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Abstract
In this paper, we propose a hybrid speech enhancement system that exploits deep neu-
ral network (DNN) for speech reconstruction and Kalman filtering for further denoising,
with the aim to improve performance under unseen noise conditions. Firstly, two separate
DNNs are trained to learn the mapping from noisy acoustic features to the clean speech
magnitudes and line spectrum frequencies (LSFs), respectively. Then the estimated clean
magnitudes are combined with the phase of the noisy speech to reconstruct the estimated
clean speech, while the LSFs are converted to linear prediction coefficients (LPCs) to
implement Kalman filtering. Finally, the reconstructed speech is Kalman-filtered for fur-
ther removing the residual noises. The proposed hybrid system takes advantage of both the
DNN based reconstruction and traditional Kalman filtering, and can work reliably in either
matched or unmatched acoustic environments. Computer based experiments are conducted
to evaluate the proposed hybrid system with comparison to traditional iterative Kalman fil-
tering and several state-of-the-art DNN based methods under both seen and unseen noises.
It is shown that compared to the DNN based methods, the hybrid system achieves similar
performance under seen noise, but notably better performance under unseen noise, in terms
of both speech quality and intelligibility.

Keywords Speech enhancement · Deep neural network · Kalman filter ·
Unmatched acoustic environment

1 Introduction

In real world environments, speech signals are often corrupted by a wide range of
background noises. These disturbances cause problems in applications including voice com-
munication, automatic speech recognition and speaker identification. As a result, speech
enhancement, which aims to improve speech quality and intelligibility, has been intensively
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studied over the past several decades, and will likely continue to be an active research topic
in speech processing, recognition and communication.

Various denoising methods have been proposed in the literature, among which statistical
filtering received the earliest attention. Wiener filtering is one of the well-known methods in
this category, with its goal to find the optimal minimummean square error (MMSE) estimate
of the clean speech’s discrete Fourier transform (DFT) coefficients [11]. Wiener filtering
introduces broadband residual noise instead of musical noise in the enhanced speech, which
is undesirable even though often acceptable. Kalman filter is a time-domain, linear MMSE
estimator that was first applied into speech enhancement in [22], and remains of particu-
lar interest due to its several advantages: (1) ability to handle and process non-stationary
signals; (2) absence of musical noise in the denoised speech given ideal parameters; (3)
possibility of enhancing both the speech magnitude and phase.

In Kalman filtering, the clean speech is usually represented by a linear prediction model.
As such, the enhancement performance is largely dependent on the accuracy of the model
parameters, i.e.: the linear prediction coefficients(LPCs), the driving noise variance, and
the additive noise variance. Various estimation algorithms have been proposed to obtain
the above parameters from noisy speech, which can be divided into two categories: online
estimation [3, 4, 14, 25, 40] and off-line estimation [9, 19]. The online estimation usually
iterates between Kalman filtering of noisy observations and estimation of the speech param-
eters. In each iteration the Kalman filter enhances the speech to obtain better parameter
estimation, and generally improves the final results after a few iterations. The off-line algo-
rithms require a training stage to predict the parameters beforehand based on a clean speech
database.

Recently, there has been a great deal of interest in data-driven supervised methods for
speech enhancement. Among them, the most prominent ones employ deep neural networks
for magnitude spectrum estimation [41, 42], where the DNN acts as a regression model to
find a mapping function between the log-power spectra (LPS) of the noisy speech and that
of the clean speech. DNN has also been used as a primary tool to predict key parameters
in speech enhancement methods [5, 16, 17, 20, 31, 35]. For example, the authors in [16]
employ DNN to estimate the ideal ratio mask (IRM) for masking based algorithms, while a
long short-term memory (LSTM) network is utilised in [17] to accurately estimate the a pri-
ori signal-to-noise ratio (SNR) for traditional MMSE based short-time spectral amplitude
(STSA) estimators. Another breakthrough includes the deep learning based generative mod-
eling for speech enhancement, wherein the generative adversarial network (GAN) has been
successfully employed to generate either clean speech waveforms [24] or spectrograms [1,
28] given the corresponding noisy counterparts.

We note that in most deep learning based methods, the noisy phase is directly used in
the reconstruction of the enhanced speech, on the basis that our ears are insensitive to small
phase distortions [33, 34]. In addition, the estimation of the phase remains challenging due
to its unstructured characteristic and phase wrapping [12]. However, some researchers have
pointed out the importance of estimating clean phase in recent works, especially at low
SNRs [23, 26]. Based on this finding, phase estimation [10, 44] and complex spectrogram
estimation [2, 21, 38, 39] have been proposed to enhance the magnitude and phase spectra
simultaneously.

Compared with the unsupervised statistical model based methods, the use of DNN to
predict clean speech magnitudes or other parameters offers many advantages. The non-
linear structures of DNN confer them with powerful learning capability, suitable to model
the complex mapping relationship between the noisy and clean speech. Furthermore, deep
learning based methods usually do not require the estimation of the noise power spectrum,
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nor do they rely on particular assumptions about the statistical properties of the speech and
noise, which allow them to handle non-stationary noises in real-world scenarios under unex-
pected acoustic conditions. However, deep learning based algorithms require large databases
for training in order to improve their generalization capability. To achieve better perfor-
mance in unseen noise condition, it is common to train a DNN with a large speech database
comprising different speakers and noise types [42].

Although the conventional unsupervised statistical model based methods fail to achieve
satisfactory results in real-world environments, the fact that they can reduce different kinds
and levels of noises to some extent, is an attractive feature to researchers. In other words,
the statistical model based methods do not employ a training stage, and thus treat all noises
as unseen noise so that their denoising capability, albeit limited, remains available in all
situations. Based on such considerations, hybrid approaches have been proposed and inves-
tigated by taking advantage of both unsupervised methods and deep learning methods [18].
These hybrid approaches have shown show a better generalization capability than the deep
learning only method in unmatched noise conditions [42].

Recently in [43], we have proposed a DNN assisted Kalman filter for speech enhance-
ment, where the DNN is trained to predict a variant of the LPSs, namely the line spectrum
frequencies (LSFs) of the clean speech, from those of the noisy speech. Experiments have
shown that with a large database for off-line training, one can reduce the sensitivity of LPCs
prediction in the presence of noise, leading to a better enhancement than possible with the
subband iterative Kalman filter algorithm [25]. However, the method in [43] suffers from
large distortion in the high frequency components of the enhanced speech, partly due to the
imperfect estimation of additive noise and driving noise variances used in the Kalman filter-
ing of the noisy speech. In addition, its performance relative to other DNN based denoising
methods is not yet known.

In this paper, we propose a new two-stage hybrid denoising system that exploits DNN
based speech reconstruction in conjunction with Kalman filtering in order to achieve
improved performance. In the first stage, a DNN is trained for the estimation of the speech
magnitude spectrum, which is then used to reconstruct the clean speech. In the second stage,
another DNN is trained for predicting the LSFs of the clean speech, which will be trans-
formed to LPCs. Meanwhile, the additive noise and driving noise variances are extracted
from the reconstructed speech. Finally, a Kalman filter with the estimated parameters is
applied to the reconstructed speech to obtain further enhancements. The main features and
contributions of our proposed approach in this paper are summarized as follows.

– As well-known, the above cited deep learning based methods often suffer from perfor-
mance degradation due to the data mismatch between the training and testing stages.
Consequently, the reconstructed speech from DNN based method inevitably contains
residual noise in unmatched acoustic environment. By incorporating and combining
Kalman filtering with a DNN-based speech reconstruction method, our approach makes
it possible to further reduce the residual noise in unmatched conditions.

– Further advantages of employing DNN include the following: First, DNN is used to
estimate clean speech amplitude in order to perform preliminary speech enhancement.
The additive noise and driving noise variances required for Kalman filtering are then
more accurately estimated from the DNN pre-enhanced speech. Second, DNN is used
to obtain accurate LPCs estimates which is critical for improved Kalman filtering.

– The speech reconstruction is performed in the frequency domain, that is, the recon-
structed speech is obtained by synthesising the estimated magnitude and the noisy phase
spectra, while the denoising process of Kalman filtering is realized in the time domain.
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With such a combination, our hybrid system can be viewed as a joint estimator for both
magnitude and phase of the spectra of the clean speech.

The rest of the paper is organized as follows. Section 2 elaborates on the proposed hybrid speech
enhancement systemwhere the key components and processing are detailed. Section 3 presents
a series of experiments to assess the system performance. Section 4 concludes the paper.

2 Proposed system

The overall block diagram of our hybrid system is depicted in Fig. 1. It consists of two
parts, namely: training part and enhancement part. In the training part, we first extract noisy
speech acoustic features, and then input them to two DNNs which are trained separately
to learn the mapping from the noisy features to different targets: clean speech magnitudes
and LSFs. In the enhancement part, the noisy speech features are extracted and processed
by the well-trained DNNs to predict the clean magnitudes and LSFs. The estimated spec-
tral magnitudes together with the noisy phase spectrum are then synthesised to obtain the
reconstructed speech. Finally, a Kalman filter with the DNN-based estimated parameters is
applied to the reconstructed speech to obtain the enhanced speech. The key components and
processing steps involved in the proposed system are described in further details below.

2.1 Noisy speech

In our system, as several other works on speech enhancement, we consider additive noise
which is the most common factor that degrades the speech quality in real-world scenarios.
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Fig. 1 A block diagram of proposed hybrid speech enhancement system
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The time-domain noisy speech can be modeled as

y (n) = s (n) + w (n) (1)

where s(n) is the clean speech, w(n) the additive noise, y(n) the noisy speech. While it
is common to assume that the speech signal and noise are statistically independent in the
derivation of the Kalman filtering approach, this assumption is not an essential condition
for the application of the proposed method.

The time domain noisy speech is then transformed to the time-frequency domain using
short-time Fourier transform (STFT). The STFT-based spectrogram of the clean speech
signal s(n) is denoted as S(k, f ), with k and f indicating the frame and frequency bin
indices, respectively. S(k, f ) can be expressed in polar coordinates in terms of its magnitude
and phase spectra as,

S (k, f ) = |S (k, f )| ejφs(k,f ) (2)
The corresponding spectrograms of the additive noise and the noisy speech are donated

as W (k, f ) and Y (k, f ). For simplicity, we shall refer the phase (magnitude) of the
clean speech and that of the noisy speech as clean phase (or magnitude) and noisy phase
(magnitude) respectively.

2.2 Targets and features

As mentioned before, two different training targets are set as the output of the DNNs,
i.e.: the spectral magnitudes and LSFs. The magnitudes are employed in the speech
reconstruction, while the LSFs are converted to LPCs as key parameters for Kalman fil-
tering. In [41], the authors point out that transforming magnitudes to log-power spectral
features is more relevant to human perception. However, directly using magnitudes as
training target can also yield good performance and furthermore requires lower compu-
tational complexity [20]. Besides, we use LSFs instead of LPCs since the former have a
well-contained dynamic range of values, while the latter require a larger dynamic range.
Therefore, we can maintain the stability of the training part more easily in the LSFs
domain [8].

The choice of appropriate input features is important to the performance. In [36],
several monoral feature sets are introduced and discussed for DNN-based speech applica-
tions, including: the amplitude modulation spectrum (AMS); the relative spectral transform
and perceptual linear prediction (RASTA-PLP); the Mel-frequency cepstral coefficients
(MFCC) and their deltas; the gammatone filterbank energies (GF) and their deltas. These
features are known to represent speech characteristics well and have been successfully used
in many speech processing tasks. Hence, we adopt them as additional input features in our
work. Note that we include the LSFs into the input feature set when the training targets are
LSFs, and included the speech spectral magnitudes of the speech spectrum when the targets
are magnitudes. With these two specific feature sets, we are able to better learn the mapping
from the noisy features to the training targets.

2.3 LPCs-to-LSFs conversion

In the training part, LPCs are calculated using both noisy and clean speech databases, and
then converted into LSFs for the DNN training. In the enhancement part, the estimated
LSFs are converted to LPCs for Kalman filtering. The conversion process [13] is briefly
summarized below.

A short segment of speech under the linear prediction analysis model is assumed to be
generated as the output of finite impulse response filter A(z). In order to define LSFs, the
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p-th order linear predictorA(z) is decomposed into symmetrical and anti-symmetrical parts,
represented by the polynomials P(z) and Q(z), respectively,

P (z) = A (z) + z−(p+1)A
(
z−1

)

Q (z) = A (z) − z−(p+1)A
(
z−1

)
. (3)

The LSFs ωi are expressed as the zeroes (or roots) of P(z) and Q(z) in terms of the angular
frequency.

The conversion from LSFs back to LPCs requires to obtain A(z). Since A(z) is expressed
as the linear combination of P(z) and Q(z), i.e., A(z) = 0.5[P(z) + Q(z)], we can easily
construct A(z) by using the ordered LSFs ωi of P(z) and Q(z), i.e.:

P (z) = (1 − z−1)
∏

i=2,4,··· ,p

(
1 − 2z−1 cosωi + z−2

)

Q (z) = (1 + z−1)
∏

i=1,3,··· ,p−1

(
1 − 2z−1 cosωi + z−2

)
. (4)

2.4 DNN Structure

As shown in Fig. 2, we employ two fully-connected DNNs to estimate the spectral magni-
tudes and LSFs separately in our work. Employing two separate DNNs can provide better
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Fig. 2 DNN structure in proposed hybrid speech enhancement system
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results than training only one DNN to learn the mapping to these two targets by multi-
objective learning, because the LSFs and the magnitudes share little similarity in their
structure.

Although the targets are different, the settings for each DNN are the same in our work.
Each network consists of an input layer, an output layer and three hidden layers, each com-
prising 1024 units. The linear activation functions are used in the output layer, whereas the
rectified linear functions are used in the hidden layers.

The input features of both DNNs are computed for each frame of the signal. To make full
use of the temporal information of speech, it is common to incorporate features of adjacent
time frames into a single feature vector. Moreover, we normalize different features into the
range [0, 1) in order to balance the training errors.

Back propagation is used to adjust the weights and biases in the training part. The cost
function for each training utterance is defined as the mean square error (MSE) of the magni-
tudes (or LSFs). The respective MSE is computed between the clean and estimated targets,
i.e.,

MSEMAG = 1

KF

K∑
k=1

F∑
f =1

(
|Ŝ (k, f ) | − |S (k, f ) |

)2
(5)

or

MSELSF = 1

Kp

K∑
k=1

p∑
i=1

(
ω̂ (k, i) − ω (k, i)

)2 (6)

where |S(k, f )| and |Ŝ(k, f )| are the clean and estimated magnitudes, respectively, with K

indicating the number of frames and F the number of frequency bins, while ω(k, i) and
ω̂(k, i) are the clean and estimated LSFs, respectively, with i indicating the order index and
p the AR speech model order.

2.5 Speech reconstruction

The STFT of the reconstructed speech, R (k, f ) is obtained by combining the estimated
magnitudes from the well-trained DNN together with the noisy spectral phase values φy ,
i.e.,

R (k, f ) =
∣∣∣Ŝ (k, f )

∣∣∣ ejφy(k,f ) (7)

The reconstructed speech r (n) is then obtained by computing the inverse STFT of
R (k, f ). Although we have used the noisy phases for synthesis, the reconstructed speech
will be Kalman filtered in the time-domain, which can be regarded as a joint form of
enhancement of the magnitude and phase spectra.

2.6 Kalman filtering

In Kalman filter based speech enhancement, the auto-regressive (AR) model is widely
adopted to represent the clean speech and derive the Kalman recursion equations. The p-th
order AR signal model is given by

s (n) =
p∑

i=1

ais (n − i) + v (n) (8)

where {ai}pi=1 are the LPCs of the speech signal and v (n) is the driving white noise with
variance σ 2

v .
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It has been pointed out in [27] that when the AR parameters are calculated from clean
speech, the enhanced speech from the ideal Kalman filter is of high quality and contains
no musical noise. In practical applications, the noisy speech (1) is used to estimate the AR
parameters, as the clean speech is not accessible. However, in our system, the reconstructed
speech r(n) is used instead of the noisy speech as input to the Kalman filter, in order to
provide more accurate parameter estimates. The Kalman filtering procedure is implemented
as follows.

Firstly, the clean and reconstructed speech models are expressed in terms of matrix and
vector notations to facilitate the presentation the Kalman filtering equations.

{
u (n) = Fu (n − 1) + Gv (n)

r (n) = Hu (n) + w (n)
(9)

where the transition matrix F is defined by

F =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
ap ap−1 ap−2 · · · a2 a1

⎤
⎥⎥⎥⎥⎥⎦

∈ R
p×p, (10)

H is a p-th order identity matrix and G = [0, · · · , 0, 1]T ∈ R
p . Moreover, u (n) denotes

the speech state vector, r (n) the reconstructed speech vector, w (n) the additive noise vector
and v (n) the driving noise vector, which are respectively given by

u (n) = [s (n − p + 1) , . . . , s (n − 1) , s (n)]T

r (n) = [r (n − p + 1) , . . . , r (n − 1) , r (n)]T

w (n) = [w (n − p + 1) , . . . , w (n − 1) , w (n)]T

v (n) = [v (n − p + 1) , . . . , v (n − 1) , v (n)]T (11)

The denoising process of the standard Kalman filtering is summarized by the following
estimation and updating equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e (n) = r (n) − GT û (n|n − 1)
K (n) = P (n|n − 1) (Rw + P (n|n − 1))−1

û (n|n) = û (n|n − 1) + K (n) e (n)

P (n|n) = (I − K (n))P (n|n − 1)
û (n + 1|n) = Fû (n|n)

P (n + 1|n) = FP (n|n)FT + σ 2
v GGT

(12)

where e (n) is the innovation vector, Rw the covariance matrix of the additive noise, K (n)

the Kalman gain matrix, û (n|n) and û (n|n − 1) the filtered estimate and the MMSE esti-
mate of state vector u (n), respectively, P (n|n) and P (n|n − 1) the filtered and the predicted
state error correlation matrix, respectively. The denoised speech d (n) is finally given by

d (n) = GT û (n|n) (13)

The enhancement performance is dependent on the accuracy of the parameter estimation
in the Kalman filter. These parameters include the driving noise variance σ 2

v , the covariance
matrix of the additive noise Rw , and the transition matrix F which contains the LPCs of the
speech signal model.
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2.7 Parameter estimation

Since the transition matrix F is obtained from the DNN, only the other two parameters, i.e.
σ 2

v andRw , need to be estimated before the Kalman filtering of the reconstructed speech. As
usual, the covariance matrix can be estimated during the speech-absent frames. Thus, esti-
mation accuracy of Rw is highly dependent on the ability to detect the voice and unvoiced
parts of the noisy speech. Here, the voice activity detector (VAD) algorithm [15] based on
speech energy and spectral flatness is adopted for this purpose. Different from our previous
work [43], the VAD is applied to the reconstructed speech r(n) rather than the noisy speech,
which helps make a correct decision of the unvoiced parts as seen in Fig. 3, and in turn,
improve the estimation accuracy of the noise covariance matrix.

For the estimation of the variance of the driving noise v(n), we solve the Yule-Walker
equations for the linear prediction model of the reconstructed speech, instead of using the
estimation algorithm given in [43]. The comparison of the estimated variance σ 2

v is shown
in Fig. 4, which shows that the new algorithm achieves a better performance.

2.8 Summary of proposed system

The main processing steps of the proposed hybrid system are summarized as follows:

1. Estimating clean LSFs and magnitudes from noisy features with the proposed DNNs.
2. Synthesising the reconstructed speech r(n) with the estimated magnitude and the noisy

phase spectra.
3. Converting LSFs to LPCs to form the state transition matrix F.

Fig. 3 The VAD results of noisy and reconstructed speech. The blue waveform is the original clean speech.
The decision line represents an unvoiced part when its value equals to 0, and a voiced part otherwise. The
noisy speech is corrupted with pink noise at -3 dB
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Fig. 4 The estimation of driving noise variance through different methods. Our algorithm (black) is closer to
the true one (blue). The noisy speech is corrupted with pink noise at -3 dB

4. Computing the covariance matrix of the additive noise and the driving noise variance
from the reconstructed speech.

5. Performing Kalman filtering of the reconstructed speech (12) to obtain û (n|n), and the
final enhanced speech d(n) as given by (13).

3 Experimental results

3.1 Experimental setup

3.1.1 Databases

The clean speech is selected from the IEEE sentence database1, as the latter contains pho-
netically balanced sentences with relatively low word-context predictability [6]. The corpus
is comprised of 72 lists, each of which containing 10 sentences. We choose the first 67
lists (670 utterances) for the training part and the remaining 5 lists (50 utterances) for the
enhancement part. The noises are selected from the NOISEX-92 database [32], which con-
tains white noise and a variety of non-stationary noises2. Each noise signal has a duration of
approximate 4 minutes. Four types of noises (babble,white, street and factory) are regarded
as seen noise, and another four types (pink, buccaneer2, destroyerengine and hfchannel) as
unseen noise. The spectrograms of the noise signals used in our experiments are shown in

1Available at website https://www.crcpress.com/downloads/K14513/K14513 CD Files.zip
2More details can be found at http://mi.eng.cam.ac.uk/comp.speech/Section1/Data/noisex.html
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Fig. 5. In the training part, the noisy speech is obtained by mixing clean training utterances
with seen noise at four different levels of SNRs, i.e., -3dB, 0dB, 3dB and 6dB, which results
in 10720 utterances. In the enhancement part, both seen and unseen noises are mixed with
clean testing utterances at the above mentioned four SNR levels. The number of noisy utter-
ances used in the enhancement part is 800 for both seen and unseen noises. The sampling
frequency for the speech and noise signals is set to 16kHz.

3.1.2 Reference methods

To evaluate the performance of the proposed new system, we choose several existing
approaches for comparison, which include one traditional Kalman filtering algorithm: Iter-
KF; and four recent DNN based methods, i.e.: DNN-MAG, DNN-IRM, FSEGAN and our
previous work DNN-KF. These are introduced briefly in the following.

Iter-KF [3] The enhanced speech is obtained by iteratively performing conventional
Kalman filtering, in which the LPCs are updated in each iteration.

DNN-MAG A DNN is employed to directly explore the mapping from the noisy magni-
tude spectrum to the clean one. The enhanced speech is synthesised with the estimated
magnitude and noisy phase spectra. This method is similar to the DNN-LPS [41], the
only difference between these two methods being that DNN-LPS uses the log-power
spectrum as features.

DNN-IRM [37] A DNN is trained for better predicting the IRM. The estimated IRM
is then applied to the noisy magnitude spectrogram to reduce the noise part, and the
enhanced speech is then reconstructed from the masked magnitude and noisy phase
spectra.

DNN-KF [43] A DNN is used to predict the LSFs for Kalman filtering. The noisy speech
is processed by the Kalman filter to obtain the enhanced speech. We note that the DNN-
MAG and DNN-IRM are frequency-domain speech enhancement methods, while the
DNN-KF is a time-domain method.

Fig. 5 Spectrograms of different noises. The first line (white, babble,street, factory) depicts seen noise in the
training part, while the other depicts unseen noise in the enhancement part
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FSEGAN [1] A least-square GAN is utilized to generate the clean speech magnitude spec-
trogram from the noisy one. The enhanced speech is reconstructed from the generated
clean magnitude and noisy phase spectra.

In order to fairly evaluate the performance of the method proposed in this paper, we
use the same DNN configuration in all the methods except FSEGAN. For FSEGAN, we
adopt the settings provided in [1] and adjust other network parameters to optimize perfor-
mance. For the remaining DNN based methods, we use the standard feed-forward network
configuration which comprises one input layer, one output layer and three hidden lay-
ers with 1024 units. For DNN-MAG and DNN-IRM, the Hamming window is selected
to divide each utterance into 20 ms frames with an 10 ms frame shift (50% overlap). A
320-point DFT is then computed for each frame resulting into 161 samples. For DNN-
KF, a rectangular window is used to divide the audio signals into 20 ms frames with no
overlap. For the proposed hybrid system, the STFT setting used in the magnitude spectro-
gram computation is the same as that of DNN-MAG, and the framing process in the LSFs
estimation is the same as that of DNN-KF. In the implementation of the Kalman filter-
ing algorithm, we set u(0|0) = 0, P(0|0) as an identity matrix, and the speech AR order
as p = 12.

3.1.3 Objective metrics

To evaluate the enhancement performance, two objective metrics are selected: the perceptual
evaluation of speech quality (PESQ) measure [7] and the short-time objective intelligibility
(STOI) measure [30]. PESQ and STOI evaluate the processed speech from two differ-
ent aspects: speech quality and intelligibility, and are widely adopted in speech-related
applications.

PESQ is proposed in the ITU-T recommendation P.862. It measures the distortion
between the original and processed signal. Firstly the signals are equalized to a standard lis-
tening level, then aligned in time to correct for time delays, and then processed through an
auditory transform to obtain the loudness spectra. The difference between the loudness spec-
tra of the processed signal and that of original signal is computed and averaged over time
and frequency to produce the prediction of subjective mean opinion score (MOS). Although
PESQ is an objective metric for evaluating the speech quality, it also reflects faithfully the
subjective score of the processed speech.

STOI has been put forward in recent years for objective assessment of the speech intel-
ligibility. It extracts short-time blocks of the clean and processed signals to compute the
average of the correlations across blocks, and the average correlation is then taken as the
intelligibility score. The STOI yields high correlation with subjective intelligibility score.

3.2 Results and discussions

Tables 1 and 2 show the average objective scores of the different speech enhancement algo-
rithms on both seen and unseen noises respectively. In general, for the seen noise, the overall
objective scores achieved by DNN-IRM and the proposed hybrid method are close, and
are superior to the remaining methods. For the unseen noise, the overall objective scores
clearly show that the proposed hybrid method performs better than the other three DNN
based methods in most cases, except for the STOI score of DNN-IRM at 6dB SNR. A more
detailed analysis of the results is provided in the following.
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Table 1 Objective scores of different methods on seen noise

PESQ STOI

Methods -3dB 0dB 3dB 6dB -3dB 0dB 3dB 6dB

Unprocessed 1.41 1.52 1.68 1.86 0.66 0.72 0.78 0.83

Iter-KF 1.55 1.79 2.01 2.25 0.66 0.72 0.79 0.84

DNN-MAG 1.89 2.13 2.34 2.55 0.75 0.82 0.86 0.88

DNN-IRM 2.01 2.28 2.47 2.67 0.80 0.84 0.88 0.91

DNN-KF 1.71 1.93 2.13 2.30 0.71 0.77 0.81 0.85

FSEGAN 1.85 2.02 2.19 2.35 0.70 0.75 0.80 0.84

Proposed 2.05 2.23 2.44 2.61 0.79 0.84 0.88 0.90

The bold entries show the best score of the results of different methods

3.2.1 Seen noise

In the case of seen noise (Table 1), Iter-KF achieves the worst performance among all tested
methods, which is mainly caused by the inaccurate estimation of the AR parameters. We
also note that the performance of FSEGAN is quite limited on our tested database. One
possible reason could be that the generative model requires a larger amount of training data
to learn the underlying distribution of the target features; otherwise mode collapse may
happen in the training part [29].

Next, we compare the performances of the other four DNN related approaches, i.e.,
DNN-MAG, DNN-IRM, DNN-KF and the proposed hybrid system. Clearly, DNN-IRM
shows the best overall performance, especially in the high SNR region for PESQ. One pos-
sible reason for this outcome under matched condition is the use of different targets: for
DNN-MAG and DNN-KF, the targets (clean magnitudes or LSFs) are the same across dif-
ferent noises and SNRs, and thus the DNN has to learn a many-to-one mapping; whereas
for DNN-IRM, the targets (ideal ratio masks) depend on the noise type and SNR, and thus
the DNN is faced with the simpler task of learning a one-to-one mapping [37].

Our system also exhibits better performance than DNN-KF and DNN-MAG. For DNN-
KF, although the use of DNN in LSFs estimation improves the performance of Kalman

Table 2 Objective scores of different methods on unseen noise

PESQ STOI

Methods -3dB 0dB 3dB 6dB -3dB 0dB 3dB 6dB

Unprocessed 1.38 1.51 1.66 1.83 0.66 0.72 0.78 0.84

Iter-KF 1.64 1.84 2.04 2.26 0.68 0.75 0.81 0.85

DNN-MAG 1.73 1.92 2.13 2.32 0.71 0.78 0.83 0.87

DNN-IRM 1.81 2.05 2.29 2.51 0.75 0.81 0.86 0.90

DNN-KF 1.73 2.01 2.21 2.38 0.71 0.77 0.82 0.85

FSEGAN 1.74 1.95 2.16 2.35 0.69 0.76 0.82 0.85

Proposed 1.96 2.16 2.36 2.52 0.77 0.83 0.86 0.89

The bold entries show the best score of the results of different methods
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filtering, two other parameters, i.e., the variance of the driving noise, σ 2
v , and the covariance

matrix of the additive noise, Rw , are not accurately predicted from the noisy speech, which
brings distortion to the final output speech. For DNN-MAG, the quality of the enhanced
speech is hindered by the residual noise, especially at lower SNR. Our hybrid system, which
can be regarded as a combination of DNN-MAG and DNN-KF, leads to a better enhanced
speech because it employs the reconstructed speech as the input of Kalman filtering, and
thus can provide more accurate estimates of σ 2

v and Rw , which in turn helps the Kalman
filter better reduce the residual noises in the reconstructed speech.

Compared to DNN-IRM, our system achieves about the same level of performance. The
PESQ score is slightly better than DNN-IRM at -3dB SNR and a little worse at higher SNR,
while the STOI scores for both methods are quite close at all SNRs. Hence, in the case of
seen noise, our proposed hybrid system and DNN-IRM achieve the best performance among
all the evaluated methods.

3.2.2 Unseen noise

We first investigate the generalization capability of the tested methods by considering
unseen noise. Upon comparison of the results in Tables 1 and 2, we note that all the methods
suffer from a performance degradation. Comparing the results in Tables 1 and 2, we find that
at high SNR, the performance of Iter-KF remains at a similar level as it belongs the class of
unsupervised methods. In contrast, the objective scores of FSEGAN, DNN-IRM and DNN-
MAG suffer a noticeable decrease, suggesting that the trained DNNs cannot achieve the
same prediction accuracy under unseen noise. However, such a decrease in objective scores
is not observed with DNN-KF, whose PESQ scores now exceed those of DNN-MAG for
SNR ≥ 0dB. This may be explained by the fact that the use of DNN in DNN-KF is limited
to the LSFs estimation, while the core processing function, i.e. Kalman filtering, is a con-
ventional method and therefore its performance should remains at a similar level whether
in seen or unseen noise situations. While the performance of our proposed system drops
slightly in the case of unseen noise, this degradation is not as significant as that observed
with the DNN-MAG and DNN-IRM methods.

The overall performance of the proposed hybrid system is significantly better than the
other methods in terms of both PESQ and STOI scores, except for the STOI scores of DNN-
IRM at high SNRs. However, at high SNR, intelligibility is less of a concern, as it is not
difficult to understand the speech in this case, while the speech quality remains our major
concern, which is well handled by the proposed system as reflected by PESQ scores. At low
SNR, sthe speech intelligibility is severely impacted by the additive noise and should be
our priority task. Clearly, the proposed hybrid method gives better STOI scores in low SNR
situations. In conclusion, the proposed hybrid system achieves the best overall performance
in unseen noise, after considering the various aspects of objective evaluation metrics.

We also characterize the enhancement performances of our proposed system on the dif-
ferent types of noise. The objective scores of the processed speech on each unseen noise at
0dB SNR are given in Figs. 6 and 7, respectively.

As can be seen from the results in Figs. 6 and 7, the overall performance of the processed
speech on pink and buccaneer noises is better than that obtained on destroyerengine and
hfchannel noises for all the methods. This is because the former two unseen noises share
more similarities with some of the training noises and exhibit a less complex structure when
compared to the latter two noises, so that the DNN can output a more accurate prediction.
This finding indicates that the performance of DNN based methods indeed varies with dif-
ferent noises. According to the PESQ scores in Fig. 6, the proposed hybrid system produces
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Fig. 6 PESQ scores on different noises at 0dB SNR

enhanced speech with better quality for all test noises. Further, for the STOI scores, the
proposed hybrid system still achieves the highest scores on all noises.

3.3 Further look at enhanced speech

In order to better understand the characteristics of the enhanced speech signals resulting
from the methods under evaluation, illustrative waveforms and spectrograms are plotted and
compared. The noisy speech is obtained by mixing a selected clean speech utterance with
hfchannel noise at 3dB SNR.

Figure 8 shows the residual noises and the distortions existing in the enhanced speech
in the time-domain. The processed speech from FSEGAN or DNN-MAG contains a large
amount of residual noises, which is caused by the difficulty in learning the mapping from
the noisy magnitude spectrogram to the clean one. Iter-KF and DNN-KF perform well in
removing the additive noise, but they both bring distortion to the original speech. For exam-
ple, the speech component after 0.3s is suppressed by Iter-KF while the magnitudes of the
processed speech of DNN-KF is strongly attenuated. DNN-IRM and the proposed hybrid
system achieve a better performance than the other methods, as they can remove more noise

Fig. 7 STOI scores on different noises at 0dB SNR
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Fig. 8 Time domain waveforms of the clean, noisy and enhanced speech signals for different methods

without bringing significant distortions. Finally, for this particular experiment with unseen
noise, our system is slightly better than DNN-IRM, as the residual noise is lower in the
unvoiced part near the middle of the utterance.

Figure 9 demonstrates the effects of the residual noises and the distortions in the har-
monic structures of the enhanced speech in the time-frequency domain. For Iter-KF, we
can see the musical noise structure in the spectrogram in the region between 2kHz and
3kHz. The spectrogram of FSEGAN also exhibits some undesirable structures, which likely
cause the degradation of performance. We make further comparison among the four DNN
related methods. While the harmonic structures of the voiced parts with DNN-MAG are
well preserved up to about 3kHz, a significant amount of residual noise is present during
the unvoiced parts. The processed speech with DNN-IRM is affected by high-level resid-
ual broadband noise, which the method cannot adequately remove. While introducing less
noise during the unvoiced parts, DNN-KF tends to suppress the high-frequency components
of the voiced parts of speech, leading to a decrease of speech quality. For this example, the
spectrogram of the enhanced speech with the proposed hybrid system seems to provide the
best quality, i.e.: clearer harmonic structures of the voiced part, and the less residual noises
during unvoiced parts.
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Fig. 9 Spectrograms of the clean, noisy and enhanced speech signals for different methods

4 Conclusion

In this paper, we have proposed a hybrid speech enhancement system consisting of the DNN
based speech reconstruction followed by Kalman filtering, in order to improve enhance-
ment performance under unseen noise conditions. Instead of focusing on training with as
many kinds of noise types as possible to improve the generalization capability, our system
first reconstructs the speech with the estimated magnitude spectrum from the DNN and the
noisy phase spectrum. Kalman filtering is then applied to further remove the residual noise.
By doing so, the proposed hybrid system is more capable to cope with unseen noise in
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real-world environments. In addition, the use of DNN-based LSFs estimation along with the
reconstructed speech provide more accurate parameters for Kalman filtering, thus leading
to a better denoising performance. Finally, the hybrid system involves time domain as well
as frequency domain processing, which could be regarded as as a form of joint estimation
for both the magnitude and phase short-time spectra. Experiments show that the proposed
hybrid system can achieve significant improvements in PESQ and STOI scores as compared
with the traditional Kalman filtering, as well as more recent DNN and GAN based methods
across different unseen noise conditions.
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