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PAPER

A variable step-size adaptive cross-spectral algorithm for

acoustic echo cancellation

Xiaojian LU†a) and Benoit CHAMPAGNE†b), Nonmembers

SUMMARY The adaptive cross-spectral (ACS) technique
recently introduced by Okuno et al. provides an attractive solu-
tion to acoustic echo cancellation (AEC) as it does not require
double-talk (DT) detection. In this paper, we first introduce a
generalized ACS (GACS) technique where a step-size parameter
is used to control the magnitude of the incremental correction
applied to the coefficient vector of the adaptive filter. Based on
the study of the effects of the step-size on the GACS convergence
behaviour, a new variable step-size ACS (VSS-ACS) algorithm
is proposed, where the value of the step-size is commanded dy-
namically by a special finite state machine. Furthermore, the
proposed algorithm has a new adaptation scheme to improve the
initial convergence rate when the network connection is created.
Experimental results show that the new VSS-ACS algorithm out-
performs the original ACS in terms of a higher acoustic echo
attenuation during DT periods and faster convergence rate.
key words: acoustic echo cancellation (AEC), adaptive cross-
spectral (ACS) algorithm, double-talk (DT), variable step-size,
initial convergence rate

1. Introduction

Acoustic echo cancellation (AEC) can be classified as a
problem of system identification, albeit a time-varying
one due to continual changes in the acoustic echo path
structure. Conventional methods of adaptive system
identification, e.g. least-squares algorithms [1], are af-
fected by local disturbance signals such as the near-end
speech and the background noise. When double-talk
(DT) occurs, i.e. the far-end and the near-end users
speak simultaneously, the adaptation of the conven-
tional AEC device has to be stopped to avoid the possi-
ble divergence of the adaptive algorithm. Accordingly,
an accurate DT detector is essential to enable a con-
ventional AEC device to work properly. Furthermore,
tracking changes in the acoustic echo path during a DT
situation is particularly challenging for AEC.

During the past decade, considerable efforts have
been devoted to the research of advanced AEC schemes
that can properly handle DT situations. Tradition-
ally, adaptation of the AEC device’s filter coefficients
is frozen by assigning a very small value (most often,
0) to the step-size of the adaptive algorithm during the
DT period. In this context, many researchers have fo-
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cused their efforts on developing accurate and robust
DT detectors [2], [3]. Alternatively, instead of com-
pletely freezing the adaptation, various schemes with
a variable step-size have been attempted to track the
change in the acoustic echo path when DT occurs [4]–
[7]. Unfortunately, due to the fundamental difficulties
associated to distinguishing the case of DT from that
of a change in acoustic echo path, most solutions are
not satisfactory in terms of robustness and accuracy.

In [8], Okuno et al. propose an adaptive cross-
spectral (ACS) algorithm that is particularly attractive
for AEC applications. The ACS algorithm exploits the
correlation of the far-end signal and the acoustic echo to
estimate the echo path. Consequently, it has the advan-
tage that the DT detection is not needed and that the
change of the echo path can be tracked during the DT
period. To achieve good levels of echo attenuation, the
ACS algorithm requires the processing of many blocks
of samples, so that its correlation estimate is reliable.
Since the length of each block has to be larger than
that of the echo path, which typically ranges from sev-
eral tens up to a few hundreds of milliseconds in AEC,
the ACS algorithm suffers from a relatively slow conver-
gence rate (especially during initialization). Moreover,
the non-stationary characteristics of speech signal af-
fect the correlation estimation, leading to insufficient
echo suppression during DT periods.

In this paper, a new variable step-size ACS (VSS-
ACS) algorithm is proposed which can achieve faster
convergence rate and a higher acoustic echo suppression
in the DT situation. To this end, a generalized ACS
(GACS) technique is first introduced where a step-size
parameter is used to control the magnitude of the incre-
mental correction applied to the coefficient vector of the
adaptive filter. Based on the study of the effects of the
step-size on the GACS convergence behaviour, a vari-
able step-size ACS (VSS-ACS) algorithm is then pro-
posed. To increase the convergence rate while keeping a
low misadjustment, the step-size is varied dynamically
by a finite state machine which monitors changes in the
norm of the ACS correction applied to the adaptive fil-
ter coefficients. In addition, a new initial adaptation
scheme is adopted, resulting in a significant improve-
ment to the convergence of the algorithm at the early
stage when the network connection is established. The
advantages of the new algorithm are verified by com-
puter experiments on various sets of speech files.
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This paper is organized as follows. The general-
ized ACS technique is derived in Section II. The vari-
able step-size ACS algorithm is presented in Section III
along with the special scheme used to speed-up adapta-
tion during initialization. The results and accompany-
ing discussions of computer experiments are presented
in Section IV. A brief conclusion is finally given in Sec-
tion V.

2. The generalized ACS technique

The block diagram of a generic AEC system operating
in the discrete-time domain is shown in Fig. 1. Let
x(n), d(n), ŷ(n) and e(n) respectively denote the far-
end speech, the microphone signal, the adaptive filter
output and the residual signal at time index n.

Assume that the acoustic echo path between the
loudspeaker and the microphone can be modelled as a
linear, time-varying system whose impulse response at
time n is represented by the N -tap vector

h(n) = [h0(n), h1(n), . . . , hN−1(n)]
T (1)

where the superscript T denotes transposition. Accord-
ingly, the microphone signal can be expressed as

d(n) = h(n)T x(n) + v(n) (2)

where x(n) = [x(n), x(n−1), . . . , x(n−N+1)]T is a vec-
tor of far-end speech samples, the product h(n)T x(n)
represents the acoustic echo, and v(n) is a local distur-
bance signal. The latter includes both the near-end
speech signal (when active) and a background noise
component.

Define the coefficient vector of the adaptive filter
as ĥ(n), whose length is also assumed to be N taps, so
that the adaptive filter output can be expressed as

ŷ(n) = ĥ(n)T x(n) (3)

The residual signal sent to the far-end user after echo
cancellation is thus given by

e(n) = d(n)− ŷ(n)

= d(n)− ĥ(n)T x(n) (4)
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Fig. 1 Block diagram of an AEC system.

Partitioning the data into consecutive blocks of
length M samples and taking the short-term Fourier
transform (stDFT) [9] of length K ≥ M (zero-padding
assumed) on both sides of Eq. (4), the residual signal
is expressed in the frequency domain as

E(k;m) = D(k;m)− Ĥ(k;m)X(k;m) (5)

where E(k;m), D(k;m) and X(k;m) respectively de-
note the stDFTs of the signals e(n), d(n) and x(n) over
one block, while Ĥ(k;m) is the DFT of the vector ĥ(n),
assumed to remain constant within the duration of a
block. Note that Ĥ(k;m) represents the estimated fre-
quency response of the echo path. In Eq. (5), the pa-
rameter k ∈ {1, 2, . . . ,K} is the index of the frequency
bin and m ∈ {1, 2, . . .} is the block index in the time
domain. For the linear convolution in Eq. (4) to be
equivalent to the circular convolution in Eq. (5), the
stDFT size K should be such that K ≥ M +N − 1.

Define the cost function

Jk = E[|E(k;m)|2] = E[E(k;m)E∗(k;m)] (6)

where E[·] denotes statistical expectation. The update
equation of the generalized ACS technique is obtained
via the steepest descent iterative philosophy [10] ap-
plied to the cost function Jk, namely:

Ĥ(k;m+ 1) = Ĥ(k;m)− µ′

2
∂E[|E(k;m)|2]

∂Ĥ(k;m)
(7)

In the frequency domain, the signals and the adaptive
filter coefficients are generally complex valued. Split-
ting the various quantities in Eq. (5) into real and imag-
inary components one easily obtains

E(k;m) = DR(k;m)− ĤR(k;m)XR(k;m)

+ĤI(k;m)XI(k;m)

+j[DI(k;m)− ĤR(k;m)DI(k;m)

−ĤI(k;m)XR(k;m)] (8)

where the subscripts R and I are used to denote the
real and imaginary parts of the corresponding quantity,
respectively. The partial derivative in Eq. (7) can then
be computed as [10]

∂E[|E(k;m)|2]
∂Ĥ(k;m)

= E

[
∂|E(k;m)|2
∂ĤR(k;m)

+ j
∂|E(k;m)|2
∂ĤI(k;m)

]

= −2E[X∗(k;m)E(k;m)] (9)

Applying an NLMS-like procedure of normalization, i.e.

µ′ =
µ

E[|X(k;m)|2] (10)

the adaptive filter update shown in Eq. (7) can be writ-
ten as

Ĥ(k;m+ 1) = Ĥ(k;m) + µ∆H(k;m) (11)

∆H(k;m) =
E[X∗(k;m)E(k;m)]

E[|X(k;m)|2] (12)
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We note that Eq. (12) can be expanded as

∆H(k;m) = H(k;m)− Ĥ(k;m)

+
E[X∗(k;m)V (k;m)]

E[|X(k;m)|2] (13)

where H(k;m) is the frequency response of the true
(unknown) acoustic echo path and V (k;m) is the
stDFT of the local disturbance signal v(n). Clearly,
during a DT situation, under the assumption that the
far-end signal x(n) is uncorrelated with v(n), or at least
the correlation between these signals is very weak, the
second term in Eq. (13) can be neglected. Accordingly,
the local DT signal will have no effect on the algorithm.

The main difficulty associated to the implementa-
tion of Eq. (12) is that it requires prior knowledge of the
signals’ second order statistics. While such knowledge
is hardly available in most cases, the desired expecta-
tions can be estimated in practice by means of time
averaging over the block index m. Among the various
types of sliding windows which can be employed for on-
line time averaging, the most commonly used are the
exponential and the rectangular ones, with varying de-
grees of temporal overlap. However, as our experience
indicates, a very small step-size has to be used with ei-
ther types of windows when there is significant overlap
between successive windows, which in turns results in
a slower convergence rate. For example, in the case of
a rectangular sliding window with length L (L � 1)
blocks and a minimum shift of one block between each
update of the time averages, the step-size in Eq. (11)
must be significantly reduced to avoid divergence of the
algorithm due to the strong correlation between succes-
sive gradient update directions.

Here, we assume a rectangular sliding window of
length L, with a window shift of Q (1 ≤ Q ≤ L) blocks
for each update of the algorithm. Accordingly, the esti-
mated echo path is updated once every Q blocks, with
the incremental correction computed as follows:

∆H(k; p) =

(p−1)Q+L∑
i=(p−1)Q+1

X∗(k; i)E(k; i)

(p−1)Q+L∑
i=(p−1)Q+1

|X(k; i)|2
(14)

where, k ∈ {1, 2, . . . ,K}, and p ∈ {1, 2, . . .}.
To avoid any processing delay introduced to the

algorithm, the operation of the adaptive filter is prefer-
ably carried out in the time domain, except for the com-
putation of ∆H(k; p) in Eq. (14). Thus, the adaptive
filter coefficient vector is updated every MQ samples
in the time domain, through:

ĥp+1 = ĥp + µ∆hp. (15)

where ∆hp is the inverse DFT of ∆H(k; p). The rela-
tionship between the iteration index p and the sample

index n is

p =
⌈

n

MQ

⌉
, n ∈ {1, 2, . . .} (16)

where, 
δ� represents the smallest integer ≥ δ. There-
fore, the coefficient vector of the adaptive filter ĥ(n)
remains constant for MQ consecutive samples.

We shall refer to Eqs. (4), (14) and (15), together
with the associated stDFT computations, as the gener-
alized ACS (GACS) algorithm. The original ACS [8] is
a special case of GACS when µ is set to 1 in Eq. (15).
The introduction of the step-size in GACS will allow
additional flexibility in implementation for improved
performance (see next Section). It is noted that the
step-size µ must be carefully chosen to ensure the con-
vergence of the algorithm, i.e. 0 ≤ µ ≤ µmax. An exact
theoretical expression for the upper bound µmax cannot
be derived easily under practical conditions of opera-
tion with non-stationary, non-white inputs (e.g. speech
signals). Experimentally, we have observed that µmax

depends on the type of input signal, the rectangular
window length L and the data reuse factor (i.e. win-
dow overlap ratio) (L − Q)/L. In all of the practical
cases that we have tested, the GACS algorithm worked
properly (i.e. no observed instability) when µ was se-
lected within the range 0 ≤ µ ≤ 1.5.

We note that there is a certain degree of similar-
ity between GACS and the standard frequency domain
adaptive filter (FDAF) [10]. However, although both
GACS and FDAF are operated in the frequency do-
main, the former uses block averaging to estimate the
required expected values, while the later uses instan-
taneous estimation (i.e. a single block). Accordingly,
GACS is much more robust than FDAF to disturbance
signals, as long as a proper number of blocks is em-
ployed in the time averaging operation in Eq. (14).

Finally, the behaviour of GACS as a function of
its step-size µ is consistent with that of other steep-
est descent adaptive filters (including FDAF). That is,
increasing the step-size results in a faster convergence
rate at the expense of higher coefficient misadjustment
in the steady-state. (See Section 4.2 for results).

3. Variable step-size ACS

3.1 Finite state machine

The observed performance of GACS suggests that the
use of a variable step-size could improve the conver-
gence rate and reduce the misadjustment. Specifically,
a larger value of µ should be used during acoustic echo
path changes and a smaller value should be used when
the algorithm has converged. Although many adaptive
filtering algorithms with variable step-sizes have been
studied, there is still a lack of a robust algorithm which
can accurately distinguish an echo path change from a
DT situation and as well, track the echo path change



4
IEICE TRANS. FUNDAMENTALS, VOL.E82–??, NO.1 JANUARY 1999

during a DT period.
Based on the characteristics of the GACS algo-

rithm, a variable step-size ACS (VSS-ACS) mechanism
is now proposed. The latter consists of the GACS al-
gorithm, accompanied by a step-size adjustment mech-
anism that is regulated by a finite state machine as
shown in Fig. 2. Three regions of operation are identi-
fied in the figure that correspond to different states, as
explained below:

Region I: This region corresponds to a fast tracking
mode where the algorithm needs to estimate or track
large changes in the acoustic echo path. Initial oper-
ation of the algorithm upon network connection also
falls into this category. In order to quickly track the
changes in the echo path, a larger step-size, denoted as
µI , is necessary.

Region II: This region represents a transient mode
of the algorithm. After rapid adaptation in Region I,
misadjustment (due to gradient noise) gradually be-
comes an issue while it is still important to keep the
adaptive filter updating its weight vector at a reason-
able rate. The introduction of two states with smaller
step-sizes µIIa and µIIb in this region ensures the
smooth and robust transition from Region I to Region
III (see below).

Region III: Corresponding to the steady-state of
the algorithm, a small step-size µIII is proper in this
region. Two factors actually limit the choice of the step-
size. On the one hand, the step-size should not be too
small so as to prevent the VSS-ACS to track the small,
ever present fluctuations in the acoustic echo path. On
the other hand, it should not be too large so as to min-
imize misadjustment and to allow the estimated echo
path error to increase during DT periods. Indeed, while
in theory the GACS is not affected by DT, it will be in a
practical implementation of Eq. (12) based on temporal
averaging with non-stationary signals.

The adaptive filter coefficient error could be used
in theory to determine the proper state of the algo-
rithm. Unfortunately, it is almost impossible to obtain
this information in practice because the acoustic echo
path is unknown and time-varying. As an alternative,
we propose to use the energy ratio of two successive in-
crements of the estimated system impulse response as
the basis of a series of tests to decide upon state tran-
sition. Denoted as δh(p), this energy ratio is formally
defined here as

δh(p) =

∣∣∣∣∣20 log10

‖∆ĥp‖
‖∆ĥp−1‖+ c

∣∣∣∣∣ (17)

where, ‖u‖ is the norm of the vector u and c is a small
constant preventing the division from overflow. As our
experiments indicate, this energy ratio is strongly in-
dicative of the true (but practically unknown) error in
the adaptive filter coefficients.

Referring to Fig. 2, four states have been identi-
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Fig. 2 State machine diagram of the VSS-ACS algorithm.

fied for the VSS-ACS algorithm. Transitions between
these states are determined on the basis of the com-
parison between δh(p) and a set of thresholds, labelled
λ1, λ2, . . . , λ5. For example, when in the state µIIa:
a transition to state µIIb will occur if δh(p) < λ2; a
transition to state µI will occur if δh(p) > λ5; else the
algorithm will remain in state µIIb, as indicated by the
self-loop. Additional guidelines and considerations in
the selection of the thresholds are discussed below.

First consider the case where the acoustic environ-
ment does not change significantly over time. During
the adaptation of VSS-ACS, the state of the algorithm
is then expected to transit from Region I to Region
II, or from Region II to Region III. Here, it is quite
straightforward to set the values of λ1, λ2 and λ3, which
are in descending order, representing different stages on
the way of convergence of the algorithm.

Next, consider a situation where the acoustic echo
path is notably changed (including initialization). In
this case, the algorithm is expected to track the vari-
ation as fast as possible. Hence, the state of the al-
gorithm should jump to Region I, no matter which re-
gion it previously stayed. One major advantage of the
GACS technique over more traditional adaptive filter-
ing approaches is that δh(p) will not increase signifi-
cantly in the DT situation, while a sudden significant
change in the echo path will manifest itself by a corre-
sponding large change in δh(p). Thus, the VSS-ACS has
the intrinsical ability to distinguish between echo path
change and DT situation. Accordingly, the threshold
for the change of the acoustic echo path, λ5, is signifi-
cantly higher than others.

Finally, in Region II, two states are introduced for
the improved robustness of the algorithm. This is be-
cause the adaptive filter coefficient update may be un-
favourably affected by a specific segment of speech in-
put. In this case, more time is needed to decide whether
or not the algorithm has reached the steady-state where
the smallest step-size µIII can be used. Based on this
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consideration, it is reasonable to set λ4 ≥ λ2.
Specific numerical values for the various parameter

of the VSS-ACS algorithm, i.e. step-sizes and thresh-
olds, will be given in Section 4.1.

3.2 Improvement to initial convergence

Among the total LM samples used to compute the in-
cremental correction in Eq. (14), only MQ samples are
new data. Thus, similar to the original ACS, VSS-ACS
updates the estimated echo path every MQ samples.
At the beginning of adaptation, when the network con-
nection has just been created, the initial values of the
adaptive filter coefficients are set to 0, and the acoustic
echo is not attenuated until ACS has collected at least
QM samples (assuming (L−Q)M padding zeros) to es-
timate the echo path. In AEC, the acoustic echo path
may be as long as several hundred or even thousand
taps at 8kHz sampling rate. Consequently, with Q suf-
ficiently large, say 40 or more [8], and M ≥ N , where
N is the adaptive filter length, QM samples represent
a relatively long time interval. It is obviously inappro-
priate that the acoustic echo is not suppressed during
such a long initial period. In order to overcome this
drawback, a modification of the VSS-ACS algorithm
is described below where different approximation and
adaptation schemes are used to computation the filter
weight vector during the initial period. The proposed
approach is an extension of the technique originally re-
ported in [11] for the ACS algorithm.

Referring to Eq. (2), the microphone signal in the
frequency domain may be expressed as

D(k;m) = H(k;m)X(k;m) + V (k;m) (18)

where H(k;m) and V (k;m) have been previously de-
fined in connection with Eq. (13). Multiplying both
sides of Eq. (18) by X∗(k;m), taking the expectation
and assuming that x(n) and v(n) are uncorrelated, the
frequency response of the acoustic echo path is easily
obtained as

H(k;m) =
E[X∗(k;m)D(k;m)]

E[|X(k;m)|2] (19)

corresponding to the so-called cross-spectral tech-
nique [12].

Similarly to the approximation process leading
from Eq. (12) to Eq. (14), the expected values in
Eq. (19) can be estimated by time averaging. However,
to make full use of the available data so as to improve
the initial convergence rate, the desired expected values
are estimated by accumulators running from block 1 up
to current block m (instead of the summations over L
blocks as in Eq. (14)). Therefore, the initial adaptation
is expressed as

��

B1 B2 BLBQ ......

B1 B2 BLBQ ......

B1 B2 BLBQ ......

F1

F2

FK

...

overlapped blocks

overlapped blocks

�h11 ���h2 (h1L) ��h3 ...

B1 B2 ...

overlapped blocks

..
.

�h12�h1Q

Fig. 3 Adaptation of the VSS-ACS algorithm.

Ĥ(k;m) =

m∑
i=1

X∗(k; i)D(k; i)

m∑
i=1

|X(k; i)|2
(20)

where the block index m ∈ {1, 2, . . . , L}. The coeffi-
cients of the estimated acoustic echo path are then ob-
tained by taking inverse DFT on Eq. (20). To reduce
the systematic error introduced by the cross-spectral
technique, i.e. the magnitude of the estimated echo path
impulse response being smaller than that of the real one
due to the so-called deformation phenomenon [12], the
estimated value needs to be enlarged by a multiplying
factor. For consistency, this factor is also denoted by
µ except that here, µ ≥ 1. Hence, for initialization,
the adaptive filter coefficient vector is updated every
M samples via

ĥ1m = inverse DFT{µĤ(k;m)} (21)

It is noted that the coefficients of the estimated echo
path are computed directly in the initial period, while
they are computed recursively in the subsequent peri-
ods.

The blocking procedure of the VSS-ACS algorithm
with modified initialization is illustrated in Fig. 3,
where Bi refers to a particular block of m samples and
Fk to a particular frequency bin within a block.

3.3 Computational complexity

To efficiently implement the VSS-ACS algorithm, an
FFT algorithm can be employed for the K-point
stDFT computations. Accordingly, onlyK log2 K oper-
ations [13] are needed to map each data block from the
time domain to the frequency domain, and vice versa,
where the term operation refers to one multiplication
and one addition. The computational complexities for
Eqs. (4), (14) and (15) are about LMN , (L + Q)K
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and N operations per adaptive filter coefficient update,
respectively.

Referring to the state machine, the logarithmic
scale is used in the definition of δh(p) in Eq. (17) only
to simplify understanding. In practice, both the values
of the thresholds and the energy ratio δh(p) can be cal-
culated in the linear scale, so that the computational
complexity is reduced. Hence, only the norm of the cur-
rent coefficient increment needs to be computed, with
a computational load N operations per filter coefficient
update, approximately.

During the initial period, the practical implemen-
tation can exploit recursive relations to reduce the com-
putational burden. Specifically, Ĥ(k;m) in Eq. (20) can
be computed as

Ĥ(k;m) =
P (k;m)
Q(k;m)

(22)

P (k;m) = P (k;m− 1) +X∗(k;m)D(k;m)
Q(k;m) = Q(k;m− 1) + |X(k;m)|2

where P (k;m) and Q(k;m) respectively stand for∑m
i=1 X∗(k; i)D(k; i) and

∑m
i=1 |X(k; i)|2. Accordingly,

the computational complexity of the modified initial-
ization scheme is obtained as MN + N + 3K log2 K
operations per coefficient update.

The computational complexity of the VSS-ACS al-
gorithm, in common units of operations per sample
(OPS), is therefore obtained as follows:

a) During the initial period
During this period, the algorithm updates the

adaptive filter coefficient vector every M samples. Con-
sequently, the computational complexity is

MN +N + 3K log2 K

M
OPS (23)

For the case that the block length is the same as that
of the adaptive filter, i.e. M = N , and K = M +N for
linear convolution, the computational complexity in the
initial period is about N + 6 log2 N OPS.

b) In the subsequent period
Because the filter coefficients are updated every

QM samples, the total computational complexity of
the VSS-ACS algorithm is

LMN + (L+Q)K + 2N + (L+Q)K log2 K

MQ
OPS

(24)
For the special case M = N and K = 2N , and as-
suming one half window overlap, i.e. Q = L/2 blocks
in Eq. (14), the computational complexity is about
2N + 6(log2 N)/N OPS.

4. Computer experiments

4.1 Methodology

In the computer experiments, various segments of
speech signals including males’, females’ and children’s
speech were used as the excitation signals. A coloured
noise, obtained by passing a white noise signal through
a first-order IIR filter H(z) = 1/(1−0.9z−1), was added
into the microphone signal to simulate the local noisy
environment, so that the echo-to-noise ratio (ENR) is
30dB. The impulse response of the acoustic echo path,
whose length is N = 300 taps, corresponding to 37.5ms
at 8kHz sampling rate, was synthesized to mimic the
driver’s compartment of a motor vehicle.

To evaluate the performance of the algorithms, the
following normalized measure of coefficient error of the
estimated impulse response at time n was introduced
(dB unit):

Coef err(n) = 20 log10

(
‖h(n)− ĥ(n)‖

‖h(n)‖

)
(25)

As mentioned earlier, h(n) and ĥ(n) respectively rep-
resent the coefficient vector of the true acoustic echo
path and that of the estimated one.

In the implementation of the GACS and VSS-ACS
algorithms, the block size was M = 300 samples, L =
80 blocks were used for the average in Eq. (14), and the
window shift between updates was set to Q = 40 blocks.
For the VSS-ACS algorithms, the set of step-sizes in the
three regions were: µI = 1.2, µIIa = 1.0, µIIb = 0.8
and µIII = 0.1. Correspondingly, the thresholds of the
state machine were 5.5, 3.0, 1.5, 4.0, 20.0 for λ1, . . . , λ5,
respectively.

The properties of the VSS-ACS algorithm have
been tested for three different aspects, namely: be-
haviour in the DT situation, initial convergence rate,
and tracking capability in the presence of the near-end
speech. For comparison, these tests are also applied to
the original ACS algorithm, with same values of M , L
and Q as above.

4.2 Effect of the step-size µ on GACS

To support our previous statement regarding the effect
of the step-size µ on the GACS convergence rate, we
present the time evolution of the coefficient error with
various step-sizes in Fig. 4. The adaptive filter weight
vector was initially set to zero; the excitation signal
was speech. It can be seen that increasing the step-
size µ in the GACS algorithm leads to faster initial
convergence, but higher misadjustment in the steady-
state, as pointed out earlier.

We note that GACS inherits the robustness prop-
erties of the original ACS algorithm to local disturbance
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Fig. 4 Effects of the step-size on the GACS algorithm.

signals. Indeed, while ENR was set to 30dB in Fig. 4,
results of other experiments show that the algorithm
convergence behaviour is essentially unaffected when
the power of the disturbance signal, e.g. additive noise,
varies in a large range, say for ENR as low as 5 to 10dB.

4.3 Behaviour of VSS-ACS during DT

In this experiment, a segment of speech signal which
had a comparable power with the acoustic echo was
added into the microphone signal to simulate the DT
situation. Moreover, in order to clearly demonstrate
the effect of DT on the algorithms, DT occurred after
initial convergence of the algorithms.

Figure 5 shows the performance of the original
ACS algorithm (i.e. GACS with µ = 1) and the VSS-
ACS algorithm during the DT period. The microphone
signal, whose waveform is displayed in Fig. 5(b), com-
prises the acoustic echo and the near-end signal. The
latter consists of a near-end speech superimposed on a
background noise, as plotted in Fig. 5(a). The signal
waveforms of the residual echo produced by ACS and
VSS-ACS are shown in Fig. 5(c) and 5(d), respectively.
Note that the near-end signal has been subtracted from
the residual signal for clarity. These waveforms demon-
strate that VSS-ACS provides much more attenuation
to the acoustic echo than ACS during a DT situation.

The corresponding errors of the estimated coeffi-
cients of the acoustic echo path have also been com-
pared in Fig. 6 for the proposed VSS-ACS algorithm
and the original ACS algorithm. It reveals that the new
VSS-ACS algorithm has notably smaller coefficient er-
ror than ACS in the DT situation, which agrees with
the results presented in Fig. 5.

4.4 Improvement to initial convergence

Here, the initial convergence properties of different
schemes are examined. The signal waveforms of the
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Fig. 5 Waveforms in the DT situation: (a) original near-end
signal; (b) microphone signal (acoustic echo plus near-end signal);
(c) residual echo of ACS; (d) residual echo of VSS-ACS.
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Fig. 6 Coefficient errors versus time for the original ACS algo-
rithm (dash line) and VSS-ACS algorithm (solid line).

acoustic echo, residual echoes of ACS and VSS-ACS
are shown in Fig. 7(a), 7(b) and 7(c), respectively. It is
obvious that the VSS-ACS algorithm achieves a much
faster convergence rate when the network connection is
created. The time evolution of coefficient errors of the
echo path for both ACS and VSS-ACS are plotted in
Fig. 8. Clearly, VSS-ACS shows a significant improve-
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Fig. 7 Waveforms in the initial period: (a) acoustic echo sig-
nal; (b) residual echo of ACS; (c) residual echo of VSS-ACS.
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Fig. 8 Coefficient errors versus time in the initial period: dash
line – ACS; solid line – VSS-ACS.

ment in terms of acoustic echo suppression during the
initial period as a result of the use of the modified ini-
tialization scheme put forward in Section 3.2.

4.5 Tracking in the presence of DT

In order to test the tracking capability of the new algo-
rithm, the acoustic echo path is changed from h(n) to
−h(n) during DT after the algorithm has converged.
The coefficient errors for the original ACS and VSS-
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Fig. 9 Coefficient errors versus time (acoustic echo path
changed from h(n) to -h(n)) for the original ACS (dash line)
and VSS-ACS (solid line).

ACS are displayed in Fig. 9. It is observed that the
proposed algorithm not only inherits the merit of ACS
which can track the change of the acoustic echo path in
the presence of strong disturbance signal, e.g. the DT
situation, but also presents a better performance.

4.6 Subjective experiments

The results of informal listening tests suggest that,
compared to the original ACS algorithm, the proposed
VSS-ACS can suppress the acoustic echo to a satisfac-
tory level even during initialization. In DT situations,
the near-end speech contained in the residual signal,
which is sent to the far-end user, is more clearly audible
with the VSS-ACS than with ACS because of the lower
level of interference signal, i.e. residual acoustic echo.
Furthermore, no perceptual distortion of the near-end
speech signal is observed. In the case when the acous-
tic echo path changes, the acoustic echo is suppressed
more rapidly by VSS-ACS.

5. Summary and conclusion

A generalized ACS technique was proposed where a
step-size parameter is used to control the magnitude
of the incremental correction applied to the coefficient
vector of the adaptive filter. Based on the study of
the effects of the step-size on the ACS convergence be-
haviour, a new variable step-size ACS (VSS-ACS) al-
gorithm is proposed, where the value of the step-size is
commanded dynamically by a special finite state ma-
chine, so as to optimize algorithm performance in terms
of convergence rate and misadjustment in various situa-
tions. Furthermore, the proposed algorithm has a new
adaptation scheme to improve the initial convergence
rate when the network connection is created.

The proposed VSS-ACS algorithm is attractive in
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the application of AEC because it can remarkably at-
tenuate acoustic echo even in the presence of near-end
speech and high level background noise, without the
requirement of DT detection, which is still a difficult
issue. The computational complexity of the VSS-ACS
algorithm is comparable to that of the standard LMS
algorithm, allowing for low-cost real-time implementa-
tion with existing DSP technology. The results of com-
puter experiments show that the new VSS-ACS algo-
rithm outperforms the original ACS, both in terms of
superior acoustic echo suppression during DT periods
and faster initial convergence.
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