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The Lie algebra of the group of point transformations, leaving the Davey-Stewartson v
equations (DSE’s) invariant, is obtained. The general element of this algebra depends on four

arbitrary functions of time. The algebra is shown to have a loop structure, a property shared by

the symmetry algebras of all known (2 + 1)-dimensional integrable nonlinear equations.

Subalgebras of the symmetry algebra are classified and used to reduce the DSE’s to various

equations involving only two independent variables.

I. INTRODUCTION

The purpose of this paper is to apply the method of sym-
metry reduction to the Davey-Stewartson equations
(DSE’s)." To do this we first obtain the group of Lie point
symmetries leaving the DSE’s invariant. We show that this
group is infinite dimensional, study its structure, and deter-
mine its low-dimensional subgroups. The different sub-
groups are then used to reduce the DSE’s to a lower-dimen-
sional system. _ )

We recall that the DSE’s describe the propagation of
two-dimensional water waves moving under the force of
gravity in water of finite depth. We shall write these equa-
tions in the form

N, + V¥, +6¥, =6|VV4 Y,

Wex + 0w, =8,(|¥)%)
where ¥(x,y,t) and w(x,p,t) are a complex and real func-
tion, respectively, and &,, 6,, €,, and €, are real constants,
with €, = + 1, e, = + 1. The subscripts in (1.1) denote
partial derivatives.

For purely one-dimensional propagation (along the x
axis) wehave W, = 0and can consider solutions with w = 0.
The DSE’s (1.1) then reduce to the nonlinear Schridinger
equation

W, 4+ ¥, =6|VW. - : (1.2)

The DSE’s thus have the same relation to the nonlinear
Schrédinger equation as the Kadomtsev—Petviashvili equa-
tion” has to the Korteweg—de Vries one, they provide a two-
dimensional generalization in which the basic direction of
wave propagation remains a privileged one.

The DSE’s belong to the rather limited class of equa-
tions in more than 1 + 1 dimensions that are exactly integra-
ble’ by inverse scattering techniques and their generaliz-
ations.*™ In particular, the DSE’s were shown to have soli-
ton and multisoliton solutions.?

Some recent work has been devoted to the study of sym-
metry groups of integrable equations in more than two di-
mensions.”'? Thus the Kadomtsev—Petviashvili equation,’
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the modified Kadomtsev—Petviashvili equation,® the poten-
tial Kadomtsev-Petviashvili equation,'” and the integrable
three-wave problem'®'" all have infinite-dimensional sym-
metry groups. The corresponding infinite-dimensional Lie
algebras all have a specific loop algebra structure. They all
have Virasoro-type subalgebras and can be embedded into
simple classical loop algebras of the 4 (!’ type.'* On the other
hand, some of the multidimensional equations of the Jimbo—
Miwa series,'* which are integrable in a conditional sense,’
have been shown to have infinite-dimensional Lie symmetry
algebras that are not loop algebras.’

In Sec. II we present the symmetry algebra of the DSE’s
and exhibit its loop algebra structure by relating it to the
algebra s1(7,C). We also obtain the group transformations
by integrating the vector fields forming the symmetry alge-
bra. In Sec. III we classify the one- and two-dimensional
subalgebras of the DS algebra into conjugacy classes under
the action of the DS group. The one-dimensional subalge-
bras are used in Sec. IV to reduce the DS equations to various

integrable systems in 1 4 1 dimensions.

- I. THE SYMMETRY GROUP OF THE DAVEY-

STEWARTSON EQUATIONS
A. The DS symmetry algebra

Standard procedures exist for determining the symme-
try algebra of a system of differential equations.'s They are
so algorithmic that they have been successfully programmed
using REDUCE, '® MACSYMA,® or other symbolic languages.
In order to be able to apply a previously written program,®
we rewrite the DSE’s (1.1) in a real form, setting ¢ = u + iv.
We obtain :
A=u, +v, + e, —ev(u?+0°) —vw=0,

A= —v, +u, +eu, —eu(u’+v*) —uw=0,
A3 Wy + 6lwy}'
—28,[uu,, + (u,)* +wv,, + (v,)*] =0.
An element of the symmetry algebra of (2.1) is written

(2.1)

as .
V=10, +1,9,+79,+¢,0, + 6,9, +¢53, ,
(2.2)
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where 7; and ¢, (i = 1,2,3) are functions of x, y,t,u,v, and
w. These functions are obtained by solving the determining

equations, that in turn follow from the equations
=123, 2.3)

where pr®V is the second prolongation'® of the vector field
- V. Applying the program® we obtain the determining equa-
tions, a relatively simple system of linear partial differential
equations for ; and ¢;. By solving them we find that a gen-
eral element of the symmetry algebra of the DSE’s (2.1) can
be written as

V=X(N+Y(@Q +Zh)+W(im),
where

X(f)=f)o, +1f)/2]1(x0, +yd, —ud,
—vd, —2wd,) — [(x*+ €, *)/8] |

X[f" (), —ud, )+f’”(t)a ],

g(1)a, — [x/2]
X[gt)y(wd, —ud,) +8"()d,],
Z(h) =h(1)d, — [€,y/2]
‘ X[h'(D®3, —ud,)+h"(1,],
Wm)=m()(vd, —ud,) +m'(6)d, .

pr(Z) V- Aj (x,y,t,u,v,w) |Ai= 0= O,

24)

Y(g) = |
(2.5)

The functions g(t), h(#), and m(¢) are arbitrary real-
valued functions of class C* over some time interval 7CR.
The function f(t) satisfies

'f(”_[ 54 e

arbitrary,

2.
a + bt + ct?, (2.62)

(a, b, and c are arbitrary real constants). The prifnes in (2.5)
denote derivatives with respect to time ¢. The DSE’s have
been shown to be integrable precisely in the case when we
have

(2.6b)

i.e., when f(¢) is allowed to be arbitrary. We shall mainly
concentrate on this case. The commutation relations for the
DS algebra (2.4), (2.5) are easy to obtain, namely ‘

(X)), XK =X(fifs —f12)s

[X(N, Y(©)l=Y(fR—fe/2),

[X(N, Z(W)]=Z(fn'—f'h/2),

[X(N, W(m)] =W(fm'),

[Y(g1), Y(g)] = — W(g.g; —8182)/2,

[Z(hy), Z(hy)] = — € W(hh; —hihy)/2,

[Y(8), Z(h)] = [Y(8), W(m)] = [Z(h), W(m)]

= [W(m,), W(my)] =0

We see that the DS Lie algebra L allows a Levi decom-
position'’
where S = {X( f)} is a simple infinite-dimensional Lie alge-
braand N = {¥(g), Z(h), W(m)}is theradical of L, which
in this case happens to be a nilpotent ideal.

The “obvious” physical symmetries of the DSE’s are

6I= —€1,

(2.7)
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obtained by restricting all the functions f, g, 4, and m to be
first-order polynomials. We then have

Py=X(1)=4, P,=Y(1)=4,,
=Z(1)=4d,, Ry=W(1)=vd, —ud,,
D=X(t)=td,+ (x3, +yd, ‘
, —ud, —vd,)/2—wd,,
B, =Y(t)=td, —x(vd, —ud,)/?2,
B,=Z(t)=t3d, —€,y(vd, —ud,)/2,
R, =W()=t(vd, —ud,) +R, .

We see that Py, P,, and P, generate translations in the ¢,
x, and y directions, respectively; D corresponds to dilations,
B, and B, to Galilei boosts in the x and y directions, respec- .
tively. Finally R, corresponds to a rotation in the (%,0)
plane, i.e., a constant change of phase of ¥(x,y,t) and R, toa

(2.9)

_change of phase of ¥, linear in ¢, acoompamed by constant

shift in w (see below).

B. Loop structure of the DS symmetry algebra

Similarly as the algebra of the Kadomtsev—Petviashvili
equation,” the DS symmetry algebra for §; = — €, (and
only in this case) can be embedded into a Kac-Moody type
loop algebra.'® To see this, let us restrict f; g, 4, and / to be
Laurent polynomials in z. A basis for this algebra is provided
by the operators

Xty =1t"3, +nt""'A/2 —n(n—1)t""24,/4
—n(n—1)(n—2)t"*W,/4,

Y(t") =t"X — nt" " '4,/2 — n(n — 1)t"*W,/2, (2.10)

Z(t") =t"Y — ent" " 'A,/2 — en(n — 1)t 2W,/2,

Wt =t"d,+nt""'W,,

where we have introduced the notation

A =x3, + 3, — ud, —vd, — 2wd, ,
X=4d, Y=3, |
=1x*+))(wd, —ud,), A,=x(vd, —ud,),
A, =y(wd, —ud,), Ay=vd, —ud, (2.11)
=1(x*+ € y)0,, W,=x9,,

W3=yaw, W4=3w.

The operators (2.11) form the basis of an 11-dimensional |
solvable Lie algebra. It has a ten-dimensional nilpotent ideal,
the nilradical NR(L) = {X,Y,4,,4,,A 5,4, W ,,Wo, W3, W,}.
In turn the algebra NR (L ) has an eight-dimensional uniquely
defined maximal Abelian ideal {4, W;, i = 1,...,4}. The alge-
bra (2.11) can be embedded into the simple Lie algebra
s1(7, C). Indeed, consider the sl(7, C) matrix
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" Setting all entries but one equal to 0 and the remaining one
_ equal to 1, we obtain 11 matrices having the same commuta-
tion relations as the vector fields (2.11) [§ = 1 corresponds
to the operator A, x =1 or y =1 to X or Y, respectively,
a, = lorw; = 1tod,; or W,, respectively (i = 1,...,4) ]. This
embedding provides us with an identification of the algebra
generated by X(¢"), Y(t"), Z(¢"), and W(t") of (2.10).
We have obtained an infinite-dimensional subalgebra of the
affine loop algebra,

gl(T,C) = {[]R{(tt“‘) ®sl(7, C)] eaR(tt“)—]
(2.13)

The vector fields X (z ") form a simple subalgebra isomorphic
to the Z-graded algebra {R (¢,t ~')d /dt}, whichisin turniso-
morphic to the Virasoro algebra (without a central exten-
sion).** Notice also that each element of (2.10) has a well-
defined degree in a natural grading obtained by attributing the
degree n to the monomial #* and the degree 1 (0<u<6) to
each element of (2.11), where u is the distance from the diag-
onal in the matrix (2.12) to the corresponding element
(u=0forA,u=1ford,,u =2forX, Y,and W, etc.). The
degreesof X(¢*), Y(¢"), Z(t"),and W(t") arethusn — 1,
n+2,n+2,and n + 5, respectively.

|

(i) Case f(t) =0,
FA)=x+g(t), JA)=y+2Ah(@), tA)=t,

(5 0 X+ =€y 0 w, + €,( —€,)?w, 0 — 2w, 3
0 -6 0 x+vV—€y a,+e(—¢€) %, 0 —2a,
0 0 25 0 cw, 0 —w, + €6,( —€)w,y|
(o 0 0 0 ca, 0 a4, + €,( — €)', ? -
0 0 0 0 —25 0 x—(—e)?y
0 0 0 0 0 ) ’ 0
\0 0 0 0 0 ¢ -6

p
(2.12)

C. The group transformations

The elements of the connected part of the symmetry
group of the DSE’s are obtained by integrating the general
element of the DS Lie algebra (2.4). We consider separately
the cases f(¢#) =0 and f(¢) 0. In each case we write the
vector field ¥ in the form (2.2), where 7; and ¢; must be
specified, and integrate the equations

dx . dy —n dt .
L — i1 2 T T i3
Z’} d j’} (2.14)
u U : w
a=" w= a
where
N = (RJbit,5i), @y = b; (X,J,4,i,5,iD) .
The boundary conditions are
X|ico=2%X, Plice=J ;’= =t, :
|/1 (4] |/1 [+ |/1 0 (215)

iy _o=1u Bi_o=v, Wi_o=w.

The results of this integration are presented below. For
each of the two cases mentioned above, we give the trans-
formed variables and the expression for the new solution in
terms of the original one.

CW(E 1) = WE —Ag(F),p — Ah(1),t) exp i{(A /2)g' (1) [% — (A4 /2)g(D)]

+(e/DAR' (D) [F —

(A/2)h(1)] —Am(D)},
D(FJ,T) = w[F — Ag(D),J — Ah(D),1)] — (A /2)g" (D) [% — (A/2)g(D)] — (€/2)AR" (D) [§ —

(2.16)
(A/2D)h()] + Am' (D).

Setting g(z) = h(¢) = 0in (2.16), we see that the presence' of W(m) in the symmetry algebra simply means that the DSE’s are
invariant under an arbitrary time dependent change in the phase of W, compensated by an appropriate transformation of w.

(ii) Case f(¢) #0,

G(t,t) =f"2(1) f (s)f ~3%(s)ds, H(t,1) —f”z(t)f h(s)f ~'%(s)ds, ¢(,)_L

[#(2) can be any antiderivative of 1/(¢) ], we have

() = [x + GLIA) DD, §A) = [y + HLt D) LD, 1A)

[f(1) —f D] }

87(1)

-~ - f(t)]1/2~ { . - [
V(X p,t) = [—~ W(x,p,t)exp iy (X° + €, 77)
% 6 | yit)exp iy (X Wy

% [f(t)f(t)]“”[g(r)[f (’)]

2.17
[ 217

=470 +4),

—ed) + %f’(r)G(rJ)]

. é] i _ i _ f(t) 172 1 , ~
+ = (¢ h [____] —h — ; ]
5 JLADAD] [ (®) e (t) + 5 f (t)H(tt)‘
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+—[g(t)G(tt) +ehHED] — L (G215 + e HA(1H)]

2() 8f(1)

_J‘ &2 (s) + €k %(s) + 2m(s)f(s) ds ]
2f%(s)
DEHD = [LO/f() w(xp,t)

provides us with a family of solutions depending on three
arbitrary functions of time in the case of (2.16) and four arbi-
trary functions of time in the case of (2.18).

By introducing new functions of time, it is possible to

obtain a much more simple expression than (2.18) for the -

elements of the symmetry group of the DSE’s when f(#) #0.
Leta(z), b(1), c(t), and e(t) be arbitrary real-valued func-
tions of class C* with the restriction that a(#) 0. Then, for
a fixed value of the parameter A,, take f(¢), g(¢), h(¢), and
I(#) in (2.17) and (2.18) to be the solutions of the following
system of functional equations:

4 J. Math. Phys., Vol. 29, No. 1, January 1988

— e D [f"(?)f('i) — P OP - 0 + VAC ]2] (2.18)
~ ~ -~ ~ - 1/2
- iif“”z(t)f”m(t)[[2g’(t)f(t) —g(r)f'(t)][f‘—f’]
4 A
) S
— [28'(0f(1) —g(Of ()] + [f”(t)f(t) —%[f’(t)]z]G(t,t)]
. . .. . 12
—ﬁﬁf—”z(t)f-m(t){[zh (Dfh) ~ niry 1|22 |
4 £ ,
—[28' (D) —h()f ()] + [f”(t)f(t) —i[f'(t)lz]H(t,?)}
—— {28 (O)f (1) —g(t)f () 1G(1,1) + €,[2h " (1)f(2) — h(¢ tht
4f(t)f()[g £ g () 1G(t) + €,[2h ' (1)f(2) ()f()] (0}
— | rwrn=Liror|ices H?(1,t
+ 8f(t)f(t)‘[f (Of() 5 [f()] ][ (1,1 + e H*(1,1)]
L B0 +eh>@) +4mfD) &) + e +4mOfD)
4*(0) 4f(n)f(1)
1
The variables x, y, and ¢ appearing on the right-hand side a (;) = f(1)/f(2),
of the expressions for ¥ and w in (2.18) are to be interpreted b 2
as functions of x, y, and ¢, i.e., (t) [f(t)f(t)]—llz[ (t)[f(f)
x =[5+ GGOAD/ADI, o 1 7o
=[F+HEGOIO/SD], t=¢7"81) —4). —g(0) +—f’(t)G(t,E)],
(2.19)

‘ : N : [20) a2 S
Note that by construction, a one-dimensional Lie subgroup of =1 f(t)f(t)] h(t)
transformations is generated if one fixes the functions g, 4, /in a(?) S ()

(2.16), 0rf, g, h, lin (2.18), and then allows the parameter 4 , ~ ]
to take on arbitrary real values. —h® +_f (OH@D |,
Theexpressionsfor\ll.andlbin (2.16) and (2.18) can be * b2(s) + €,62(s) + 2e(s)als) (2.21)
used to generate new solutions of the DSE’s from known ones. ds
More precisely, if (W,w) is alocal §91ution of the DSE’s in the ; a*(s)
neighborhood of (x,y,t) then (W,i) given by (2.16) or =f g (s) + €7 %(s) + 2m(s)f(s) ds
(2.18) will be a local solution of the DSE’s in the neighbor- f2(s)
- hood of (X (1),9(A),t(4)), In particular, the application of the
transformations (2.16) and (2.18) to the “trivial” constant — —f(——[g(t)G(t 1) + A () H(1,1)]
solution
Vapt) =Wy wlpd) = — 6%,  (2.20) {;fﬁ‘; [G2(t]) + e HX (4],

— 47D + A0 F(0) = VAR
Under these conditions, it can be verified that for appropriate
constants of integration ¢,, ¢,, ¢;, and c,, the transformations
(2.18) reduce to the following transformations when A = A,
(and only for this value of 1):

= [x + fb(})a—m(i)di + cI]é”?(Z),
= [y + Jc(;)a‘”z(;)d; + cz]a”z(i),'
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TN eemm .’

oo S w—

P=Cm, £ = ;i+c3,

V(%,5,0) =a~2¥(xp,t)exp i{"—(fcz +67) + L
8a 2a

. 2 2 .
+~€iﬁ—%fb + €,¢ +2€adt—c4],

2a a?
(2.22)
5 . " __1 2
D(E5,1) = a" wlxp,t) — % (”"—022"—) (# + €, 7)

_i( 2b'a — ba’)~ _ﬁ(Zc’a—ca’)ﬁ

4 a? 4 a®
+i(b2 +€,c2 +4ea)

4 a’ '

The functions a, b, ¢, e, and the derivatives of these functions

appearing in the right-hand side of the expressions for ¥ and
in (2.22) are all evaluated at . Moreover, the variables x, y,
t appearing in the argument of ¥ and w in the same expres-

‘sions are to be interpreted as functions of %, 7, ¢, i.e.,

x=xa""*(1) — fb(;)a“3’2(?)d? —c,

y=jya %) — fc(;)a_”z(;)d; —c,, (2.23)
t=_{(2).
It should be pointed out that the constants ¢, ¢,, ¢;, and ¢, can
be omitted when using (2.22) since they can always be re-
moved by applying the transformation exp{ — X(c,)
— Y(¢;,) — Z(c,) — W(c,)} prior to the application of
(2.22).
Finally, let us mention that the DSE’s (1.1) are also in-
variant under a group of discrete transformations, generated
by the transformations

x> —X, Y-, t—t, VoY, w-w,
XX, y—> —y, t-t, vy, Cwow,
X—X, y;y, t—1t, Vo —V¥, wow,
XX, Y-y, t- —t, Y-oP* wow.

(2.24)

lil. ONE- AND TWO-DIMENSIONAL SUBALGEBRAS OF
THE DAVEY-STEWARTSON SYMMETRY ALGEBRA

In order to perform symmetry reduction for the DSE’s
in a systematic manner, we need to know all subgroups of the
symmetry group having generic orbits of codimension 1 and
2 in the {x,y,} space. This is equivalent to performing a
classification of all one- and two-dimensional subalgebras of
the DS algebra into conjugacy classes under the adjoint ac-
tion of the DS group, i.e., the group leaving the equations
invariant.

The method is exactly the same as the one employed re-
cently for the Kadomtsev-Petviashvili equation,” and is an
adaptation of methods developed earlier for classifying sub-
algebras of finite-dimensional Lie algebras.'®'®

The first step is to classify subalgebras of the factor alge-
bra.S = {X(F)}inthe Levi decomposition (2.8) For this we
can use results obtained earlier’ for an isomorphic algebra.
Thus every nontrivial one-dimensional subalgebra of S'is con-
jugate to {X(1)} and every two-dimensional subalgebra to
aff(LR) = {X(1),X(n)}.

One-dimensional subalgebras of the entire DS algebra
will thus have the form {X(1) + Y(g) + Z(h) + W(m)},
or {Y(g) + Z(h) + W(m)}. Using the transformations
(2.16)—(2.19) we can show that every subalgebra of the first
type is conjugate to X(1).

The subalgebras of the second type split into several
classes depending on which of the functions g(¢), 4(¢), and
m(t) are nonzero (in the considered ¢ interval). We drop all
details and present representatives of each conjugacy class of
one-dimensional subalgebras of the DS algebra in Table I.
The classification is under the entire DS group including the
discrete transformations (2.24). '

In column 1 we introduce a name for each class of subal-
gebras. In column 2 we give the basis element for each repre-
sentative subalgebra. In column 3 we present the normalizer
of each subalgebra in the DS algebra, i.e., the maximal subal-
gebra L C L satisfying

[X,X,] =AX, XeL,, 3.1

where A€R is a constant and X, is the corresponding basis
element in column 2. In column 4 we give the conditions

TABLE I. One-dimensional subalgebras of the Davey-Stewartson algebra (¢>0 and AcR are constants, h, F, H, G, and L are functions of 7).

Characterization
No. Basis element Normalizer of conjugacy class -
L,, X(1) X(0), X(1), ¥Y(1), Z(1), w(l) . f#0
Lf, ¥(1) +aZ(1) X(0), X(1), Y(—e€aH) +Z(H) f=0, h= +ag#0
Y1), Z(1), w(L)

Ly, (h) Y1) + Z(h) —GlY[J’B(hH'~h'H)dS]+Z(H){ f=0, g#0
h'#0 . Y1), Zh), w(L) h #Ag
L,, ‘ Z(1) X(1), X(1), Y(G), Z(1), W(L) f=g=0, h#0
L W) X(), Y(G), Z(H), W(L) f=g=h=0,

. m#0
L w(1) X(F), Y(@), Z(H), W(L) f=g=h=0
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under which a general element of the form (2.4) can be
transformed into a constant multiple of the element in col-
umn 2.

Two isomorphy classes of two-dimensional Lie algebras
{X,,X,} exist, Abelian (24,) and non-Abelian (4,), with
commutation relation

[X,X;]1 =0 or [X.X,]=X,, . (3.2)
respectively. To obtain all such algebras we let X, run through
all the standard forms of Table I. The other element X, must
then lie in the normalizer nor{X,} and can be further simpli-
fied using the Lie group Nor{X,} corresponding to the alge-
bra nor{X, }.

The results are summarized in Table IL. Certain redun-
dancies have been left in Tables I and II. Thus two one-
dimensional subalgebras L, ; (k) and L , ; (h,) are conju-
gate to each other if there exist two constants A and u, such
that

hy(t) = hy (At + ) . . (3.3)

Similar redundancies exist in Table II and can be re-
moved, e.g., by fixing the values of the function A (¢) and its
derivative at some point ¢ = f,. Since this has no conse-
quences for symmetry reduction, we shall not dwell on it
here.

IV. SYMMETRY REDUCTION FOR THE DAVEY-
STEWARTSON EQUATIONS

We shall now use the results of the previous sections to

reduce the DSE’s to a system of equations involving two inde- -

pendent variables only. To do this we make use of the one-
dimensional subalgebras of the DS algebra, listed in Table I.
The method is standard and quite simple. We consider an
" auxiliary function F(x,p,t,u,v,w) and request that it be anni-

TABLE IL. Two-dimensional subalgebras of the DS algebra (a>0,
beR, k=0, are constants, 4, H, and m are functions of #).

No. Type Basis element

Le% 24, X(1), Y(1) +aZ(1) +kW(1)
LY, 24, X, ZA)+ kWD)
L,, 24, X)), W)

L2 24, Y(1) +aZ(1), Y(—e€@ah) + Z(h) +bZ(1)
Loam 24, Y(1) +aZ(1), Y(—é€ah) + Z(h) + W(m)
_ [m=0if (a%e)# (1, — D]
L*E 24, Y(1) +Z(h), —Y[§o(hH' —h'H)ds] + Z(H)
h'#0 _ :
Lt 24, Y1)+ Z(h), W(m)
h'#£0
Ly, 24, Z(1), W(m)
Ly 24, W@, Wim)

L:o 4,  X(1), X(0) + kW(1)

L3, 4, Y(1) +aZ(1), 2X(1)
L,, 4, Z(1), 2X(1)
Ly 4, w(t), —X()
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hilated by the elements of the one-dimensional subalgebra
{x}: ]
XF=0. 4.1

Equation (4.1) implies that F is a function of five variables
only, namely the invariants of the Lie group generated by X.
Two invariants £ and 77 can be chosen to depend on x, y, and ¢
only, these are the new symmetry variables. The remaining
invariants yield the dependence of #, v, and w (i.e., ¢y and w)
on the symmetry variables.

Only vector fields involving derivatives with respect to
the independent variables yield reductions. Hence we shall
only use the subalgebras L, ;,...,.L 4 of Table I. We shall
perform the reduction using the “standard” basis elements
of Table 1. The result for a general vector field (2.4) is ob-

.tained from the results for a simplified one by applying a

general group transformation (2.16)-(2.24).

A.The algebra L, ,

The equation X(1)F(x,y, t, u, v, w) =0 tells us that
the invariants of exp X(1) arex, y, 4, v, and w. The reduction
is hence obtained by setting '

Y(x,p,t) = $(&m), E=x, =y

4.2
wlxpt) = QED) - (4.2)

Substituting into the DSE’s (1.1) we obtain the reduced
system '
¢.§§ + El¢m1 = 62|¢|2¢ + ¢Q ’ - (4.3a)
Qg—g +61Q’7"I =52(|¢|2)‘H"7 . (43b)
Applying a general DS group transformation to a solu-
tion of (4.3) we obtain a class of solutions of the DSE’s,

depending on four arbitrary functions f(), g(t), h(t), and
1(#). Thus assuming f(¢) #0, we obtain

V=g S exPi[%—(x2+€1y2)f7
1 1 (eh?+g+2mf
) +Ej(xg+61yh) —E‘J‘L—.f—z__ds s
1 1 " 1 [
W= Q(é’,?])?-—'-gf—z(.ﬂr _‘—2‘f 2)(x2+61y2)
X ’ ' € y ’ ’
= (29'f— — =2 (2h'f—h 4.4
4f2(gf g8f" 4f2( f—hf (44
+_1_g2+61h2+4mf
4 f2 ’

'§=xf—”2—f g )]~ ds,
0

p=yf? —f h(s)[ f(s)]173%ds.
0 .

Substituting /(4.4) into the DSE’s (1.1) we find that #(£, 1),

and Q(&, n) must satisfy Egs. (4.3a) and
8[Q§§ + ‘SIQ?M - 52( |¢|2)m7 ]
=(61€1+1)[2.ﬂ::_(f;)2], ' (4.5)

which reduces to (4.3b) if §, = — €, or if f(¢) = (a + bt)?
[see (2.6)].
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B. The algebra L,

Theequation [ Y(1) + @Z(1) ]F = Oimplies a reduction
obtained by setting

Pxpt) = (L), wpt) =08,

E=t, f=y—ax.
By substituting into the DS equations we obtain the reduced
system

iQ + (@° + €)Q = 6|00 + 00, (4.7a)

(02+51)Q;; =62(|Q|2)gg . (4.7b)

This system can be further simplified. We solve the sec-
ond equation (choosing a’# — §,):
0(£8) = [6,/(a® + 8D 1|QP +a(§) +B(&),  (4.8)
where a(£) and S(£) are arbitrary functions. Expression
(4.8) can be substituted back into Eq. (4.7a) and we obtain
an equation for (¢, {) alone. A transformation of the depen-

dent and independent variables can be found that takes (4.7a)
into the nonlinear Schrodinger equation. The final result is

(4.6)

\I’(x,y,t) = {€4(‘12‘+ 51)/[62(‘12 + 51) + 52]}1/2¢(§’ 17)
Xexpi[(y —ax)F(t) + G(8)],
wx,pt) = {5264/[62(‘12 +6,) + 62.]}l¢(§, 7) |2

+a(t)(y —ax) +B(1),

a(t)dt, (4.9)

G(t) = —f[(az +€)F2(t) + B 1dr,

H@@) = —2[63(a2+€1)]1/2fF(t)dt,
a*+ 6,
&@+68)+6,
E=et, n=[6&0@ +e)] 72y —ax) + H(),
€ =sgn(a’*+e,).

€, = sgn

Here a(?) and B(t) are arbitrary functions of time, a is a
constant, and ¢(&,n) satisfies the nonlinear Schrédinger
equation

l¢§ + ¢'r/1] = 63é4¢|¢l2 . ~
We shall not present the more general solution, obtained

by applying a general DS group element to the solution (4.9).

. C.The algebra L, ;(h)
We have
[Y(1) + Z(W)IF ={3, + hd, — (e/2)p[h' (v,

—ud,)+h"3,]}F=0.
(4.11)

The characteristic system for (4.11) is
d_x=Q_ 2du _ 2dv _ 2dw

— = = . (412
1 A eyh'v e yh'u € yh”
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(4.10)

‘By solving (4.12) we obtain

W =¢(& nexpli(e,/4) (h'/h)YY), E=1, (4.13)

W=Q(& 1) — (e/4)(h"/h)y*, m=y—h()x,
- where the DSE’s imply ' '
. ih’ ih’
e + (€1 + )by, + —mdy + - ¢
=€21¢|2¢+¢Q, (4.14a)
(h2+51)Q1m —%%=62(|¢|2)Wﬂ : (4.14b)

The system (4.14) can be further simplified. Solving
(4.14b) and substituting into (4.14a), we find

) s, R €,6, h" 5
_ __&b k" ‘ 5,
Q=S58 + S T T O AW
’ (4.15)
ide + (€, +h D, + %mﬁ,,
ik &b R, )
+(2h rrrET R A
5, ) 2
_ , 4.16
(e2+k2+51 161 (4.16)

Equation (4.16) can be reduced to a nonlinear Schrodinger

equation with variable coefficients. To see this, set
Q=4 Oexpli(n®H + 9F + G)] ,
S=yry®n+K(@).

We choose H (#) to satisfy a Riccati equation

€6, h" h'

_— 2—H=0v
4h%+6,) h + h

(4.17)

H'+4(e,+h*H* +

(4.18)
and the other functions in (4.17) to satisfy
F' +4(e,+h>)HF + (h'/W)F+a=0,
G'+(6+h*)F*+B=0,
(4.19)

A=h"12 exp[ - ZJ(G' + hZ)Hdt],

K= — f(61+h2)det, y=A42%

The function £ in (4.17) then satisfies the equation
i + (6, +h)A*Q,,

= (e, +6,/(h* +6))4%|Q* Q. (4.20)
For §, = — €, a particular solution of the Riccati equation
(4.18) is :

H=h'/4(h*—€)h. (4.21)

D.The algebra L, ,

The algebra generated by Z(1) = d, leads in a simple
manner to the nonlinear Schrédinger equation. Indeed a -
straightforward reduction with ¢ = Q(x,t), w = Q(x,?)
yields
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i, + 9, =6/0°0+00, 0, =0. (4.22)
Putting

V= ¢(t, §)ei[FX+G]’
w=a(t)x+p(), §=x+H(),
with

(4.23)

Fy = — [awd, 6@ = —f(z«"zw)dz,

H(t) = — ZJth,

we find that ¢(2,£) satisfies the nonlinear Schrodinger equa-
tion (1.2).

The algebras of Table II could be used to reduce the
DSE’s to various systems of nonlinear ordinary differential
equations. These are easy to obtain and we shall not go into
them here. '

V. CONCLUSIONS

We have shown that the Davey—Stewartson equations
(1.1) have an infinite-dimensional symmetry group. More-
over, for the integrable case when §, = — €, in (1.1), the
symmetry Lie algebra has a loop algebra structure, similar to
that of all other known integrable nonlinear differential
equations in 2 + 1 dimensions.”"?

One-dimensional subalgebras of the symmetry algebra
have been used in Sec. IV to reduce the DSE’s to one of three
two-dimensional systems. These are the system (4.3), the
nonlinear Schrédinger equation (4.10) and Eq. (4.16). Large
classes of solutions of the nonlinear Schrodinger equation are
known (solitons, multisolitons, background radiation, quasi-
periodic solutions).** The system (4.3) and Eq. (4.16) have,
to our knowledge, not been studied in the literature. They
merit a separate investigation and we plan to return to themin

the future.
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