the paper is organized as follows. In Section II,
we present the system model of the content-aware C-RAN sys-
tem and the corresponding problem formulation. In Section III,
the proposed P-CCCP algorithm is developed along with its
complexity analysis. In Section IV, we present the PDD-based
algorithm and discuss its initialization. The two-timescale joint
design algorithm is exposed in Section V. In Section VI,
simulations are conducted to characterize the performance of
the proposed algorithms. Finally, conclusions are drawn in
Section VII.

Notations: Scalars, vectors and matrices are respectively
denoted by lower case, boldface lower case and boldface upper
case letters. For a matrix A, AT and AH denote its transpose
and conjugate transpose respectively, while A � 0 means that
A is a positive semidefinite (square) matrix. The operators
‖ · ‖ and ‖ · ‖∞ denote the Euclidean and infinity norms of a
complex vector, respectively. C

m×n(Rm×n) denotes the space
of m× n complex (real) matrices. The set difference is defined
as A\B � {x|x ∈ A, x /∈ B}.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the content-aware C-RAN
system under study, in which downlink users are each served

Fig. 1. System model of the content-aware C-RAN.

by a potentially overlapping cluster of RRHs. We then formu-
late the joint optimization problem for the content placement,
RRH clustering and beamformer design.

A. System Model

We consider a content-aware C-RAN, which consists of N
multi-antenna RRHs, indexed by n ∈ N � {1, · · · , N}, K
single-antenna mobile users, indexed by k ∈ K � {1, · · · , K},
and a centralized BBU pool, as shown in Fig. 1. The RRHs,
each equipped with a common number L of antennas for
simplicity, are individually connected to the BBUs via high-
speed fronthaul links. We assume that the BBU pool has access
to the information contents that can be potentially requested
by all the users, and distributes each user’s content to an
individually selected cluster of RRHs via the fronthaul links.
Each user is then cooperatively served by the associated RRH
cluster through joint beamforming.

Let wk,n ∈ CL×1 denote the dowlink beamforming vector
from RRH n to user k, and let wk = [wH

k,1,w
H
k,2, · · · ,wH

k,N ]H

denote the aggregate, network wide beamforming vector form
all RRHs to user k. In a similar way, let hH

k denote the
aggregate, network wide channel vector between the antennas
of all the RRHs and user k. At a given symbol transmission
instance, the received signal at user k can be written as

yk = hH
k wkxk +

∑
j∈K\{k}

hH
k wjxj + nk, (1)

where xk (xj) is the information symbol transmitted to user
k (j �= k) and nk represents an additive white Gaussian
noise term. Modeling {xk} and {nk} as zero-mean, mutually
independent random variables and assuming that the channel
vector hk remains approximately constant over a transmis-
sion interval as defined below (i.e. block fading model),
the signal-to-interference-plus-noise ratio (SINR) of user k can
be defined as

SINRk � |hH
k wk|2∑

j∈K\{k}
|hH

k wj |2 + σ2
k

. (2)

Consequently, the achievable data rate of user k is given by
Rk = B log2(1+SINRk), where B denotes the total available
channel bandwidth.

Different from the conventional C-RAN framework, we here
assume that each RRH can cache a certain amount of content
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objects within a local storage device. At regular time inter-
vals, referred to as transmission times, each user submits a
content request according to a certain probability distribution
specific to that user. If the requested content has already been
cached locally at a serving RRH, then this RRH can access
the content directly and transmit it to the user without the
need for fronthaul data transfer.4 It is assumed that enough
time slots are available within a transmission time interval
to complete the content delivery to the users, prior to the
next transmission time. Content placement and delivery are
controlled and managed by a cloud server, which consists
of centralized BBUs, large data storage, software operated
switches, etc.; the interested reader may consult [24], [33]
for additional details about related implementation aspects.
Without significant loss in generality, let us assume that the
complete set of available user contents is represented by F
binary files, indexed by f ∈ F = {1, 2, · · · , F}, each with
normalized size of unity. The local storage size of RRH n
is denoted as Yn ≤ F , which means that RRH n can cache
Yn content files at most. Let cf,n = 1 indicate that content
f is cached in RRH n and cf,n = 0 otherwise, with the
constraint that

∑
f∈F cf,n ≤ Yn.5 Considering that a request

for a content file that is not locally cached leads to a fronthaul
utilization of one unit per serving RRH, the total fronthaul
traffic reduction of the cache-enabled C-RAN can be expressed
as [23]

CB(sk,n, cf,n) =
∑
k∈K

∑
n∈N

sk,n

∑
f∈F

Pk,f cf,n, (3)

where Pk,f denotes the probability that user k requests content
file f and sk,n is the user-RRH association indicator, where
sk,n = 1 means that RRH n belongs to the serving cluster for
user k and sk,n = 0 otherwise. The probabilities Pk,f can be
viewed as the user preference indicators; here, it is assumed
that they can be predicted or estimated via learning procedures
which fall outside the scope of this work, see e.g., [34]–[36].
The cost of the transmission of the requested contents by all
of the users from their serving RRHs can be assessed in terms
of the total transmission power, defined here as

CP (wk,n) =
∑
k∈K

∑
n∈N
‖wk,n‖2, (4)

where it is assumed that wk,n = 0 when sk,n = 0 (see
also (6e)).

In this work, we introduce a new objective function, termed
caching efficiency and defined as

C(sk,n, cf,n,wk,n) � CB(sk,n, cf,n)
CP (wk,n)

, (5)

which measures the amount of fronthaul traffic reduction that
can be achieved per unit of consumed transmission power.

4In a C-RAN without caching capabilities, the RRHs need to fetch the
requested content from the BBU pool via fronthaul links, and possibly
from the cloud server via backhaul links. Since the backhaul/fronthaul links
are usually implemented with dedicated fibers or free space optical links,
the communication delays to fetch these contents can be safely ignored for
simplicity.

5For simplicity, uncoded caching is considered in this work, while the
investigation of coded caching and its impacts on RRH cooperation and
beamforming remain an interesting avenue for future work.

The main motivation to employ the caching efficiency as the
objective function in system design is based on the observation
that with increasing transmission power budget, larger serving
clusters can be formed for each user, which further reduces
the fronthaul utilization. Hence, the objective function (5) is
intuitively pleasing since it takes into account the propor-
tionality relationship between the available power budget and
the fronthaul reduction. Furthermore, if more emphasis on
CB or CP is preferred, we can always put a proper weight
(i.e., via the use of an exponent) on the denominator of (5).
Note that generally, besides the above transmit beamforming
power, the total power consumption also includes additional
terms reflecting the constant power consumption of trans-
ceiver components induced by digital/analog signal processing,
such as digital-to-analog converters (DAC), mixers, frequency
synthesizers, etc. Since the considered caching efficiency is
different from the conventional energy efficiency and due to
the additional QoS constraints, these constant terms will not
affect the algorithm design (which has been verified by our
simulations); consequently, they are not considered in the
sequel.

B. Problem Formulation

In this work, we aim to jointly optimize content place-
ment, RRH clustering and cooperative beamforming at each
transmission time interval, so as to maximize the caching effi-
ciency, which can be formulated as the following optimization
problem:

max
{wk,n,sk,n,cf,n}

C(sk,n, cf,n,wk,n) (6a)

s.t. SINRk ≥ γk, ∀k, (6b)

sk,n(1− sk,n) = 0, ∀k, n, (6c)∑
k∈K

sk,n ≤ Xn, ∀n, (6d)

(1 − sk,n)wk,n = 0, ∀k, n, (6e)

cf,n =0 or 1, ∀f, n,
∑
f∈F

cf,n≤ Yn, ∀n. (6f)

The QoS constraint (6b) requires that the SINR of user k
should be no smaller than a given positive target threshold γk.
Constraint (6c) means that the values of the user association
indices sk,n can only be 0 or 1. Constraint (6d) indicates that
the maximum number of users that RRH n can serve is limited
by Xn. Finally, constraint (6e) forces the beamforming vector
wk,n to be an all-zero vector if user k is not served by RRH n.

In practice, content caching is typically updated over
a larger timescale than RRH clustering and beamforming,
in order to reduce the potential overhead brought up by content
placement. Specifically, the long-term variables, i.e., the set
of content placement indicators {cf,n}, are adaptive to the
slowly-varying statistics of the random system state {hk}.
The short-term variables, i.e., the beamforming vectors {wk}
and RRH clustering indicator variables {sk,n}, are adaptive
to the realization of the system state, which changes at a
faster rate. To account for this dual timescale, it is proposed
to update {cf,n} only once per frame, which consists of
Ns shorter time slots, and update {wk} and {sk,n} in each
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time slot. Consequently, we also consider the following sto-
chastic optimization problem:

min
{wk,n,sk,n,cf,n}

f(cf,n, Θ) � E{hk}(−C(sk,n, cf,n,wk,n))

s.t. (6b)− (6f), (7)

where Θ � {sk,n,wk,n, ∀hk} denotes the collection of all
short-term variables for all possible system states.

Note that problems (6) and (7) are both highly nonconvex
and nonlinear fractional programs, featuring both continuous
and discrete variables which are coupled together in (6e) due
to the RRH clustering operation. Furthermore, for problem
(7), the long-term variables {cf,n} and short-term variables
{sk,n,wk,n} are non-trivially coupled in the objective func-
tion. Consequently, problems (6) and (7) are quite challenging
and it does not appear possible to obtain globally optimal
solutions.6 Meanwhile, we can readily see that the optimal
solution of problem (6) at each time slot naturally provides an
upper bound to that of problem (7) over multiple time slots.
In the following, we first present two approaches to address
problem (6), each one leading to a different numerical algo-
rithm. Subsequently, we show that the proposed algorithms
can be easily adapted to solve problem (7).

Remark 1: In the case that the requested files have different
sizes, we can modify the total fronthaul traffic reduction CB

and the local storage size constraint as CB(sk,n, cf,n) =∑
k∈K

∑
n∈N

sk,n

∑
f∈F

vfPk,f cf,n and
∑

f∈F
vfcf,n ≤ Yn, respec-

tively, where vf denotes the size of file f . Since {vf} are
known constants, the proposed algorithms are still applicable
in this case. Besides, by fixing the Dinkelbach variable, it will
be shown in the following that the proposed algorithms are also
effective when the weighted sum of CP and CB is considered
as the objective function, i.e., CP − χCB , where χ > 0 is a
predefined constant.

III. PROPOSED P-CCCP ALGORITHM

In this section, in order to make problem (6) tractable,
we propose to first transform its fractional objective function
into a numerator-denominator subtractive form by employing
the Dinkelbach method [27]; we then present a P-CCCP
algorithm to address the resulting subproblem. The proposed
algorithm is motivated by the observation that by prop-
erly introducing auxiliary variables and penalizing certain
constraints into the objective function, the pivotal coupling
constraint (6e) can be expressed as a difference of con-
vex (DC) function. Thus, we can use the CCCP method
together with the block coordinate descent (BCD) method
to iteratively solve the resultant subproblems. This leads to
a twin-loop algorithm structure, where the inner loop seeks
to approximately solve the penalized subproblem while the
outer loop updates the penalty parameter and the Dinkelbach
variable.

6Actually, these problems are NP-hard as shown for a simpler problem in
[37, Theorem 1].

A. Reformulation of Problem (6)

By employing the Dinkelbach method, problem (6) can be
reformulated as

max
{wk,n,sk,n,cf,n}, ς

CB(sk,n, cf,n)− ςCP (wk,n)

s.t. (6b)− (6f), (8)

where ς ∈ R is the Dinkelbach variable. The main motivation
behind this method is to convert the fractional objective in (6a)
into a subtractive form that can be tackled more easily. It can
be shown that there exists ς such that the optimal solution of
(8) corresponds to that of (6). Specifically, let P (ς) denote
the optimal value of the cost CB(sk,n, cf,n)− ςCP (wk,n) in
(8) for a given ς . Then the maximum caching efficiency as
per problem (6) is achieved for a ς = ς∗, where the latter
satisfies P (ς∗) = 0. To the best of our knowledge, existing
algorithms available for related but simpler design problems
in cache-enabled C-RAN, such as those in [22], [23], cannot
be directly applied to solve the more general problem (8),
even with fixed Dinkelbach variable. We next proceed with
the further simplification of problem (8).

To begin, we note that (6c) represents a nonlinear equal-
ity constraint which is difficult to handle. To address this
difficulty, we propose to relax this constraint by introducing
auxiliary variables {ηk,n} satisfying

sk,n(1− sk,n) ≤ ηk,n, ∀k, n. (9)

In order to tighten this relaxation, the following constraint is
also necessary:

sk,n(1− sk,n) ≥ 0, ∀k, n. (10)

In a similar way, the bilinear equality constraint (6e) can be
relaxed by introducing auxiliary variables {tk,n} satisfying

‖wk,n‖2 ≤ tk,n, ∀k, n. (11)

Accordingly, problem (8) can be transformed into the follow-
ing problem:

max
W, ς

CB(sk,n, cf,n)− ς
∑
k∈K

∑
n∈N

tk,n − β
∑
k∈K

∑
n∈N

ηk,n

(12a)

s.t. (6b), (6d), (6f), (9), (10), (12b)

‖wk,n‖2 ≤ sk,ntk,n, ∀k, n, (12c)

where β is a penalty parameter associated to the
relaxed constraint (9) and W � {{wk,n}, {sk,n},
{cf,n}, {ηk,n}, {tk,n}} denotes the extended set of search
variables for notational simplicity. Note that the auxiliary
variable ηk,n in (9) can be viewed as a measure of the extent
to which the original constraint (6c) is violated. Alternatively,
the set of conditions {ηk,n = 0, ∀k, n} can be viewed
as a feasibility indicator, revealing that the RRH clustering
constraints are satisfied. Hence, in light of (10), increasing
the penalty parameter β forces the variables ηk,n towards 0,
which in the limit is equivalent to enforcing (6c). In the same
way, the constraint (6e) is implicitly included in problem (12)
through the combination of (12c) and the Dinkelbach variable.

Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:56:19 UTC from IEEE Xplore.  Restrictions apply. 



4130 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 6, JUNE 2020

Next, focusing on constraints (6b) and (12c), we find that
problem (12) can be equivalently rewritten as

max
W, ς

CB(sk,n, cf,n)−ς
∑
k∈K

∑
n∈N

tk,n−β
∑
k∈K

∑
n∈N

ηk,n (13a)

s.t.
√ ∑

j∈K\{k}
|hH

k wj |2 + σ2
k ≤

1√
γk

hH
k wk, ∀k, (13b)

sk,n ≤ ηk,n + s2
k,n, ∀k, n, (13c)

sk,n − s2
k,n ≥ 0, ∀k, n, (13d)

(6d) and (6f),√
‖wk,n‖2 +

1
4
(sk,n − tk,n)2 ≤ 1

2
(sk,n + tk,n), ∀k, n.

(13e)

Note that in (13b), hH
k wk is implicitly restricted to the positive

real domain, which incurs no loss of optimality since we
can always phase-rotate the vector wk such that hH

k wk > 0
without affecting the cost function or the constraints. The
transformation from (12c) to (13e) is based on the identity
1
4 (sk,n + tk,n)2 − 1

4 (sk,n − tk,n)2 = sk,ntk,n.

B. Algorithm Design

In the inner loop of the P-CCCP algorithm proposed here,
we combine the BCD method and the CCCP to solve problem
(13) with fixed Dinkelbach variable ς and penalty parameter β.
It is worth mentioning that in order to generate a sequence
of feasible solutions, a feasible initial solution is required
by many iterative algorithms. In general, infeasible initial
points contaminate the intermediate solutions obtained through
the iterative optimization cycles, and often result in incorrect
local optima. However, finding a “good” feasible initial point
is not a simple task and often requires the same amount
of computational resources as solving the original problem.
Indeed, finding a feasible initial point of a non-convex prob-
lem, such as our caching efficiency maximization problem (6),
is in general NP-hard. In our approach, the use of relaxation,
i.e. inequality constraint (9), along with incorporation of the
penalty parameter β in the cost function allow us to bypass
the requirement of a non-trivial initialization. Specifically,
we simply propose to randomly generate the values of {cf,n}
required for initialization and then feasible {sk,n,wk,n} can
be gradually obtained as β increases during the iterative
process.

To proceed, let us introduce a set of selection matrices Jn ∈
{0, 1}L×NL defined as

Jn = [0L×(n−1)L, IL×L,0L×(N−n)L]. (14)

With the help of (14), we can see that constraint (13e) is
equivalent to ‖[Jnwk, 1

2 (sk,n−tk,n)]‖ ≤ 1
2 (sk,n+tk,n), which

is indeed a second-order cone (SOC) constraint. Besides,
we can approximate constraint (13c) in the ith inner iteration
by replacing the concave part −s2

k,n by its first-order Tay-

lor expansions around the current point s
(i)
k,n, which can be

expressed as

sk,n − ηk,n −
(
s
(i)2
k,n + 2s

(i)
k,n

(
sk,n − s

(i)
k,n

))
≤ 0. (15)

Thus, in the ith inner iteration of the proposed P-CCCP
algorithm, we solve the following problem:

max
W

CB(sk,n, cf,n)− ς
∑

k∈K

∑
n∈N

tk,n − β
∑

k∈K

∑
n∈N

ηk,n

s.t. (6d), (6f), (13b), (13d), (13e) and (15),
(16)

which is a convex problem with respect to {cf,n}
and {sk,n,wk,n, ηk,n, tk,n}=W\{cf,n} respectively, but not
jointly. Therefore, we propose to solve problem (16) by
a BCD-type method in which the blocks of optimization
variablesW\{cf,n} and {cf,n} are successively updated while
keeping the other block fixed.

Step 1: The optimization of W\{cf,n} is a convex second-
order cone program (SOCP), which can be expressed as

max
W\{cf,n}

CB(sk,n, cf,n)− ς
∑
k∈K

∑
n∈N

tk,n − β
∑
k∈K

∑
n∈N

ηk,n

s.t. (6d), (13b), (13d), (13e) and (15). (17)

This problem can be efficiently handled by off-the-shelf
solvers, e.g. [38].

Step 2: With fixed W\{cf,n}, we have the following
subproblem (separable among different n):

max
{cf,n}

∑
f∈F

κf,ncf,n

s.t. cf,n = 0 or 1, ∀f,
∑
f∈F

cf,n ≤ Yn, (18)

where κf,n =
∑

k∈K sk,nPk,f is the amount of fronthaul
reduction if RRH n caches file f , i.e., the benefit of caching
file f at RRH n. In essence, the aim of problem (18) is to
determine which subset of Yn files should be cached by RRH
n. The optimal solution to such a problem is simply to cache
the Yn files that have the largest benefits, i.e.,

copt
f,n =

{
1, if f ∈ Kn

0, otherwise
(19)

where Kn � argmax
K̄⊂F ,|K̄|=Yn

(∑
f∈K̄ κf,n

)
.

In the outer loop, the Dinkelbach variable can be updated
as

ς = (CB(sk,n, cf,n)/CP (wk,n))i, (20)

where i denotes the inner iteration index, while the penalty
parameter β can be updated according to β = min{μβ, βmax},
where μ > 1 is a control parameter that increases the penalty
by a fixed proportion during each outer iteration and βmax

denotes the maximum penalty value.
The proposed P-CCCP algorithm to solve problem (6) is

summarized as Algorithm 1. It is worth noting that problem
(16) with fixed {cf,n} involves K(N + 1) linear constraints
and K(2N + 1) SOC constraints, which consist of K SOCs
of dimension K + 1, KN SOCs of dimension 2 and KN
SOCs of dimension 3. The number of optimization variables
is on the order of κ = O(KNL + 3KN). By applying basic
elements of complexity analysis as in [39], the complexity
of a generic interior-point method (IPM) for solving problem
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Algorithm 1 The Proposed P-CCCP Algorithm

1: Initialize {cf,n}0 β0, βmax and ς0. Set m = 0.
2: repeat
3: Set the inner iteration number i = 0.
4: repeat
5: Solve problem (17) with fixed {cf,n}i to obtain the

updated {W\{cf,n}i}i+1.
6: Obtain {cf,n}i+1 from (18).
7: i← i + 1.
8: until some convergence condition is met.
9: Set β = min{μβ, βmax} and update ς according to (20).

10: Assign Wi to W0 and set m← m + 1.
11: until some convergence condition is met.

(16) can be expressed as O(κ
√

5KN + N + 2K(KN +N +
κ(KN+N)+K(K+1)2+13KN+κ2)). Therefore, by letting
K = N = L → ∞, the worst-case asymptotic complexity of
Algorithm 1 can be evaluated as O(MIN10), where M and
I denote the maximum number of outer and inner iterations,
respectively.

Remark 2: The proposed Algorithm 1 combines the ben-
efits of the Dinkelbach, the BCD and the CCCP meth-
ods. By introducing the Dinkelbach variable ς , the caching
efficiency maximization problem (6) is transformed into
a series of Dinkelbach subproblems. Then, the BCD and
CCCP method are employed to solve the latter subproblems
in the inner loop; subsequently, the refined variables, i.e.
{sk,n, cf,n,wk,n} are used to update the Dinkelbach variable
ς in the outer loop.

Remark 3: If one wants to put more priority on CB or
CP , the following objective function can be considered:
C(sk,n, cf,n,wk,n) = CB(sk,n,cf,n)�

k∈K

�

n∈N
‖wk,n‖2p , where p is a prede-

fined constant, so that 0 < p < 1 puts more emphasis on
CB while p > 1 has the opposite effect. Correspondingly,
the proposed Algorithm 1 can be easily modified to address
the resultant problem. To be specific, we only need to change
the terms involving tk,n in the objective of problem (16)
from −ς

∑
k∈K

∑
n∈N

tk,n to −ς
∑

k∈K

∑
n∈N

tpk,n. Then, if p > 1,

the resulting problem (17) is still a convex problem, which is
easy to address. If 0 < p < 1, we can see that tpk,n is concave
with respect to tk,n (because tk,n is generally non-negative),
therefore, one can employ the CCCP concept to approximate
it with a convex surrogate function. The details are omitted
here for brevity.

Remark 4: A complete characterization of the convergence
properties of Algorithm 1 is rather involved and falls outside
the scope of this work, where the focus is on algorithm design
and performance study. Therefore, the detailed proof is left for
future research.

IV. PROPOSED PDD-BASED ALGORITHM

In the previous section, we proposed the P-CCCP algorithm
which, at each iteration, requires the solution of an SOCP
problem. In general, this type of approach is characterized by
relatively high computational complexity since off-the-shelf

software solvers must be employed. From another perspective,
this suggests that the problem structure is not fully exploited
in the proposed P-CCCP algorithm. In this section, motivated
by these considerations, we develop an alternative PDD-based
algorithm that is more efficient and simpler to implement.
The proposed PDD-based algorithm also relies on the Dinkel-
bach method and exhibits a twin-loop structure: in this case
however, the inner loop seeks to (approximately) solve an
augmented Lagrangian (AL) problem (see e.g., [40]–[42])
using a block minimization technique, while the outer loop
updates the Dinkelbach variable and either the dual variables
or the penalty parameter, depending on a constraint violation
status. Interestingly, we show that each subproblem in the inner
loop’s block minimization can be solved either in closed-form
or by the bisection method [43].

A. Reformulation of Problem (8)

We first rewrite problem (8) as follows:

min
{wk,n,sk,n,cf,n}, ς

−CB(sk,n, cf,n) + ςCP (wk,n)

s.t. (6b)− (6f). (21)

Next, we introduce auxiliary variables {ŝk,n} and
{wj

k}j∈K\{k} which satisfy

wj
k = wk, ∀j ∈ K\{k}, ∀k, (22)

sk,n = ŝk,n, ∀k, n. (23)

Note that (22) and (23) can be interpreted as introducing K−1
and 1 redundant copies of variables wk and sk,n, respectively.7

Then, problem (21) can be equivalently expressed as

min
W̄, ς

−CB(sk,n, cf,n) + ςCP (wk,n) (24a)

s.t. (6d)− (6f), (22) and (23), (24b)
|hH

k wk|2∑
j∈K\{k}

|hH
k wk

j |2 + σ2
k

≥ γk, ∀k, (24c)

sk,n(1− ŝk,n) = 0, ∀k, n, (24d)

0 ≤ ŝk,n ≤ 1, ∀k, n, (24e)

where W̄ � {{wk}, {wj
k}j∈K\{k}, {sk,n}, {ŝk,n}, {cf,n}}.

The introduction of these auxiliary variables represents a
critical step in developing the proposed PDD-based algorithm.
Indeed, by adopting these new variables, we can partition
the complete set of optimization variables into smaller non-
overlapping subsets, or blocks, that can be optimized sepa-
rately. Specifically, the joint optimization problem (21) can be
decomposed into a number of subproblems which either admit
closed-form solutions or can be solved via simple iterative
approaches. Hence, through the introduction of auxiliary vari-
ables and judicious use of the block structure, low-complexity
algorithms can be devised for the optimization of each block
of variables, so that ultimately, the underlying problem (6) can
be easily solved.

7We emphasize that in contrast to sk,n which only takes on binary values,
its copy ŝk,n is a continuous variable.
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B. Algorithm Design

In this subsection, we aim to conceive an efficient PDD-
based algorithm to solve problem (24). To this end, the AL of
problem (24) is first formulated as

min
W̄, ς

−CB(sk,n, cf,n) + ς
∑

k∈K
‖wk‖2 + Pρ

s.t. (6d), (6f), (24c) and (24e),
(25)

where the penalty term

Pρ � 1
2ρ

∑
k∈K

∑
n∈N

(
(sk,n(1− ŝk,n) + ρmλk,n)2

+(sk,n − ŝk,n + ρmλ̂k,n)2
)

+
1
2ρ

∑
k∈K

∑
j∈K\{k}

‖wk −wj
k + ρmμj,k‖2

+
1
2ρ

∑
k∈K

∑
n∈N
‖(1− sk,n)Jnwk + ρmξk,n‖2, (26)

and {λk,n}, {λ̂k,n}, {μj,k} and {ξk,n} denote the dual
variables corresponding to the constraints (24d), (23), (22) and
(6e), respectively. The coefficient ρ > 0 is used to control the
size of the penalty (i.e., decreasing ρ increases the penalty).

Our proposed algorithm consists of two embedded loops.
In the outer loop, indexed by positive integer m, we update
the Dinkelbach variable ςm and either the dual variables
{λm

k,n, λ̂m
k,n, μm

j,k, ξm
k,n} or the penalty parameter ρm, where

the dependence of these variables on iteration index m is now
made explicit for clarity. In the inner loop, we employ the
block successive upper-bound minimization (BSUM) method
[44] to iteratively optimize the primal variables W̄ over
selected blocks of variables while keeping the other variables
fixed. In the following, we first develop the BSUM method in
details, then present the update of the dual variables, Dinkel-
bach variable and penalty parameter, and finally summarize
the overall PDD-based algorithm.

In the inner loop, with fixed values of {λm
k,n, λ̂m

k,n, μm
j,k,

ξm
k,n}, ρm and ςm, we propose to divide the primal variables

into four blocks that will be treated separately, i.e., {sk,n},
{ŝk,n}, {wk,wj

k} and {cf,n}. We now proceed with the
optimization of each block.

1. Block {sk,n}: The optimization problem of {sk,n} can
be expressed as

min
{sk,n}

−
∑
k∈K

sk,n

∑
f∈F

Pk,f cf,n

+
1

2ρm

∑
k∈K
‖(1− sk,n)Jnwk + ρmξm

k,n‖2

+
1

2ρm

∑
k∈K

(
(sk,n(1− ŝk,n) + ρmλm

k,n)2

+(sk,n − ŝk,n + ρmλ̂m
k,n)2

)
s.t.

∑
k∈K

sk,n ≤ Xn, ∀n. (27)

It can be seen that for each n, the variables {sk,n}k∈K can
be optimized separately in a parallel manner. In particular,
a closed-form solution can be obtained for the optimal {sk,n},
as explained in further details in Appendix A.

2. Block {wk,wk
j }j∈K\{k}: The corresponding optimization

problem can be expressed as8

min
wk,{wk

j }j �=k

ςm‖wk‖2

+
1

2ρm

∑
n∈N
‖(1− sk,n)Jnwk + ρmξm

k,n‖2

+
1

2ρm

∑
j∈K\{k}

(
‖wk −wj

k + ρmμm
j,k‖2

+‖wj
j −wk

j + ρmμm
k,j‖2

)
s.t.

|hH
k wk|2∑

j∈K\{k}
|hH

k wk
j |2 + σ2

k

≥ γk. (28)

Problem (28) can be efficiently solved by resorting to the
Lagrangian dual problem and employing the bisection method.
The detailed derivation is provided in Appendix B.

3. Block {ŝk,n}: We consider the following problem:
min
ŝk,n

1
2ρm

(sk,n(1 − ŝk,n) + ρmλm
k,n)2

+ 1
2ρm

(sk,n − ŝk,n + ρmλ̂m
k,n)2,

s.t. 0 ≤ ŝk,n ≤ 1.

(29)

Problem (29) also admits a closed-form solution, as detailed
in Appendix C.

4. Block {cf,n}: The optimization of {cf,n} can be formu-
lated as problem (18), the solution of which has already been
described in Section III-B.

In the outer loop, the dual variables
{λm

k,n, λ̂m
k,n, μm

j,k, ξm
k,n} can be updated by means

of

λm+1
k,n = λm

k,n +
1

ρm
(sk,n(1− ŝk,n)),

λ̂m+1
k,n = λ̂m

k,n +
1

ρm
(sk,n − ŝk,n),

μm+1
j,k = μm

j,k +
1

ρm
(wk −wj

k),

ξm+1
k,n = ξm

k,n +
1

ρm
((1 − sk,n)Jnwk). (30)

As for the Dinkelbach variable and the penalty parameter, they
can be updated as

ςm+1 = CB(sk,n, cf,n)m/CP (wk,n)m, ρm+1 = qρm, (31)

where q < 1 is a control parameter used to increase the value
of the penalty term Pρ in (26) during each outer iteration.
Besides, we denote the maximum constraint violation among
all the equality constraints in problem (24) as �, which is
shown as follows:

� = max∀k,j,n

{|sk,n(1− ŝk,n)|, |sk,n − ŝk,n|,
‖wk −wj

k‖∞, ‖(1− sk,n)Jnwk‖∞
}
.

(32)

This important quantity can be employed to determine if the
proposed algorithm converges, and whether we should update
the dual variables or increase the penalty parameter.

The main steps of the proposed PDD-based algorithm are
summarized in Algorithm 2. Similar to the complexity analysis

8Due to the additive nature of the AL, we only need to consider a single
value of k at a time, i.e., optimization for other values of k can be done
separately in parallel.
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in Section III-B, we observe that the complexity for solving
problems (18), (27) and (29) is almost negligible compared
with that of solving problem (28). Overall, the complexity can
be expressed as9 O (MIN3L3K4 log2

(
λmax−λmin

ε

))
, where

λmax = max{λk}k∈K and λmin = min{λk}k∈K denote the
upper and lower bounds of the corresponding dual variables
(see Appendix B) and ε denotes the precision of the bisection
method. For completeness, a simple initialization method
based on zero-forcing (ZF) beamforming [45] is proposed in
Appendix D.

Remark 5: Similar to Algorithm 1 in Section III, we leave
the detailed convergence proof of the proposed PDD-based
algorithm for future research. If an exponential parameter is
introduced in the objective in (28), i.e. if ‖wk‖2 is replaced by
‖wk‖2p, one can utilize a similar method as that in Remark 3
to modify Algorithm 2, i.e., employing the BSUM method to
make subproblem (28) tractable.

Algorithm 2 The Proposed PDD-Based Algorithm

1: Initialize {wj
k}0, {cf,n}0, {sk,n}0 = {ŝk,n}0, η0, 0, ρ0,

q and ς0.
2: Set the outer iteration number m = 0.
3: repeat
4: Set the inner iteration index i = 0.
5: repeat
6: Update {wk,wk

j }j �=k by solving problem (28) (Appen-
dix B).

7: Update {ŝk,n} by solving problem (29) (Appendix C).
8: Update {cf,n} by (19).
9: Update {sk,n} by solving problem (27) (Appendix A).

i← i + 1.
10: until some convergence condition is met.
11: Assign W̄i to W̄0. Calculate � via (32). If � ≤ ηm and

update the dual variables via (30), otherwise set ρm+1 =
qρm. Set m+1 = qm, ηm+1 = 

1/6
m+1 and update the

Dinkelbach parameter via (20).10 m← m + 1.
12: until some convergence condition is met.

V. TWO-TIMESCALE JOINT DESIGN ALGORITHM

In this section, we propose a novel two-timescale joint
design algorithm based on the TOSCA framework [32] to
address problem (7). In the proposed two-timescale design,
we update the long-term variables at the end of each frame and
optimize the short-term variables based on the instantaneous
CSI at each time slot, as shown in Fig. 2. Since the long-term
variables {cf,n} are discrete and difficult to handle, we pro-
pose to relax them into continuous variables and introduce

9The main factor affecting the computational complexity of Algorithm 2 is
the need to perform the eigenvalue decomposition of a KNL×KNL matrix
multiple times. For general matrices, the associated complexity would be
O(K3N3L3) for each such eigendecomposition. However, since Ak and Dk

(defined in Appendix B) are sparse matrices, the corresponding complexity
can be significantly reduced by further exploiting the special structure of Ak
and Dk , which we shall not further detail in this work due to space limitation.

10Note that �m is a parameter that controls the decaying of the constraint
violation, i.e., if � ≥ ηm (the value of ηm is controlled by �m), then the
penalty parameter ρm+1 is further decreased to decrease �.

Fig. 2. Timeline (frame structure) of the considered two-timescale design.

a continuous smooth function into the objective to promote
sparsity [46]. Specifically, we transform (7) into the following
problem:

min
{wk,n,sk,n,cf,n}

f̂(cf,n, Θ) � f(cf,n, Θ)−
∑

f∈F ,n∈N
gc(cf,n)

s.t. (6b)− (6e), cf,n ∈ [0, 1], ∀f, n,
∑
f∈F

cf,n ≤ Yn,

(33)

where gc(·) can be a smooth concave function, such as the
logarithm or exponential.

It can be observed that problem (33) can be decomposed
into a long-term master problem and a family of short-term
subproblems, which can be expressed as

PL : min
c

f̂(c, Θ∗(c))

s.t. cf,n ∈ [0, 1], ∀f, n,
∑

f∈F
cf,n ≤ Yn, ∀n,

PS(c,hk) : min
{wk,n}, s

−C(s, c,wk,n)

s.t. (6b)− (6e),

where we have c � {cf,n}, s � {sf,n}, Θ∗(c) =
{s∗({hk}),w∗

k,n({hk}), ∀hk ∈ Ω}, {s∗,w∗
k,n} denotes the

solution of PS(c,hk) and Ω denotes the sample space. As can
be seen, the short-term problems PS(c,hk) in each time slot
can be solved by employing Algorithm 1 and Algorithm 2,
where we just fix the variables in c and leave the other
steps in these two algorithms unchanged. For the long-term
problem PL, we introduce the following surrogate function
for its objective:

f̄(c) =
∑
n∈N

∑
f∈F

qt
f,ncf,n

−
∑

f∈F ,n∈N
gc(cf,n) + τ‖c− ct‖2, (34)

where the superscript t denotes the frame index, ct denotes
the long-term variables obtained in the t-th frame, τ is a small
positive number. qt

f,n can be recursively computed as

qt
f,n = (1− ρt)qt−1

f,n − ρt

(t+1)Ns∑
i=tNs+1

κt
f,n(i)/CP (wt

k,n(i))
Ns

. (35)

where i denotes the time slot index, κt
f,n(i) represents the

benefit of caching file f at RRH n in the i-th time slot of
frame t, ρt is a sequence satisfying ρt → 0, 1/ρt ≤ O(tβ), for
some β ∈ (0, 1), and

∑
t(ρ

t)2 < ∞. Note that the statistical
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Algorithm 3 The Proposed Two-Timescale Joint Design
Algorithm

1: Initialize {wj
k}0, {cf,n}0, {sk,n}0, ρ0, t = 0.

2: Step 1: At each time slot i, solve problem PS(c,hk)
using Algorithm 1 or Algorithm 2 and obtain solution
{sk,n(i),wk,n(i)}. Update the surrogate function f̄(c)
using {sk,n(i),wk,n(i)}.

3: Step 2: At the end of each frame, solve problem (36)
to obtain c̄t, update ct+1 by ct+1 = (1 − γt)ct + γtc̄t,
where γt ∈ (0, 1] is a sequence satisfying

∑
t γt = ∞,∑

t(γ
t)2 <∞.

4: Let t = t + 1 and return to Step 1.

information of the CSI is implicitly contained in qt
f,n through

κt
f,n(i) and wt

k,n(i). At the end of each frame, we update the
long-term variables by solving the following problem:

min
c

f̄(c)

s.t. cf,n ∈ [0, 1], ∀f, n,
∑

f∈F
cf,n ≤ Yn, ∀n, (36)

which is convex and can be easily solved. The pro-
posed two-timescale joint design algorithm is summarized in
Algorithm 3.

VI. SIMULATION RESULTS

In this section, the performance of the proposed algorithms
is evaluated numerically. The following system parameter
values are used throughout unless otherwise specified: N = 7,
K = 12, L = 2, F = 1120 and σ2

k = −90 dBm, ∀k.11

Each RRH is located at the center of a hexagonal-type
cell, where the propagation distance between adjacent
RRHs is set to 100 meters and the users are uniformly and
independently distributed in the area. We consider Rayleigh
fading channels with large-scale pathloss (in dB) modeled
as −147.3 − 43.3log10D, where the distance D is measured
in kilometers. For simplicity, we assume that all users have
the same SINR requirements, and that each RRH has the
same local storage size and can support the same number of
users, i.e.: γk = γ, ∀k ∈ K, Xn = X, Yn = Y, ∀n ∈ N . For
comparison, we also provide the results of two separate design
algorithms, namely the McCormick envelopes Branch-and-
Bound (ME-BB) algorithm [49] and the separate PDD-based
algorithm, where the discrete variables {sk,n, cf,n} and
the beamforming vectors {wk} are separately optimized.
In Algorithm 1, we use the following parameter values:
μ = 0.85, βmax = 100, β0 = 0.1 and ς0 = 1, while in
Algorithm 2, we set ρ0 = 20, η0 = 100, 0 = 100, q = 0.95
and ς0 = 1. The convex problem (16) in Algorithm 1 is
solved by CVX [38] and the integer programming problem in
the ME-BB algorithm is solved by the MOSEK solver [50].
The simulations are carried out on a computer with Intel
(i7-6700HQ) CPU running at 2.60GHz and with 8GB RAM.

11More users can be supported by performing proper user scheduling, e.g.
according to the traffic demand and channel quality, etc. In this work, for
simplicity, we assume that the proposed algorithms operate under the condition
of fixed user scheduling, as in [22], [47], [48]. Further investigation into user
scheduling and the influence of inactive users on content placement are left
for future work.

Fig. 3. Maximum constraint violation and objective value versus outer
iteration number for 3 realizations.

In the simulations, we assume that the popularity of the
files can be measured based on the number and behavior
of the requests. According to [22], [23], [51], in practice,
the mobile user requests usually follow a certain content
popularity distribution, e.g., the Zipf distribution. Therefore,
in our simulations, we assume that four types of files can be
requested, all with similar Zipf distribution with parameter 0.4.
Besides, four types of users with different file preferences are
considered, i.e.: Type l (l ∈ {1, 2, 3, 4}) users prefer Type l
files with probability 0.4 and the other three types of files with
probability 0.2.

In Fig. 3, we illustrate the convergence behavior of the
proposed Algorithm 1 (P-CCCP) and Algorithm 2 (PDD) for
three different realizations in the case of X = 6, Y = 200
and γ = 6dB. The plots show that both algorithms can reach
convergence within a few hundred outer iterations. From these
and other instances, it is observed that Algorithm 1 tends to
converge slightly faster than Algorithm 2, although their steady
state performance is comparable on average. This is apparently
due to the fact that the latter uses an off-the-shelf solver to
simultaneously optimize the search variables in (17), whereas
the former relies on block minimization, in which the search
variables are divided into several smaller blocks.

Next, in Fig. 4 and 5, we illustrate the effect of content-
aware RRH clustering in the case of K = 12, F = 350, X = 6
and Y = 50. Here, for more clarity, we consider two types
of files and users with different file preferences, i.e.: Type
l (l ∈ {1, 2}) users prefer Type l files with probability 0.8 and
the other type of files with probability 0.2. In Fig. 4 (a) and
(b), the RRH clustering is jointly optimized along with content
placement using the proposed Algorithms 1 and Algorithm 2.
It can be observed that in order to maximize caching efficiency
as defined in (5), the RRHs selected to serve a particular user
are not necessarily the closest one to that user (i.e. a distant
RRH may be selected while a nearby one is not). It can also
be observed that the final RRH clustering obtained with Algo-
rithms (1) and Algorithm 2 are quite similar. The differences
can be apparently explained on the basis of the differences
between these two algorithms, especially that they can produce
different stationary solutions with similar performance (in
terms of objective value). In Fig. 4 (c) and (d), we present the
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Fig. 4. RRH clustering with caching obtained by algorithm 1, Algorithm 2, the ME-BB and separate PDD-based algorithms.

Fig. 5. Fronthaul reduction performance comparison between the ME-BB
algorithm and the separate PDD-based algorithm.

results of RRH clustering obtained by the ME-BB and separate
PDD-based algorithms. Note that in the ME-BB algorithm,
we had to limit the maximum time spent by the mixed-
integer optimizer MOSEK to 5000 seconds, for otherwise
the procedure can become extremely time consuming; the
corresponding relative optimality gap (ROG) [50] is on the
order of 33% or less.12 The fronthaul reduction performance
of the ME-BB and separete PDD-based algorithms is plotted
for different representative cases in Fig. 5. In general, we find
that these algorithms are more aggressive, that is, in the final
RRH clustering solution, the RRHs tend to serve only one
type of users. As noted above, the ME-BB algorithm can only
obtain suboptimal solutions in 5000 seconds, and as a result
the performance of the separate PDD-based algorithm is better
in certain cases with large K . Hence, among the two separate
design algorithms, we only provide the results of the separate
PDD-based algorithm in the sequel.

In Fig. 6 (a) and (b), we examine the average caching effi-
ciency versus X and Y with fixed γ = 5dB. For comparison,
we also provide the performance of Algorithm 1 when only
CB or CP is considered and the performance of a heuristic
method, where the RRH clustering is simply determined
based on the distances between the RRHs and the users.
As we can see from Fig. 6 (a), Algorithm 1 and Algorithm 2
exhibit comparable performance, while the performance of the

12In the simulations, the final ROG within 5000 seconds is highly dependent
to the problem size, i.e., with increasing K , more time is needed to obtain
the same optimality gap.

Fig. 6. Average caching efficiency versus the maximum number of concurrent
users X served by each RRH (with fixed Y = 100) and the local storage
size Y of each RRH (fixed X = 6).

Fig. 7. Average caching efficiency versus the SINR target threshold of each
user.

heuristic method and the separate PDD-based algorithm is far
worse. This is intuitively plausible since the heuristic method
and the separate PDD-based algorithm do not optimize caching
placement, RRH clustering and beamforming jointly. Further-
more, only minimizing CP can still maintain a certain caching
efficiency performance when X and Y are relatively small.
This is because the fronthaul traffic reduction CB(sk,n, cf,n)
changes linearly with sk,n and cf,n, respectively. However,
in terms of beamforming design, reducing the cooperation
among the RRHs (i.e., decreasing X) may lead to significant
changes in the total transmission power CP (wk,n), where the
underlying relationship is generally not linear. As a result,
when X is large, the performance gain offered by RRH
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Fig. 8. Fronthaul traffic reduction and total transmission power versus X, Y and γ.

cooperation nearly saturates and thus optimizing content place-
ment is more important. Meanwhile, the performance obtained
by only maximizing CB is poor since the costs of transmission
power are ignored. It is also observed that the achieved caching
efficiency is in direct proportion to the service capability of
the RRHs, as represented by X . Indeed, with increasing X ,
smarter content placement can be realized, which reduces
the fronthaul utilization. Similar trends as those noted with
Fig. 6 (a) can be observed in Fig. 6 (b). With the increase of
the local storage size in each RRH, more fronthaul reduction
can be achieved, which results into higher caching efficiency.

In Fig. 7, the average caching efficiency as a function
of the SINR target threshold γ with fixed Y = 100 and
X = 6 is investigated. Similar to the result in Fig. 6,
the proposed joint design algorithms exhibit a similar per-
formance, which significantly exceeds that of the heuristic
method and the separate PDD-based algorithm. The achieved
caching efficiency is in inverse proportion to the SINR target
γ of each user. This is because as γ increases, the RRHs
need to increase their transmission power to satisfy the more
stringent SINR requirements, while the fronthaul reduction
barely changes with different γ. Besides, as the SINR target
γ decreases, the achieved caching efficiencies of Algorithm 1
(only minimizing CP ), the ME-BB and separate PDD-based
algorithms become close to that of the joint design algorithms,
since in this case the transmission power is less dominant in
achieving high caching efficiency.

Moreover, in Fig. 8, we investigate the achieved CB and CP

by Algorithm 2 with the same system settings as in Fig. 6 and
Fig. 7. Specifically, from Fig. 8 (a), we can see that increasing
the number of served users X improves the fronthaul traffic
reduction significantly, which is reasonable since a larger
X potentially increases the number of 1s in {sk,n} and
this in turn increases CB . For the total transmission power,
however, the performance gain offered by larger X gradually
decreases, because involving some less beneficial RRHs only
brings minor performance gain. In Fig. 8 (b), we can observe
that the increase of the local storage Y also improves CB

significantly since more files can be cached in each RRH,
however CP merely changes with different values of Y .
Finally, in Fig. 8 (c), it can be observed that the required SINR

Fig. 9. Average caching efficiency achieved by algorithm 3 versus the number
of frames.

threshold γ has the most profound impact on CP . In particular,
when CP is larger than some specific value, the proposed
PDD-based algorithm will sacrifice CB for CP , since this
offers better caching efficiency performance.

Finally, in Fig. 9, we illustrate the performance of the
proposed two-timescale joint design algorithm, i.e. Algo-
rithm 3, when Ns = 50. For comparison, we also provide
the performance obtained by running Algorithm 1 with two
fixed caching strategies, i.e., PopC and ProC. It can be seen
that the performance of Algorithm 1 can be viewed as an upper
bound to that of Algorithm 3. Furthermore, when initialized
by Algorithm 1, Algorithm 3 converges much faster than that
with random initialization. As Algorithm 1 and Algorithm 2
exhibit similar performance, this also shows the importance
and necessity of these single-timescale algorithms. Finally,
it can be observed that the proposed Algorithm 3 performs
better than Algorithm 1 with fixed caching, which further
demonstrates the superiority of the proposed joint design
approach. Since the assumed content popularity distribution is
non-uniform, therefore, the performance of Algorithm 1 with
PopC is better than that with ProC.

VII. CONCLUSION AND FUTURE WORK

In this work, we have studied the problem of joint
transceiver design for a content-aware C-RAN system.
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An optimization framework was presented in which the
ratio between fronthaul reduction and transmission power
cost, called caching efficiency, is employed as the objective
function. By tacking advantage of the Dinkelbach method,
two efficient algorithms were proposed to jointly optimize
the downlink beamforming vectors, the RRH clustering and
the caching placement. To arrive at Algorithm 1 (P-CCCP),
we combined the penalty method, the CCCP technique
and the BCD method and showed that by introducing
auxiliary variables and penalizing certain constraints into the
objective function, the original optimization problem could
be convexified. In the case of Algorithm 2 (PDD), we utilized
the PDD framework and showed that with the introduction of
auxiliary variables, the original problem could be addressed
by sequentially updating the design variables (in both primal
and dual domains) either in closed-form or via the bisection
method. Furthermore, a two-timescale joint design algorithm
(Algorithm 3) was proposed where the content placement is
updated over a larger timescale. We showed that the P-CCCP
and PDD-based algorithms can be employed as powerful
initialization methods for Algorithm 3. Simulation results
were presented, showing that the proposed algorithms exhibit
very good performance.

Finally, as motivation for future research, we briefly discuss
some important issues/aspects of this work that were not yet
addressed or fully unveiled:

1. For simplicity, we only considered the scheduled users,
also known as active users, in our study. Generally, the content
preferences and RRH clusterings of both active and inactive
users will affect the content placement policy. The joint
optimization of downlink beamforming, RRH clustering and
content placement for both active and inactive users, is more
challenging to model and solve. It remains unclear whether
the performance gain obtained by considering the impacts
of inactive users is sufficiently large to justify the increased
complexity, which needs further investigation.

2. In this work, the user preference profile Pk,f , i.e., the
user request probability, was assumed to be known a prior by
means of proper learning procedures. As a result, in problem
(7), the expectation is only taken over the random channel
realizations. However, it is more general to assume that the
user requests are also random variables. Please see Appendix E
for a possible formulation taking this aspect into account.

3. Instead of assuming fixed user preferences for file type,
a more general approach would be to consider the scenario
where content popularity is dynamically changing. In this
case, the historical content requests of the users and user-RRH
association information could be exploited to predict the future
content popularity for better caching efficiency.

APPENDIX

A. Solution of Problem (27)

The Lagrangian of problem (27) can be formulated as

L({sk,n, λ}) � −CB(sk,n, cf,n) + λ
(∑

k∈K
sk,n −Xn

)

+
1

2ρm

∑
k∈K
‖(1− sk,n)Jnwk + ρmξm

k,n‖2

+
1

2ρm

∑
k∈K

(
(sk,n(1− ŝk,n) + ρmλm

k,n)2

+(sk,n − ŝk,n + ρmλ̂m
k,n)2

)
. (37)

Taking the derivative with respect to sk,n and equating the
result to 0, we obtain

sk,n = (ak,n − λρm)/bk,n, (38)

where ak,n = ρm

∑
f∈F Pk,f cf,n + (ŝk,n − 1)ρmλm

k,n +
(ŝk,n − ρmλ̂m

k,n) + ρm

2 wkH
k JH

n ξm
k,n + ρm

2 ξmH
k,n Jnwk +

wkH
k JH

n Jnwk and bk,n = (1 − ŝk,n)2 + wkH
k JH

n Jnwk + 1.
According to the complementary slackness condition [52]
λ
(∑

k∈K sk,n −Xn

)
= 0, we consider the following two

cases:
• If λ = 0, it follows from (38) that sk,n = ak,n

bk,n
. Hence,

if
∑

k∈K sk,n ≤ Xn is satisfied, sk,n = ak,n

bk,n
is the

optimal solution of problem (27).
• If λ > 0, upon substitution of (38) into

∑
k∈K sk,n =

Xn, we can obtain

λ =

(∑
k∈K

ak,n

bk,n
−Xn

)/∑
k∈K

ρm

bk,n
, (39)

and sk,n can be calculated by substituting (39) into (38),
which yields the optimal solution of problem (27).

Therefore, we conclude that the optimal solution of problem
(27) can be obtained in closed-form by considering the above
two cases.

B. Solution of Problem (28)

We first introduce the following auxiliary variables:
xk =

[
(wk

1)H , · · · , (wk
k)H , · · · , (wk

K)H
]H

, Pk =
[0NL×(k−1)NL, INL×NL,0NL×(K−k)NL] ∈ {0, 1}NL×KNL,
such that Pjxk = wk

j holds. We then observe that problem
(28) can be equivalently formulated as follows:

min
xk

xH
k Akxk + xH

k bk + ckxk

s.t. xH
k Dkxk ≥ σ2

k,
(40)

where

Ak �
(

K − 1
2ρm

+ η

)
PH

k Pk +
1

2ρm

∑
j∈K\{k}

PH
j Pj

+
1

2ρm

∑
n∈N

(1 − sk,n)2PH
k JH

n JnPk, (41)

bk � 1
2ρm

∑
j∈K\{k}

(
PH

k

(
ρmμm

j,k −wj
k

)

−PH
j

(
wj

j + ρmμm
k,j

))
+

1
2ρm

∑
n∈N

(1 − sk,n)PH
k JH

n ρmξm
k,n, (42)

ck � 1
2ρm

∑
j∈K\{k}

((
ρmμm

j,k −wj
k

)H

Pk

−
(
wj

j + ρmμm
k,j

)H

Pj

)
+

1
2ρm

∑
n∈N

ρmξm
k,n(1− sk,n)JnPk, (43)
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Dk � 1
γk

PH
k hkh

H
k Pk −

∑
j∈K\{k}

PH
j hkh

H
k Pj . (44)

Since Ak is a full-rank matrix, we can decompose it as Ak =
A

1
2
k A

1
2
k . Furthermore, by introducing the substitution yk =

A
1
2
k xk, problem (40) can be rewritten as

min
yk

yH
k yk + yH

k A− 1
2

k bk + ckA
− 1

2
k yk

s.t. yH
k A− 1

2
k DkA

− 1
2

k yk ≥ σ2
k.

(45)

Next, we focus on the optimal solution of problem (45),
whose Lagrange function can be expressed as

L = yH
k yk + yH

k A− 1
2

k bk + ckA
− 1

2
k yk

+λk

(
σ2

k − yH
k A− 1

2
k DkA

− 1
2

k yk

)
,

(46)

where λk denotes the dual variable. Employing the eigenvalue
decomposition, we can write A− 1

2
k DkA

− 1
2

k = VSV−1, where
V is unitary and S = diag(s1, · · · , sKNL) is diagonal. Note
that in order for the problem to be feasible, the dual variable
should satisfy I − λkVSV−1 � 0, which is equivalent to
I − λkS � 0. Taking the derivative of L with respect to y∗

k,
we obtain

yk + A− 1
2

k bk − λkVSV−1yk = 0, (47)

which is equivalent to

yk = V(I− λkS)−1V−1(−A− 1
2

k bk). (48)

The Lagrange dual variable λk can be obtained by the bisec-
tion method, and the corresponding upper bound λk and lower
bound λk can be found by resorting to I − λkS � 0, which
results into λk = 1

max(0, s1, ··· , sKNL) and λk = 0.

C. Solution of Problem (29)

The Lagrange function of problem (29) can be expressed as

L = 1
2ρm

(sk,n(1− ŝk,n) + ρmλm
k,n)2

+ 1
2ρm

(sk,n − ŝk,n + ρmλ̂m
k,n)2 + λ(ŝk,n − 1)− μŝk,n,

(49)

where λ and μ denote the dual variables corresponding to the
constraints ŝk,n ≤ 1 and 0 ≤ ŝk,n, respectively. Taking the
derivative with respect to ŝk,n, we obtain

ŝk,n = ak,n/bk,n, (50)

where ak,n = sk,n(sk,n + ρmλm
k,n) + (sk,n + ρmλ̂m

k,n) −
λρm + μρm and bk,n = s2

k,n + 1. Next, we consider the
following three cases:

• λ = 0 and μ = 0: if (50) satisfies 0 ≤ ŝk,n ≤ 1, then
this is the optimal solution;

• λ = 0 and μ > 0: we have ŝk,n = 0, then if μ =
− sk,n

2+sk,n

ρm
−sk,nλm

k,n− λ̂m
k,n > 0 holds, ŝk,n = 0 is the

optimal solution;
• λ > 0 and μ = 0: we have ŝk,n = 1, then if λ =

sk,n−1
ρm

+ sk,nλm
k,n + λ̂m

k,n > 0 holds, ŝk,n = 1 is the
optimal solution.

Therefore, the optimal solution of problem (29) can be
obtained in closed-form.

D. A Simple Initialization Method

In this appendix, we propose a simple initialization method
based on ZF beamforming. We first address the initialization of
the beamforming vectors {wk} by considering the following
ZF problem:

min
wk

‖wk‖2
s.t. |hH

k wk|2 ≥ γkσ2
k, HH

k wk = 0,
(51)

where it can be easily seen that the first constraint must be
satisfied with equality at optimality. Therefore, we have the
following equivalent problem:

min
wk

‖wk‖2
s.t. |hH

k wk|2 = γkσ2
k, HH

k wk = 0.
(52)

Defining wk =
√

pkw̄k with ‖w̄k‖ = 1, it can be observed
that problem (52) is equivalent to

min
pk, w̄k

pk

s.t. pk|hH
k w̄k|2 = σ2

kγk, HH
k w̄k = 0.

(53)

To achieve the minimum pk, the optimal w̄k should be the
optimal solution to the following problem:

max
w̄k

|hH
k w̄k|2

s.t. HH
k w̄k = 0, ‖w̄k‖ = 1.

(54)

Then, it can be easily seen that the optimal solution of problem
(54) is given by

w̄k = UkUH
k hk/‖UkUH

k hk‖, (55)

where Uk denotes the orthogonal basis for the null space of
HH

k . Hence, the optimal pk is given by σ2
kγk/|hH

k w̄k|2.

E. A Possible Formulation With Random Content Request

Let Zk denote the random variable which represents
the content request of user k, whose sample space is F ,
i.e., Pk,f = Pr(Zk = f) denotes the probability that user
k requests content file f . Then, when the user requests are
considered as random variables, the total fronthaul traffic
reduction of the considered cache-enabled C-RAN would
become

CB(sk,n, cf,n) =
∑
k∈K

∑
n∈N

sk,n

∑
f∈F

1f (Zk)cf,n, (56)

where 1f(·) is an indicator function defined as

1f (Zk) =
{

1, if Zk = f,
0, if otherwise.

(57)

As a result, we can consider the following two-timescale
stochastic optimization problem:

min
{wk,n,sk,n,cf,n}

f(cf,n,Θ) � E{hk,Zk}(−C(sk,n, cf,n,wk,n))

s.t. (6b)− (6f), (58)

which is worthy of further investigation.
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[7] E. Baştuǧ, M. Bennis, M. Kountouris, and M. Debbah, “Cache-enabled
small cell networks: Modeling and tradeoffs,” EURASIP J. Wireless
Commun. Netw., vol. 2015, no. 1, p. 41, Feb. 2015.

[8] M. Ji, G. Caire, and A. F. Molisch, “Wireless Device-to-Device caching
networks: Basic principles and system performance,” IEEE J. Sel. Areas
Commun., vol. 34, no. 1, pp. 176–189, Jan. 2016.

[9] “C-RAN: the road towards green RAN,” China Mobile, Hong Kong,
White Paper, Version 3.0, Dec. 2013.

[10] M. Hong, R.-Y. Sun, H. Baligh, and Z.-Q. Luo, “Joint base station
clustering and beamformer design for partial coordinated transmission
in heterogenous networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 2,
pp. 226–240, Feb. 2013.

[11] Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for
green cloud-RAN,” IEEE Trans. Wireless Commun., vol. 13, no. 5,
pp. 2809–2823, May 2014.

[12] B. Dai and W. Yu, “Energy efficiency of downlink transmission strategies
for cloud radio access networks,” IEEE J. Sel. Areas Commun., vol. 34,
no. 4, pp. 1037–1050, Apr. 2016.

[13] B. Dai and W. Yu, “Sparse beamforming and user-centric cluster-
ing for downlink cloud radio access network,” IEEE Access, vol. 2,
pp. 1326–1339, 2014.

[14] B. Hu, C. Hua, J. Zhang, C. Chen, and X. Guan, “Joint fronthaul mul-
ticast beamforming and user-centric clustering in downlink C-RANs,”
IEEE Trans. Wireless Commun., vol. 16, no. 8, pp. 5395–5409,
Aug. 2017.

[15] J. Liu, B. Bai, J. Zhang, and K. B. Letaief, “Cache placement in fog-
RANs: From centralized to distributed algorithms,” IEEE Trans. Wireless
Commun., vol. 16, no. 11, pp. 7039–7051, Nov. 2017.

[16] A. Liu and V. K. N. Lau, “Mixed-timescale precoding and cache control
in cached MIMO interference network,” IEEE Trans. Signal Process.,
vol. 61, no. 24, pp. 6320–6332, Dec. 2013.

[17] X. Peng, J.-C. Shen, J. Zhang, and K. B. Letaief, “Joint data assignment
and beamforming for backhaul limited caching networks,” in Proc. IEEE
25th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC),
Sep. 2014, pp. 1370–1374.

[18] M. A. Maddah-Ali and U. Niesen, “Cache-aided interference channels,”
in Proc. IEEE Int. Symp. Inform. Theory (ISIT), Jun. 2015, pp. 809–813.

[19] M. Ali Maddah-Ali and U. Niesen, “Cache-aided interfer-
ence channels,” 2015, arXiv:1510.06121. [Online]. Available:
http://arxiv.org/abs/1510.06121

[20] J. Li, Y. Chen, Z. Lin, W. Chen, B. Vucetic, and L. Hanzo, “Distrib-
uted caching for data dissemination in the downlink of heterogeneous
networks,” IEEE Trans. Commun., vol. 63, no. 10, pp. 3553–3568,
Oct. 2015.

[21] J. Liu, B. Bai, J. Zhang, and K. B. Letaief, “Content caching at the
wireless network edge: A distributed algorithm via belief propagation,”
in Proc. IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–6.

[22] M. Tao, E. Chen, H. Zhou, and W. Yu, “Content-centric sparse multicast
beamforming for cache-enabled cloud RAN,” IEEE Trans. Wireless
Commun., vol. 15, no. 9, pp. 6118–6131, Sep. 2016.

[23] B. Dai and W. Yu, “Joint user association and content placement for
cache-enabled wireless access networks,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Mar. 2016, pp. 3521–3525.

[24] A. Sengupta, R. Tandon, and O. Simeone, “Fog-aided wireless networks
for content delivery: Fundamental latency tradeoffs,” IEEE Trans. Inf.
Theory, vol. 63, no. 10, pp. 6650–6678, Oct. 2017.

[25] R. Wang, X. Peng, J. Zhang, and K. B. Letaief, “Mobility-aware caching
for content-centric wireless networks: Modeling and methodology,”
IEEE Commun. Mag., vol. 54, no. 8, pp. 77–83, Aug. 2016.

[26] W. Han, A. Liu, and V. K. N. Lau, “PHY-caching in 5G wireless
networks: Design and analysis,” IEEE Commun. Mag., vol. 54, no. 8,
pp. 30–36, Aug. 2016.

[27] W. Dinkelbach, “On nonlinear fractional programming,” Manage. Sci.,
vol. 13, no. 7, pp. 492–498, Mar. 1967.

[28] X. Fu, W.-K. Ma, K. Huang, and N. D. Sidiropoulos, “Blind separation
of quasi-stationary sources: Exploiting convex geometry in covariance
domain,” IEEE Trans. Signal Process., vol. 63, no. 9, pp. 2306–2320,
May 2015.

[29] G. R. Lanckriet and B. K. Sriperumbudur, “On the convergence of the
concave-convex procedure,” in Proc. Adv. Neural Inf. Process. Syst.,
2009, pp. 1759–1767.

[30] Y. Cai, Q. Shi, B. Champagne, and G. Y. Li, “Joint transceiver design for
secure downlink communications over an Amplify-and-Forward MIMO
relay,” IEEE Trans. Commun., vol. 65, no. 9, pp. 3691–3704, Sep. 2017.

[31] Q. Shi, M. Hong, X. Fu, and T.-H. Chang, “Penalty dual decom-
position method for nonsmooth nonconvex optimization,” 2017,
arXiv:1712.04767. [Online]. Available: http://arxiv.org/abs/1712.04767

[32] A. Liu, V. K. N. Lau, and M.-J. Zhao, “Online successive convex
approximation for two-stage stochastic nonconvex optimization,” IEEE
Trans. Signal Process., vol. 66, no. 22, pp. 5941–5955, Nov. 2018.

[33] C. Yang, Z. Chen, B. Xia, and J. Wang, “When ICN meets C-RAN for
HetNets: An SDN approach,” IEEE Commun. Mag., vol. 53, no. 11,
pp. 118–125, Nov. 2015.

[34] P. Blasco and D. Gunduz, “Learning-based optimization of cache content
in a small cell base station,” in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2014, pp. 1897–1903.

[35] E. Bastug, M. Bennis, and M. Debbah, “A transfer learning approach
for cache-enabled wireless networks,” in Proc. 13th Int. Symp. Mod-
eling Optim. Mobile, Ad Hoc, Wireless Netw. (WiOpt), May 2015,
pp. 161–166.

[36] B. N. Bharath, K. G. Nagananda, and H. V. Poor, “A learning-based
approach to caching in heterogenous small cell networks,” IEEE Trans.
Commun., vol. 64, no. 4, pp. 1674–1686, Apr. 2016.

[37] W.-C. Liao, M. Hong, Y.-F. Liu, and Z.-Q. Luo, “Base station activation
and linear transceiver design for optimal resource management in
heterogeneous networks,” IEEE Trans. Signal Process., vol. 62, no. 15,
pp. 3939–3952, Aug. 2014.

[38] M. Grant and S. Boyd. (Mar. 2014). CVX: MATLAB Software for
Disciplined Convex Programming, Version 2.1. [Online]. Available:
http://cvxr.com/cvx

[39] K.-Y. Wang, A. M.-C. So, T.-H. Chang, W.-K. Ma, and C.-Y. Chi,
“Outage constrained robust transmit optimization for multiuser MISO
downlinks: Tractable approximations by conic optimization,” IEEE
Trans. Signal Process., vol. 62, no. 21, pp. 5690–5705, Nov. 2014.

[40] M. R. Hestenes, “Multiplier and gradient methods,” J. Optim. Theory
Appl., vol. 4, no. 5, pp. 303–320, Nov. 1969.

[41] M. J. D. Powell, “A method for nonlinear constraints in minimization
problems,” in Optimization, R. Fletcher, Ed. New York, NY, USA:
Academic, 1972, pp. 283–298.

[42] M.-M. Zhao, Q. Shi, Y. Cai, M.-J. Zhao, and Q. Yu, “Decoding binary
linear codes using penalty dual decomposition method,” IEEE Commun.
Lett., vol. 23, no. 6, pp. 958–962, Jun. 2019.

[43] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[44] M. Hong, M. Razaviyayn, Z.-Q. Luo, and J.-S. Pang, “A unified
algorithmic framework for block-structured optimization involving big
data: With applications in machine learning and signal processing,” IEEE
Signal Process. Mag., vol. 33, no. 1, pp. 57–77, Jan. 2016.

[45] M.-M. Zhao, Q. Shi, Y. Cai, and M.-J. Zhao, “Joint transceiver design
for full-duplex cloud radio access networks with SWIPT,” IEEE Trans.
Wireless Commun., vol. 16, no. 9, pp. 5644–5658, Sep. 2017.

[46] F. Rinaldi, F. Schoen, and M. Sciandrone, “Concave programming for
minimizing the zero-norm over polyhedral sets,” Comput. Optim. Appl.,
vol. 46, no. 3, pp. 467–486, Jul. 2010.

[47] R. Sun, Y. Wang, N. Cheng, H. Zhou, and X. Shen, “QoE driven BS
clustering and multicast beamforming in cache-enabled C-RANs,” in
Proc. IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–6.

Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:56:19 UTC from IEEE Xplore.  Restrictions apply. 



4140 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 6, JUNE 2020

[48] Y. Li, M. Xia, and Y.-C. Wu, “First-order algorithm for content-centric
sparse multicast beamforming in large-scale C-RAN,” IEEE Trans.
Wireless Commun., vol. 17, no. 9, pp. 5959–5974, Sep. 2018.

[49] A. H. Land and A. G. Doig, “An automatic method of solving discrete
programming problems,” Econometrica, vol. 28, no. 3, p. 497, Jul. 1960.

[50] The MOSEK Modeling Cookbook, MOSEK ApS, Copenhagen,
Denmark, 2012.

[51] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
Zipf-like distributions: Evidence and implications,” in Proc. IEEE Conf.
Comput. Commun. 18th Annu. Joint Conf. IEEE Comput. Commun.
Societies. Future (INFOCOM), vol. 1, Mar. 1999, pp. 126–134.

[52] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

Ming-Min Zhao received the B.Eng. and Ph.D.
degrees in information and communication engineer-
ing from Zhejiang University in 2012 and 2017,
respectively. From December 2015 to August 2016,
he was a Visiting Scholar with the Department of
Electrical and Computer Engineering, Iowa State
University, Ames, IA, USA. From July 2017 to
July 2018, he worked as a Research Engineer
with Huawei Technologies Company, Ltd. Since
May 2019, he has been a Visiting Scholar with the
Department of Electrical and Computer Engineering,

National University of Singapore. He is currently a Lecturer with the College
of Information Science and Electronic Engineering, Zhejiang University. His
research interests include channel coding, algorithm design and analysis
for advanced MIMO, cooperative communication, and machine learning for
wireless communications.

Yunlong Cai (Senior Member, IEEE) received the
Ph.D. degree in electronic engineering from the
University of York, York, U.K., in 2010. Since
February 2011, he has been with the College of
Information Science and Electronic Engineering,
Zhejiang University, Hangzhou, China, where he is
currently a Full Professor. From August 2016 to
January 2017, he was a Visiting Scholar with the
School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA, USA.
His research interests include transceiver design for

multiple-antenna systems, mmWave communications, full-duplex communi-
cations, UAV communications, cooperative communications, and machine
learning for communications. He is an Associate Editor of the IEEE SIGNAL
PROCESSING LETTERS.

Min-Jian Zhao (Member, IEEE) received the
M.Sc. and Ph.D. degrees in communication and
information systems from Zhejiang University,
Hangzhou, China, in 2000 and 2003, respectively.

He is currently a Professor with the Department
of Information Science and Electronic Engineering,
Zhejiang University. His research interests include
modulation theory, channel estimation and
equalization, and signal processing for wireless
communications.

Benoit Champagne (Senior Member, IEEE)
received the B.Ing. degree in engineering physics
from the École Polytechnique de Montréal in 1983,
the M.Sc. degree in physics from the Université de
Montréal in 1985, and the Ph.D. degree in electrical
engineering from the University of Toronto in 1990.

From 1990 to 1999, he was an Assistant
and then an Associate Professor with INRS-
Telecommunications, Université du Quebec, Mon-
tréal. In1999, he joined McGill University, Montreal,
where he is currently a Full Professor with the

Department of Electrical and Computer Engineering. He has served as the
Associate Chairman of graduate studies with the Department from 2004 to
2007. His research focuses on the study of advanced algorithms for the
processing of communication signals by digital means. His interests span
many areas of statistical signal processing, including detection and estimation,
sensor array processing, adaptive filtering, and applications thereof to broad-
band communications and audio processing, where he has coauthored more
than 250 referred publications. His research has been funded by the Natural
Sciences and Engineering Research Council (NSERC) of Canada, the Fonds
de Recherche sur la Nature et les Technologies from the Government of
Quebec, as well as some major industrial sponsors, including Nortel Networks,
Bell Canada, InterDigital, and Microsemi. He has been an Associate Editor
for the EURASIP Journal on Applied Signal Processing from 2005 to 2007,
the IEEE SIGNAL PROCESSING LETTERS from 2006 to 2008, and the IEEE
TRANSACTIONS ON SIGNAL PROCESSING from 2010 to 2012, as well as
a Guest Editor for two special issues of the EURASIP Journal on Applied
Signal Processing published in 2007 and 2014, respectively. He has also
served on the Technical Committees of several international conferences in
the fields of communications and signal processing. In particular, he was
the Registration Chair of the IEEE ICASSP 2004, the Co-Chair, Antenna and
Propagation Track, of IEEE VTC–Fall 2004, the Co-Chair, Wide Area Cellular
Communications Track, of the IEEE PIMRC 2011, the Co-Chair, Workshop
on D2D Communications, of the IEEE ICC 2015, and the Publicity Chair of
the IEEE VTC–Fall 2016.

Theodoros A. Tsiftsis (Senior Member, IEEE) was
born in Lamia, Greece, in 1970. He received the
B.Sc. degree in physics from the Aristotle University
of Thessaloniki, Greece, in 1993, the M.Sc. degree
in digital systems engineering from Heriot-Watt Uni-
versity, Edinburgh, U.K., in 1995, the M.Sc. degree
in decision sciences from the Athens University of
Economics and Business, in 2000, and the Ph.D.
degree in electrical engineering from the University
of Patras, Greece, in 2006.

He is currently a Professor with the School of
Intelligent Systems Science and Engineering, Jinan University, Zhuhai, China,
and also an Honorary Professor with Shandong Jiaotong University, Jinan,
China. His research interests include the broad areas of cognitive radio,
communication theory, wireless powered communication systems, optical
wireless communication, and ultrareliable low-latency communication. He has
served as a Senior or Associate Editor in the editorial boards of the IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY, the IEEE COMMUNICA-
TIONS LETTERS, IET Communications, and the IEICE Transactions on
Communications. He is also an Area Editor of Wireless Communications II of
the IEEE TRANSACTIONS ON COMMUNICATIONS and an Associate Editor of
the IEEE TRANSACTIONS ON MOBILE COMPUTING. He has been appointed
to a two-year term as an IEEE Vehicular Technology Society Distinguished
Lecturer (IEEE VTS DL), in 2018.

Authorized licensed use limited to: McGill University. Downloaded on November 21,2022 at 05:56:19 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


