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a b s t r a c t 

In this paper, we introduce a training and compensation algorithm of the class-conditioned basis vectors 

in the non-negative matrix factorization (NMF) model for single-channel speech enhancement. The main 

goal is to estimate the basis vectors of different signal sources in a way that prevents them from rep- 

resenting each other, in order to reduce the residual noise components that have features similar to the 

speech signal. During the proposed training stage, the basis matrices for the clean speech and noises are 

estimated jointly by constraining them to belong to different classes. To this end, we employ the prob- 

abilistic generative model (PGM) of classification, specified by class-conditional densities, as an a priori 

distribution for the basis vectors. The update rules of the NMF and the PGM parameters of classification 

are jointly obtained by using the variational Bayesian expectation-maximization (VBEM) algorithm, which 

guarantees convergence to a stationary point. Another goal of the proposed algorithm is to handle a mis- 

match between the characteristics of the training and test data. This is accomplished during the proposed 

enhancement stage, where we implement a basis compensation scheme. Specifically, we use extra free 

basis vectors to capture the features that are not included in the training data. Objective experimental re- 

sults for different combination of speaker and noise types show that the proposed algorithm can provide 

better speech enhancement performance than the benchmark algorithms under various conditions. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

The general objective of speech enhancement algorithms is to

emove the background noise from a noisy speech signal to im-

rove its quality or intelligibility. They have been an attractive

esearch area for decades and find various applications includ-

ng mobile telephony, hearing aid and speech recognition. Nu-

erous single-channel speech enhancement algorithms have been

roposed in the past, such as: spectral subtraction [1] , minimum

ean-square error (MMSE) estimation [2,3] and subspace decom-

osition [4] . However, these algorithms tend to provide limited

erformance in adverse noisy environments, e.g., low input signal-

o-noise ratio (SNR) or non-stationary noise conditions, since they

se a minimal amount of a priori information about the speech and

oise. 
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Recently, the non-negative matrix factorization (NMF) approach

as been successfully applied to various problems, such as mu-

ic transcription [5] , source separation [6] , speech enhancement

7] and image representation [8] . In general, NMF is a dimension-

lity reduction technique, which decomposes a given matrix into

asis and activation matrices with non-negative elements [9,10] . In

udio and speech applications, the magnitude or power spectrum

f the (noisy) audio signal is interpreted as a linear combination of

he NMF basis vectors, which play a key role in the enhancement

rocess. Deep neural network (DNN) algorithms have also gained

normous interest lately. The DNN training aims at estimating the

onlinear mapping function, specified by the weights and biases

f the hidden layers, that relates the input features to the output

arget features. Applications of DNN to speech enhancement and

ource separation have been introduced in [11–13] . The NMF and

NN algorithms differ significantly in terms of underlying model-

ng structure and training requirements; in this paper, we focus on

 linear NMF model. 

In a supervised NMF-based framework, the basis vectors are

ypically obtained a priori for each source by independently us-

ng isolated training data during the training stage. However, there
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are two main problems in such a framework. The first one is

that the basis vectors of the different signal sources, e.g., speech

and noise, may share similar characteristics. For example, the ba-

sis vectors of the speech spectrum can represent the noise spec-

trum and hence, the enhanced speech may contain residual noise

components which have features similar to the speech signal.

One possible remedy is to train the basis vectors of each source

in a way that prevents them from representing other sources.

In [14] , the cross-coherence of the basis vectors is added as

a penalty term to the NMF cost function, whereas the cross-

reconstruction error terms are considered in [15] . The authors in

[16–18] propose to use additional training data which are gener-

ated by mixing, e.g., adding or concatenating, the isolated train-

ing data of each source. However, the approaches in [16,17] are

based on heuristic multiplicative update (MU) rules which do

not guarantee the convergence of the NMF in general [10,19] .

Moreover, the basis vectors in [17,18] are obtained indirectly by

means of the activation matrix estimated from the mixed train-

ing data and hence, lack an explicit interpretation in terms of

discrimination. 

The second problem in a supervised framework is the exis-

tence of a mismatch between the characteristics of the training

and test data. A common approach to overcome this problem is

to add explicit regularization terms to the NMF cost function that

incorporate some prior knowledge, such as the temporal continuity

[20] or statistical characteristics of the magnitude spectra [21] . In

these algorithms, however, the basis vectors are fixed during the

enhancement stage, which limits the performance when there is

a large mismatch between the training and test data. One alter-

native approach is to use a basis adaptation scheme during the

enhancement stage. In [22] , the basis vectors are adapted based

on prior distributions modeled by Gamma mixtures. The authors

in [23] employ extra validation data for speaker adaptation in a

speech-music separation task. In [24] , the basis vectors are adapted

by using a combination of the original and pre-processed noisy

speech samples, the latter being obtained via a classical MMSE-

based speech enhancement algorithm. In these algorithms, how-

ever, the basis vectors are adapted from the mixtures of multiple

sources, e.g., noise and speech, such that the resulting basis vec-

tors may still exhibit features of different sources. Consequently,

the enhanced speech may contain some residual noise components

and hence, adapting the complete set of basis vectors may limit the

enhancement performance. 

In this paper, to overcome these limitations, we introduce a

training and compensation algorithm of the class-conditioned

basis vectors in the NMF model for single-channel speech en-

hancement, which is an extension of our previous works on

training class-conditioned basis vectors in [25] , and basis compen-

sation in [26] . In the proposed framework herein, we consider the

probabilistic generative model (PGM) of classification specified by

class-conditional densities [27] , along with the NMF model [28] .

Specifically, the PGM of classification is used as an explicit a priori

distribution for the basis vectors. During the proposed training

stage, the basis matrices for all the clean speech and noise sources

are estimated jointly by constraining them to belong to one of

several speech and noise classes. Previously in [25] , we used a

traditional Gaussian-distributed class-conditional density [27] ,

and the model parameters were obtained through a maximum

a posteriori (MAP) estimator using the expectation-maximization

(EM) algorithm. In this paper, we make two key modifications.

First, we employ a Gamma-distributed class-conditional density

to bring more coherence into the NMF model. Second, the update

rules of the NMF model and the PGM parameters for classification

are jointly obtained via the variational Bayesian expectation-

maximization (VBEM) algorithm, which can be considered as an

extension of the EM algorithm [27–29] . 
The proposed enhancement stage consists of two steps. First,

e perform noise classification based on the posterior class proba-

ility (PCP), in order to determine which type of noise is included

n the noisy speech. Second, we implement a basis compensation

lgorithm by adopting the approach in [26] . That is, we use ex-

ra free basis vectors for both the clean speech and noise to cap-

ure the features which cannot be explained by the limited set of

asis vectors due to the hard decision on the noise type as well

s features which are not included in the training data. The PGM

arameters for classification are employed while inferring the

ree basis vectors as well as during the noise classification. Pre-

iously in [26] , the free basis vectors were estimated by using

he MU rules, whereas we use the VBEM algorithm in this pa-

er. Experimental results of perceptual evaluation of speech qual-

ty (PESQ) [30] , source-to-distortion ratio (SDR) [31] and segmen-

al SNR (SSNR) show that the proposed algorithm provides better

nhancement performance than the benchmark algorithms under

arious conditions. 

The paper is organized as follows. In Section 2 , we review the

asic principles of supervised NMF-based single-channel speech

nhancement. In Section 3 , we introduce the PGMs of the NMF

nd classification models. The proposed training stage is derived

n Section 4 , and the proposed enhancement stage is explained

n Section 5 . Experimental results are presented in Sections 6 and

 concludes the paper. 

. NMF-based speech enhancement framework 

For a given matrix V = [ v kl ] ∈ R 

K×L 
+ , NMF finds a local optimal

ecomposition of V ≈ WH , where W = [ w km 

] ∈ R 

K×M 

+ is a basis ma-

rix, H = [ h ml ] ∈ R 

M×L 
+ is an activation matrix, R + denotes the set

f non-negative real numbers and M is the number of basis vec-

ors, typically chosen such that M < min( K, L ) [19] . The factoriza-

ion is obtained by minimizing a suitable cost function, such as

he Kullback-Leibler (KL) divergence. In this case, the solutions can

e obtained iteratively using the following MU rules [9] 

 ← W �
(V / (WH )) H 

T 

1 KL H 

T 
, H ← H �

W 

T (V / (WH )) 

W 

T 1 KL 

(1)

here the operation � denotes element-wise multiplication, / and

he quotient line are element-wise division, 1 KL is a K × L matrix

ith all entries equal to one, the superscript T is the matrix trans-

ose, and ← refers to an iterative overwrite. 

In NMF-based single-channel speech enhancement, one com-

only assumes that the magnitude spectrum of the noisy speech,

btained via short-time Fourier transform (STFT), can be approxi-

ated by the sum of the clean speech and noise magnitude spectra

6,7,32] , i.e., | Y kl | ≈ | S kl | + | N kl | where Y kl , S kl and N kl, respectively

enote the STFT coefficients of the noisy speech, clean speech

nd noise at the frequency bin k ∈ { 1 , . . . , K} and time frame l ∈
 1 , . . . , L } . Hence, in this work, V = [ v kl ] may contain the magni-

ude spectral values of the noisy speech, clean speech or noise, as

ndicated by subscripts or superscripts Y, S and N , respectively. 

In a supervised framework, W S and W N are first obtained dur-

ng the training stage, by applying (1) to the training data V S and

 N . In the enhancement stage, for an online application, the ac-

ivation vector h 

Y 
l 

= [(h 

S 
l 
) T (h 

N 
l 
) T ] T ∈ R 

(M S + M N ) ×1 
+ is estimated for

he l -th time frame by applying the activation update in (1) to

 y l | = [ | Y kl | ] ∈ R 

K×1 
+ , while fixing W Y = [ W S W N ] . In this work, we

nstead consider a mini-batch online application by concatenating

everal successive time frames of the noisy speech. That is, we con-

truct a target matrix as V 

Y 
l b 

= | Y l b 
| ∈ R 

K×L b + , where l b = 1 , 2 , . . . is

he mini-batch index, Y l b 
is the noisy speech matrix consisting of

he time frames l ∈ { (l b − 1) L b + 1 , . . . , l b L b } , L b is the mini-batch

ize, and | · | denotes the element-wise magnitude computation.

he merit of using a mini-batch approach is that we can not only
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lleviate the over-complete condition (i.e., M S + M N > L b ) but also

educe the computation time. For a given l b -th mini-batch, the ac-

ivation matrix H 

Y 
l b 

= [(H 

S 
l b 
) T (H 

N 
l b 
) T ] T ∈ R 

(M S + M N ) ×L b + is obtained by

pplying the activation update in (1) to V 

Y 
l b 

. Subsequently, the clean

peech spectrum can be estimated using the Wiener filter as [10] 

ˆ 
 kl = 

ˆ p S 
kl 

ˆ p S 
kl 

+ 

ˆ p N 
kl 

Y kl (2) 

here ˆ p S 
kl 

and ˆ p N 
kl 

respectively denote the estimated power spec-

ral densities (PSD) of the clean speech and noise. The latter are

btained via temporal smoothing of the NMF-based periodograms

s [24,25] 

ˆ p S kl = τS ̂  p S k,l−1 + (1 − τS )([ W S H 

S 
l b 

] kl ) 
2 (3) 

ˆ p N kl = τN ̂  p N k,l−1 + (1 − τN )([ W N H 

N 
l b 

] kl ) 
2 (4) 

here τ S and τN are the smoothing factors for the speech and

oise, and [ · ] kl denotes the ( k, l )th entry of its matrix argu-

ent. Finally, the enhanced speech signal in the time-domain is

econstructed by applying the inverse STFT to (2) followed by the

verlap-add method. 

. Probabilistic generative models 

In this section, we introduce two underlying PGMs for the

roposed framework: the PGM of NMF, where the log-likelihood

unction (LLF) corresponds to the KL-divergence, is described in

ection 3.1 , while the PGM of classification, which will be applied

o the basis vectors, is presented in Section 3.2 . 

.1. NMF model 

In [28] , the NMF model with KL-divergence is described within

 statistical framework as summarized below. Each entry of a non-

egative matrix, V = [ v kl ] , is assumed to be a sum of M latent vari-

bles as 

 kl = 

M ∑ 

m =1 

c m 

kl . (5) 

he m th latent variable, c m 

kl 
, is assumed to be drawn from a Poisson

istribution parameterized by w km 

and h ml 

p(c m 

kl | w km 

, h ml ) = P(c m 

kl | w km 

h ml ) (6)

here P(x | u ) = u x exp (−u ) / (x !) is the Poisson distribution with

ean u . Note that the approximation of v kl as a sum of integer

ariables in (5) can be justified by assuming a large dynamic range

or the former quantity, which in practice can be realized by a

roper scaling of the magnitude spectra [7,25,33] . 

The maximum likelihood (ML) estimates of the parameters

 km 

and h ml , given the observation v kl , are obtained via the EM

lgorithm. During the expectation step (E-step), the posterior

istribution of the latent variable c m 

kl 
given the observation v kl is

alculated. In the maximization step (M-step), the parameters are

stimated by maximizing the expected complete-data LLF. The

terative NMF solutions obtained through the EM algorithm have

orms similar to the MU rules in (1) . 

.2. Classification model 

In the classification problem, the input vector w = [ w k ] ∈ R 

K 

nder test is assigned to one of I classes. The essential part of the

lassification is to find a partition of the observation space R 

K into

ecision regions that will minimize the classification error, by us-

ng training data and their corresponding class labels. There are
wo main approaches to solve this problem: PGM and discrimina-

ive modeling [27,34] . The former approach maximizes the likeli-

ood based on the joint distribution of the input data and class

abels, whereas the latter maximizes the PCP. In this work, we con-

ider the PGM since it can provide the necessary a priori distribu-

ions to be used in the proposed training framework. 

The PGM can be described by a class-conditional density based

n a Gaussian distribution [25,27] or a Gaussian mixture model

35] . In this work, we instead employ a Gamma distribution, which

s shown to be a conjugate prior to the Poisson model [28] , to

ring more coherence into the NMF model. By ignoring possible

orrelations between different entries in w , the class-conditional

ensity based on the Gamma distribution can be expressed as 

p(w | d i = 1) = 

K ∏ 

k =1 

G(w k ;αi 
k , βk ) (7)

here G(x ; u, z) = x u −1 z −u exp (−x/z) / �(u ) is the Gamma distribu-

ion with mean uz , �( · ) is the Gamma function, and u and z are

eferred to as the shape and scale parameters, respectively. Al-

hough we can use class-specific scales β i 
k 
, we consider a common

alue of βk for all classes [27] , in order to avoid over-fitting. 

For a given training set of W = [ w 1 , . . . , w M 

] and D =
 d 1 , . . . , d M 

] , where d m 

= [ d im 

] with d im 

∈ {0, 1} (such that 
∑ 

i d im 

=
 ) is an I × 1 target class label vector, and assuming the columns

 m 

are independently drawn, the likelihood function is given by 

p(W , D ; θC ) = 

M ∏ 

m =1 

I−1 ∏ 

i =0 

[
p(w m 

| d i = 1) p i 
]d im 

(8)

here θC = {{ p i , { αi 
k 
} K 

k =1 
} I−1 

i =0 
, { βk } K k =1 

} is a PGM parameter set for

lassification and p i � p(d i = 1) is the prior class probability. The

et θC can be simply estimated via the ML criterion. Using Bayes’

heorem, the PCP of class i , given the observation w , can be ex-

ressed as 

p(d i = 1 | w ) = 

p(w | d i = 1) p i ∑ 

j p(w | d j = 1) p j 
. (9)

. Proposed training stage 

In many applications of the EM algorithm, evaluating the pos-

erior distribution or indeed computing expectations with respect

o this distribution is analytically intractable. Consequently, it is

ighly demanding to derive a lower bound for the marginal like-

ihood of the observed data or to estimate the hyper-parameters.

he VBEM algorithm overcomes this difficulty by computing an an-

lytical and efficient approximation to the posterior distribution

27,29] , and also provides an effective estimation of the hyper-

arameters. In general, the VBEM algorithm can be considered as

n extension of the EM algorithm from the ML or MAP estima-

ion of the single most probable value of each parameter to fully

ayesian estimation in which any unknown parameter is absorbed

nto the set of latent variables. We employ the VBEM method to

evelop the proposed training algorithm, as further explained be-

ow. 

.1. Prior structures 

We first explicitly address the prior structures for the PGM in

6) , which will be used in the proposed framework. We denote by

 i the number of basis vectors in class i (such that M = 

∑ 

i M i ),

nd by L i the number of time frames in class i . For the basis vec-

ors, the likelihood function p ( W, D ; θC ) in (8) , based on the class-

onditional density given by (7) , can be simply rearranged as 

p(W ; θC ) = 

I−1 ∏ 

i =0 

M i ∏ 

m =1 

K ∏ 

k =1 

p i G(w 

i 
km 

;αi 
k , βk ) (10)
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where we omit the dependence on D hereafter for convenience.

For the activations, we follow the prior model based on the

Gamma distribution as introduced in [7,28] : 

p(h 

i 
ml ; a i ml , b 

i 
ml ) = G 

(
h 

i 
ml ; a i ml , 

b i 
ml 

a i 
ml 

)
(11)

which provides an intuitive interpretation in terms of the mean

value simply given by b i 
ml 

. Moreover, we consider constant values

of a i 
ml 

and b i 
ml 

for each class, i.e., a i 
ml 

= a i and b i 
ml 

= b i , to avoid

over-fitting [7,28] . Assuming that the entries of H are indepen-

dently distributed, the prior of H can be written as 

p(H ; a , b ) = 

I−1 ∏ 

i =0 

M i ∏ 

m =1 

L i ∏ 

l=1 

p(h 

i 
ml ; a i , b i ) (12)

where a = { a i } I−1 
i =0 

and b = { b i } I−1 
i =0 

. Note that employing the prior

structure in (11) for the basis vectors specifies the class-specific

scales in the PGM for classification and hence, limits the enhance-

ment performance due to over-fitting. 

4.2. VBEM algorithm 

Let us denote by θL = { C , W , H } the set of latent variables,

where C = { c m,i 
kl 

} , W = { w 

i 
km 

} , H = { h i 
ml 

} , and by θR = { θC , a , b } the

set of hyper-parameters. In the proposed framework, we use the

class index i = 0 for the speech and i = 1 , . . . , I − 1 for the differ-

ent noise types. For given training data sets of the clean speech

and noise, V = { V 

i } , the marginal LLF can be written as 

ln p(V ; θR ) ≥
∑ 

C 

∫ ∫ 
q (C , W , H ) ln 

p(V , C , W , H ; θR ) 

q (C , W , H ) 
d W d H 

= E q ( θL ) 
[ ln p(V , θL ; θR )] ︸ ︷︷ ︸ 

� L V (q ( θL ) ;θR ) 

− E q ( θL ) 
[ ln q ( θL )] ︸ ︷︷ ︸ 

� −L E (q ( θL )) 

� L B (q ( θL ) ; θR ) (13)

where q ( · ) is an arbitrary distribution (often referred to as a

variational distribution ) and E g(x ) [ f (x )] indicates an expectation

of f ( x ) with respect to g ( x ). The term L B (q ( θL ) ; θR ) defines the

lower bound on ln p ( V ; θR ), where the equality holds for q ( θL ) =
p( θL | V ; θR ) [27,28] . A detailed expression of the lower bound is

given in Appendix A . Analogous to the EM algorithm, the VBEM

algorithm consists of two stages. During the E-step, the goal is

to estimate q ( θL ) which approximates the exact posterior distri-

bution p ( θL | V ; θR ). In the M-step, the hyper-parameters are ob-

tained by maximizing the lower bound in (13) computed with a

fixed q ( θL ). That is, the term L E (q ( θL )) , which denotes the entropy

of q ( θL ), can be considered as a constant value and hence, max-

imizing the lower bound becomes equivalent to maximizing the

energy L V (q ( θL ) ; θR ) . 

( 1) Variational E-step: Based on the mean-field approximation

[27,29] , we assume that q ( C, W, H ) can be factorized as (e.g.,

[28,32,36] ) 

q (C , W , H ) = q (C ) q (W ) q (H ) 

= 

(∏ 

i,k,l 

q (c i kl ) 
)( ∏ 

i,k,m 

q (w 

i 
km 

) 
)( ∏ 

i,m,l 

q (h 

i 
ml ) 

)
(14)

where c i 
kl 

= [ c 1 ,i 
kl 

, . . . , c 
M i ,i 

kl 
] . The resulting local optimal solutions

can be found as [27,28] : 

q (C ) (r+1) ∝ exp 

(
E q (W ) (r) q (H ) (r) [ ln p(V , θL ; θR )] 

)
(15)

q (W ) (r+1) ∝ exp 

(
E q (C ) (r+1) q (H ) (r) [ ln p(V , θL ; θR )] 

)
(16)
 (H ) (r+1) ∝ exp 

(
E q (C ) (r+1) q (W ) (r+1) [ ln p(V , θL ; θR )] 

)
(17)

here the superscript ( r ) denotes the r th iteration. For conve-

ience, we hereafter omit the superscript ( r ) and also drop the la-

ent variables inside the subscript q ( · ) of the expectation operator,

.g., E 

q (w 

i 
km 

) 
[ w 

i 
km 

] = E q [ w 

i 
km 

] . 

First, the distribution q (c i 
kl 
) in (15) is shown to follow a multi-

omial distribution [28] : 

 (c i kl ; v i kl , ̄p 

i 
kl ) = δ

( 

v i kl −
M i ∑ 

m =1 

c m,i 
kl 

) 

v i kl ! 

M i ∏ 

m =1 

( ̄p m,i 
kl 

) c 
m,i 
kl 

c m,i 
kl 

! 
(18)

here δ( x ) is the Kronecker delta function defined by δ(x ) = 1

hen x = 0 and δ(x ) = 0 otherwise. The entries of p̄ 

i 
kl 

= [ ̄p m,i 
kl 

] are

iven by 

p̄ m,i 
kl 

= 

exp 

(
E q [ ln w 

i 
km 

] + E q [ ln h 

i 
ml 

] 
)

∑ M i 

m =1 
exp 

(
E q [ ln w 

i 
km 

] + E q [ ln h 

i 
ml 

] 
) . (19)

Next, the distribution q (w 

i 
km 

) in (16) is obtained as 

 (w 

i 
km 

) ∝ exp 

[(
αi 

k + 

L i ∑ 

l=1 

E q [ c 
m,i 
kl 

] − 1 

)
ln w 

i 
km 

−
(

1 

βk 

+ 

L i ∑ 

l=1 

E q [ h 

i 
ml ] 

)
w 

i 
km 

]
∝ G(w 

i 
km 

; ᾱi 
km 

, β̄ i 
km 

) (20)

here the parameters are given by 

¯ i 
km 

= αi 
k + 

L i ∑ 

l=1 

E q [ c 
m,i 
kl 

] , β̄ i 
km 

= 

(
1 

βk 

+ 

L i ∑ 

l=1 

E q [ h 

i 
ml ] 

)−1 

. (21)

Finally, the distribution q (h i 
ml 

) in (17) is also found to follow

 Gamma distribution G(h i 
ml 

; ā i 
ml 

, ̄b i 
ml 

) [28] , where the parameters

re given by 

¯
 

i 
ml = a i + 

K ∑ 

k =1 

E q [ c 
m,i 
kl 

] , b̄ i ml = 

(
a i 

b i 
+ 

K ∑ 

k =1 

E q [ w 

i 
km 

] 

)−1 

. (22)

he sufficient statistics (expectations) are given below: 

 q [ c 
m,i 
kl 

] = v i kl p̄ 
m,i 
kl 

(23)

 q [ ln w 

i 
km 

] = �( ̄αi 
km 

) + ln β̄ i 
km 

, E q [ w 

i 
km 

] = ᾱi 
km 

β̄ i 
km 

(24)

 q [ ln h 

i 
ml ] = �( ̄a i ml ) + ln ̄b i ml , E q [ h 

i 
ml ] = ā i ml b̄ 

i 
ml (25)

here �(x ) = d ln �(x ) /dx is the digamma function [28] . 

( 2) Variational M-step: The hyper-parameter set θR is estimated

y maximizing L V (q ( θL ) 
(r+1) ; θR ) . Setting the partial derivative of

 V (q ( θL ) 
(r+1) ; θR ) with respect to θR to zero, the PGM parameters

or classification, θC , are obtained as 

i 
k ← αi 

k −
�(αi 

k 
) − αi 

q 

� ′ (αi 
k 
) 

(26)

k = 

∑ I−1 
i =0 

∑ M i 

m =1 
E q [ w 

i 
km 

] ∑ I−1 
i =0 M i α

i 
k 

(27)

here αi 
q = 

∑ M i 
m =1 

(E q [ ln w 

i 
km 

] − ln βk ) /M i and � ′ (x ) = d �(x ) /d x .

he prior class probability is simply estimated by p i = M i /M. The

hape and scale parameters, a and b , are obtained as in [28] : 

 

i ← a i − ln a i − �(a i ) + 1 − a i q 

1 /a i − � ′ (a i ) 
(28)
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1 Note that this approximation is employed only for the noise classification. The 

inference on q (w 

i 
km 

) does not suffer from the extreme value of the Gamma func- 

tion, i.e., the extreme value of the digamma function ( −∞ ) appearing in E q [ ln (·)] 

in (24) and (25) is handled by the exponential in (19) . 
 

i = 

1 

M i L i 

M i ∑ 

m =1 

L i ∑ 

l=1 

E q [ h 

i 
ml ] (29) 

here a i q = 

∑ 

m 

∑ 

l (E q [ h 
i 
ml 

] /b i − E q [ ln h i 
ml 

] + ln b i ) / (M i L i ) . 

The proposed training stage can be interpreted as follows. Dur-

ng the E-step, the basis vectors are adjusted based on their priors

hich define the classification boundaries. Hence, the basis vectors

re estimated by constraining them to belong to different classes.

uring the M-step, the hyper-parameters (i.e., the PGM parameters

or classification θC ) are re-estimated, which define new classifica-

ion boundaries. 

.3. Parameter normalization and initialization 

To avoid scale indeterminacies in w km 

and h ml which appear

s a product in the distribution (6) , we include a normalization

tep. Motivated by [37] , we normalize E q [ w 

i 
km 

] and exp (E q [ ln w 

i 
km 

])

uch that they sum up to 1 with respect to k after computing (20) .

or initialization, we generate positive random numbers and subse-

uently apply the MU rules in (1) to V for several iterations [7,32] ,

here we found that 10 iterations are sufficient. The resulting W 

i 

nd H 

i are used as the initial values for the sufficient statistics,

.e., E q [ w 

i 
km 

] , exp (E q [ ln w 

i 
km 

]) , E q [ h 
i 
ml 

] and exp (E q [ ln h i 
ml 

]) . To ini-

ialize θC , we apply (26) and (27) to the initial values of E q [ w 

i 
km 

]

nd E q [ ln w 

i 
km 

] . The shape and scale parameters for the activations

re initialized by a i = 0 . 001 and b i = 10 . We use 200 iterations for

he VBEM algorithm, whereas 5 iterations are used for estimating

he hyper-parameters in (26) and (28) . 

. Proposed enhancement stage 

A number of attempts of combining the classical speech en-

ancement algorithms and the NMF-based framework have been

ade in the literature. In [24,26,38] , a classical method is used as

 pre-processor to first remove some stationary background noise,

nd the NMF-based algorithm is subsequently applied to further

mprove the enhancement performance. The authors in [39] im-

lement the classical and NMF-based algorithms independently,

nd evaluate the geometric mean over them to estimate the clean

peech spectrum. We combine both approaches and propose to

se the weighted geometric mean (WGM) of the pre-processed

oisy speech and its improvement via Wiener filtering. Regarding

he pre-processor, we use the well-known MMSE short-time spec-

ral amplitude (STSA) estimator [2] , where the noise PSD is esti-

ated based on [40] . The proposed enhancement stage consists of

wo steps, i.e., noise classification followed by basis compensation,

hich are explained in the following subsections. We denote by
¯
 l b 

∈ C 

K×L b the pre-processed noisy speech and by N̄ l b 
= Y l b 

− S̄ l b 
he pre-estimated noise. 

.1. Noise classification 

In many NMF-based speech enhancement algorithms, the back-

round noise type is assumed to be known a priori . In the pro-

osed framework, we perform noise classification for the l b -th

ini-batch, to select a single noise type among different classes

hat has features similar to the noise included in the noisy speech.

o this end, one possible approach is to apply the activation up-

ate given by (1) to | Y l b 
| for each noise type by fixing its corre-

ponding basis matrix and observing the reconstruction error (i.e.,

L-divergence), such as in [41] . However, this method requires ad-

itional iterations in which the computational cost increases with

espect to the number of noise types. 

In the proposed method, we use the PGM-based classifier given

y (9) . That is, we evaluate the PCP based on (9) and θ for
C 
 = { 1 , . . . I − 1 } , and select the noise type with the highest PCP

alue. As a simple approach, we can first estimate a noise clas-

ification basis vector w C = [ w 

C 
k 
] ∈ R 

K + by applying the MU rules

n (1) to | ̄N l b 
| , and use it as the input to the classifier. However,

e can further reduce the computational cost by simply using the

 ̄N l b 
| due to the property of NMF (i.e., the target matrix is rep-

esented as a linear combination of the basis vectors), since we

an avoid additional iterations for computing w C . To further im-

rove the classification performance, we consider both Y l b 
and N̄ l b 

.

hat is, we compute the geometric mean of the magnitude spectra

f the noisy speech and pre-estimated noise (i.e., | Y l b 
� N̄ l b 

| 1 / 2 ∈
 

K×L b ), to amplify the noise components. Subsequently, we aver-

ge over the rows and normalize the resulting column vector us-

ng the l 1 -norm, where the corresponding vector will be denoted

y ˜ w C ∈ R 

K + . 
Regarding the classifier, we found that employing the Gamma

istribution in (7) directly for computing the PCP resulted in poor

lassification performance. One main reason is that the Gamma

istribution can lead to numerical instability, since �( α) rapidly

pproaches infinity as α increases. Hence, we instead use the ap-

roximated Gaussian distribution 

1 as the class-conditional density,

hich is indeed simpler to compute than the Gamma distribution:

p( ̃  w C | d i = 1) ≈ N ( ̃  w C ; ˜ μi , 
˜ �i ) (30)

here ˜ μi = [ ̃  μik ] and 

˜ �i = diag { ̃  σ 2 
ik 
} are the mean vector and di-

gonal covariance matrix of the Gaussian distribution with entries

˜ ik = αi 
k 
βk and ˜ σ 2 

ik 
= αi 

k 
β2 

k 
. The underlying motivation for using

he form in (30) is similar to the application of the Laplace approx-

mation [27] , which aims at finding a Gaussian approximation to

he original distribution. According to this approach, the mean and

ariance of the approximated Gaussian distribution are obtained

ased on the mode and second order derivative at the mode of

he original distribution, respectively. However, since the mode of

he Gamma distribution is defined only for α > 1, we instead use

ts mean and variance. Furthermore, we use the average value of
˜ 

i over all i for the covariance in (30) , which leads to computing

he (exponential of the squared) Mahalanobis distance. The latter

s known to further reduce the computational cost compared to

sing the Gaussian model with class-specific variances [42] . 

.2. Basis compensation 

Once the noise type is determined, we implement a basis com-

ensation scheme by adopting the approach proposed in [26] . That

s, we use extra free basis vectors for both the clean speech and

oise to capture the features which cannot be explained by the

imited set of basis vectors due to the hard decision on a single

oise type, as well as features that are not included in the train-

ng data. We denote by W 

SF 
l b 

= [ w 

SF 
km 

] ∈ R 

K×M SF + and W 

NF 
l b 

= [ w 

NF 
km 

] ∈
 

K×M NF + (such that M SF < M S and M NF < M N ) the free basis matrices

f the clean speech and noise, respectively. 

For the l b -th mini-batch, motivated by [24] and [26] , we aim

t factorizing V l b 
= [ | Y l b 

| | ̄S l b | ] ∈ R 

K×2 L b + into the product of W l b 
=

 W S W 

SF 
l b 

W N W 

NF 
l b 

] = [ w km 

] ∈ R 

K×M Y + and H l b 
= [ H 

Y 
l b 

H 

S̄ 
l b 

] = [ h ml ′ ] ∈
 

M Y ×2 L b + , where M Y = M S + M SF + M N + M NF . We use the VBEM al-

orithm introduced in Section IV, to estimate the variational dis-

ributions q (W 

SF 
l b 

) , q (W 

NF 
l b 

) and q (H l b 
) . At each iteration, the dis-

ribution q ( C ) is first inferred as (18) , where the parameters are
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Fig. 1. A simplified block diagram of the proposed VNCP-BC method. 

Table 1 

Algorithm summary of the proposed enhancement stage. 

for l b = 1 , 2 , . . . 

Estimate S̄ l b and N̄ l b 
= Y l b − S̄ l b 

if l b = 1 

Initialize ˆ p S 
k, 0 

= 

∑ L b 
l=1 

| S kl | 2 /L b and ˆ p N 
k, 0 

= 

∑ L b 
l=1 

| N kl | 2 /L b 
Initialize q (W 

SF 
l b −1 

) parameters by applying sparse NMF to | ̄S l b | 
end 

Compute ˜ w C by averaging and normalizing | Y l b � N̄ l b 
| 1 / 2 

Select noise type i ∈ { 1 , . . . , I − 1 } via (9) and (30) 

Initialize q (W 

SF 
l b 

) parameters by the one estimated at l b − 1 

Initialize q (W 

NF 
l b 

) parameters by applying sparse NMF to | ̄N l b 
| 

Initialize q (H l b 
) parameters by generating positive random numbers 

for iter = 1:itermax 

Estimate q (W 

SF 
l b 

) and q (W 

NF 
l b 

) and normalize 

Estimate q (H l b 
) 

Update b l b via (31) 

end 

Compute ˆ P S 
l b 

= [ ̂ p S 
kl 

] and ˆ P N 
l b 

= [ ̂ p N 
kl 

] 

Compute νl b 
via (33) and estimate ˆ S l b via (32) 

end 

 

i  

i  

a  

r  

i  

t  

p  

n

 

m  

b  

p  

m  

β  

t  

P  

a

6

given by (19) . Second, we estimate the parameters of q (W 

SF 
l b 

) and

q (W 

NF 
l b 

) , while fixing the parameters of q ( W S ) and q ( W N ). Specifi-

cally, the parameters of q (w 

SF 
km 

) and q (w 

NF 
km 

) , which correspond to

the ones in q ( w km 

) for the intervals M S < m ≤ M S + M SF and M S +
M SF + M N < m ≤ M Y , respectively, are computed based on (21) . The

parameters of q (H l b 
) are then simply obtained by using (22) . Sub-

sequently, the scale parameter of the noisy speech activation prior

b l b is obtained by 

b l b = 

∑ M Y 

m =1 

∑ 2 L b 
l ′ =1 

a ml ′ E q [ h ml ′ ] ∑ M Y 

m =1 

∑ 2 L b 
l ′ =1 

a ml ′ 
(31)

where a ml = a S for 1 ≤ m ≤ M S + M SF and a ml = a N for M S + M SF +
1 ≤ m ≤ M Y . In contrast to the scale parameter, we fix the shape

parameters of the clean speech and noise, a S and a N , which con-

trols the degree of sparsity [28] , mainly in order to reduce the

computational cost since their updates require additional iterations

as given by (28) . 

After estimating q (W 

SF 
l b 

) , q (W 

NF 
l b 

) and q (H l b 
) , we compute the

smoothed PSDs of the clean speech and noise based on (3) and

(4) , where the periodograms are obtained from the mean val-

ues 2 of q (W l b 
) and q (H l b 

) . Specifically, the mini-batch clean

speech PSD, ˆ P 

S 
l b 

= [ ̂  p S 
kl 

] ∈ R 

K×L b + , is computed by replacing W S with

[ E q [ W S ] E q [ W 

SF 
l b 

]] ∈ R 

K×(M S + M SF ) + and H 

S 
l b 

with the first M S + M SF

rows of E q [ ̃  H l b 
] = (E q [ H 

Y 
l b 

] + E q [ H 

S̄ 
l b 

]) / 2 ∈ R 

M Y ×L b + . A similar proce-

dure is carried out for the mini-batch noise PSD 

ˆ P 

N 
l b 

= [ ̂  p N 
kl 

] ∈ R 

K×L b + .

Then, we estimate the clean speech spectrum where the magni-

tude is obtained via the WGM of | ̄S l b | and Wiener-filtered | ̄S l b | , and

the phase is taken from the noisy speech. Since ∠ Y l b 
= ∠ ̄S l b [2] , the

enhanced speech spectrum can be written as 

ˆ S l b = 

⎛ 

⎝ 

∣∣S̄ l b ∣∣νl b �

∣∣∣∣∣
ˆ P 

S 
l b 

ˆ P 

S 
l b 

+ 

ˆ P 

N 
l b 

� S̄ l b 

∣∣∣∣∣
1 −νl b 

⎞ 

⎠ � e j∠ Y l b 

= 

( 

ˆ P 

S 
l b 

ˆ P 

S 
l b 

+ 

ˆ P 

N 
l b 

) 1 −νl b 

� S̄ l b (32)

where 0 ≤ νl b 
≤ 1 is the weighting factor. The motivation of using

the WGM is to control the effect of pre-processing. For a high in-

put SNR, for instance, the classical method tends to show a rea-

sonable enhancement performance, which implies that Wiener fil-

tering the pre-processed signal may further distort the enhanced

speech quality. Hence, it is necessary to put more weight on S̄ l b 
by selecting a large νl b 

. In contrast, the classical method results in

a poor enhanced speech quality for a low input SNR and hence,

further improvement is necessary. This can be specified by apply-

ing more weight on the Wiener-filtered S̄ l b by selecting a small νl b 
.

Based on these considerations, we use the logistic function for se-

lecting νl b 
: 

νl b 
= 

ρ1 

1 + exp (−ρ2 R l b 
) 

(33)

where R l b = 10 log 10 ( 
∑ 

k 

∑ 

l ˆ p S 
kl 

/ 
∑ 

k 

∑ 

l ˆ p N 
kl 
) is the estimated input

SNR in dB for the l b -th mini-batch. The parameters ρ1 and ρ2 

respectively define the range of νl b 
∈ (0 , ρ1 ) and the slope of the

sigmoid function, where we use ρ1 = ρ2 = 0 . 5 through the experi-

ments. 
2 Alternatively, based on [7] , we can compute the smoothed PSD based on the 

sufficient statistics of c m,i 
kl 

in (23) where p̄ m,i 
kl 

is given by (19) . However, we verified 

through experiments that using E q [ w 

i 
km 

] provided better enhancement performance 

as well as reduced complexity. 

 

s  

g  

d

For the l b -th mini-batch, the parameters of q (W 

NF 
l b 

) are initial-

zed by applying the NMF algorithm to | ̄N l b 
| for 2 iterations. Specif-

cally, since M NF > L b (i.e., over-complete), we use the sparse NMF

lgorithm that is simply implemented by adding the sparsity pa-

ameter (we use 0.5) to the denominator of the activation update

n (1) . In contrast, the parameters of q (W 

SF 
l b 

) are initialized from

he ones estimated in the previous mini-batch frame index. The

arameters of q (H l b 
) are initialized by generating positive random

umbers. We use 5 iterations for the VBEM algorithm. 

The proposed algorithm, i.e., variational inference on the NMF

odel based on class probabilities and basis compensation, will

e referred to as VNCP-BC. A simplified block diagram of the pro-

osed method is illustrated in Fig. 1 , while the algorithm is sum-

arized in Table 1 . Recall that the terms ᾱi = [ ̄αi 
km 

] ∈ R 

K×M i and

¯
i = [ ̄β i 

km 

] ∈ R 

K×M i represent the parameters of the variational dis-

ribution in (20) , and the sets θC and { a i } respectively denote the

GM parameters for classification and the shape parameters in the

ctivation prior. 

. Experiments 

The enhancement performance of the proposed method was as-

essed through objective experiments. Below, after describing the

eneral methodology and benchmark algorithms, we present and

iscuss the experimental results. 
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Table 2 

Summary of the test noise types. 

Additive Filtered 

Matched Bus, Pedestrian, Street (from CHiME) 

Mismatched Cafe (from CHiME), Cafe (from CHiME) 

Factory 1, Babble (from NOISEX) 
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.1. Methodology 

We conducted the experiments using the 4th CHiME challenge

orpus [43] . The speech and noise files were divided into two dis-

oint groups: (i) training data , used for estimating the basis matrix

or each class i during the training stage, and (ii) test data , used

uring the enhancement stage to evaluate the enhancement per-

ormance. The clean speech training data of the CHiME database

re from the Wall Street Journal (WSJ0) corpus, which consists of

01 speakers. We considered a speaker-independent (SI) applica-

ion, where one universal basis matrix covering all speakers is esti-

ated during the training stage. To this end, we randomly selected

0 utterances from each speaker and concatenated them to con-

truct the clean speech training data ( i = 0 ), resulting in a total of

 hours long signal. Regarding the noise training data, we selected

he Bus ( i = 1 ), Pedestrian ( i = 2 ) and Street ( i = 3 ) noises, where

ach noise type consists of 2 hours long signal. 

We used the reference clean speech from the test set of the

HiME corpus, which consists of 330 utterances. Regarding the test

ata for the noise signals, we categorized them into two groups,

eferred to as: matched and mismatched cases. The matched case

ssumes that the training data is available, whereas the purpose of

he mismatched case is to evaluate the enhancement performance

or an unseen noise type, i.e., when no training data is available.

or both the matched and mismatched cases, we performed noise

lassification to select a single noise type which has characteristics

imilar to the actual noise included in the noisy speech. 

We considered two types of the noisy speech signals for the

est: additive noise and filtered noisy speech . The noisy speech sig-

als for the former type were generated by scaling and adding the

oise to the reference clean speech signal to obtain input SNRs of

5, 0, 5, and 10 dB. The filtered test set, provided by the CHiME or-

anization (referred to as “simulated test data”), contains the noisy

peech signals which were generated by artificially mixing the

lean speech and noises. Specifically, the clean speech signals were

ltered by the impulse responses (IR) between the speaker and

icrophone, estimated from the real recorded signals and hence,

he filtered data exhibit a more realistic nature of the noisy speech

see [43] for more details about the database). 

For both the additive and filtered data types, we considered

he Bus ( i = 1 ), Pedestrian ( i = 2 ) and Street ( i = 3 ) noises for the

atched noise case and used the Cafe noise from the CHiME

atabase for the mismatched noise case. Regaring the additive

oise, we additionally selected the Factory 1 and Babble noises

rom the NOISEX database [44] for the mismatched noise case. The

ampling rate of all signals was set to 16 kHz. The noise types used

or the test are summarized in Table 2 . 

Regarding the implementation, a Hanning window of 512 sam-

les with 50% overlap was employed for the STFT analysis. We

sed M i = 60 (for all i ) and M SF = M NF = 20 basis vectors. The val-

es of (τS , τN ) = (0 . 4 , 0 . 9) were chosen as the temporal smooth-

ng factors in (3) and (4) . We used L b = 16 for the mini-batch size.

or the pre-processor, the value of 0.9 was used as the smoothing

actor in the decision-directed (DD) method for the a priori SNR

stimation in [2] , whereas 0.85 was used as the smoothing factor

or the noise PSD estimation in [40] . Regarding the shape param-

ters a i , we obtained values around 0.02 using the training data
similar results were found when using different initial values, e.g.,

 

i = 0 . 1 ). Although we can use such values during the enhance-

ent stage, we found that instead using larger values resulted

n slightly better enhancement performance, where we ultimately

hose a S = 0 . 1 and a N = 0 . 2 in the experiments. The reason for

his phenomenon can be explained as follows. The basis vectors in

he proposed framework are estimated within a restricted decision

oundary for each class, which may prevent them from properly

epresenting the target magnitude spectrum. This becomes severe

hen the number of sources increases (i.e., resulting in smaller

ecision regions) and hence, may further limit the enhancement

erformance. Fortunately, the extra free basis vectors can handle

uch limitation by supporting the class-conditioned basis vectors

o better represent the target observation V l b 
. In particular, for a

iven class i , it is necessary to relax the dependency of the free

asis vectors on their prior distribution so that they are able to

e estimated beyond the decision boundaries. This can be speci-

ed by lowering the degree of sparsity of the activations, which

orresponds to using a larger value of a i [28] . 

We considered the PESQ [30] , SDR [31] and SSNR as the objec-

ive measures of performance. The PESQ attempts to predict over-

ll perceptual quality in mean opinion scores (MOS) and the SDR

easures the overall quality of the enhanced speech in dB by con-

idering both the aspects of speech distortion and noise reduction.

or all the measures, a higher value indicates a better result. 

.2. Benchmark algorithms 

To evaluate the enhancement performance of the proposed

NCP-BC method, we implemented several benchmark algorithms,

hich are summarized below. Basic settings, such as the STFT anal-

sis and synthesis, the mini-batch size L b and the reconstruction

ethod introduced in Section II, were kept identical when appli-

able. 

( 1) MMSE-STSA estimator: We implemented the MMSE-STSA es-

imator [2] , where the noise PSD was estimated based on [40] . A

moothing factor of 0.85 in the DD method and 0.9 in the noise

SD estimation were used. 

( 2) NMF: The standard NMF algorithm based on KL-divergence

ntroduced in Section II was evaluated. 

( 3) NMF model with distinct basis vectors: Among several NMF

lgorithms aiming at estimating the distinct basis vectors, we

mplemented two algorithms as representative benchmarks. The

rst one estimates the basis vectors based on the cross-coherence

enalty (NCC) which is presented in [14] . The second one is our

revious work in [25] , i.e., the NMF model based on class probabil-

ties (NCP), where the class-conditioned basis vectors are obtained

ia the MAP estimator. 

( 4) NMF with basis compensation (NBC): The NMF algorithm with

asis compensation proposed in [26] was evaluated, as a repre-

entative benchmark among several NMF algorithms proposed for

andling the mismatch problem. We examined the NBC method

ith three different types of basis vectors, i.e., obtained via the

onventional NMF, NCC and NCP methods. We used identical set-

ings for the pre- and post-processing as in the proposed VNCP-BC

ethod. 

( 5) Bayesian NMF model (BNMF): To compare with a VBEM-

ased NMF algorithm, We implemented the BNMF method in [28] .

he difference with the proposed VNCP (-BC) method is that the

NMF method estimates the basis matrix for each source indepen-

ently as in the typical supervised NMF-based framework, whereas

he proposed method estimates the basis matrices for all sources

ointly. 

In addition to the above mentioned benchmarks, we imple-

ented the proposed method without employing the free basis

ectors and pre-processing, which will be referred to as VNCP. 
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Fig. 2. The posterior class probabilities p(d i = 1 | w m ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. An example of noise classification. Top shows the true noise type and bot- 

tom shows the estimated noise type using the proposed method. 

Fig. 4. Examples of magnitude spectrograms of the clean, noisy and estimated 

clean speech using the VNCP-BC method. A male speech is degraded by a noise 

consisting of different types as shown in Fig. 3 , at 0 dB input SNR. 
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N  
We used M i = 80 basis vectors for all NMF-based benchmark al-

gorithms (including the VNCP method) except for the NBC method,

where we used M i = 60 and M SF = M NF = 20 . Hence, the same to-

tal number of basis vectors was employed for fair comparison.

To perform the noise classification for the benchmark algorithms,

we estimated the set θC based on the Gaussian-distributed class-

conditional density [25,27] . For the NMF, NBC and BNMF methods,

we first estimated the basis vectors for each class i , then we ap-

plied the ML criterion to the basis vectors [25] . The set θC for the

NCP method was jointly obtained with the NMF parameters. The

noise classification was performed by following a strategy similar

to the one introduced in Section V-A. Note that the pre-processing

was performed only for the noise classification in the NMF, NCP

and VNCP methods, since these methods do not employ the pre-

processed noisy speech during the reconstruction. 

6.3. Results 

Fig. 2 shows the PCPs of the estimated basis vectors E q [ w 

i 
m 

]

(which will be simply denoted by w 

i 
m 

). The x -axis indicates the

m -th column vector of the matrix [ W 

0 , . . . , W 

3 ] = [ w m 

] , where

each submatrix W 

i consists of 80 basis vectors, i.e., M i = 80 for

all i . For each class i , the PCP values p(d i = 1 | w m 

) should be

close to one for the interval iM i + 1 ≤ m ≤ (i + 1) M i , whereas the

PCPs for the other intervals should be close to zero. Regarding the

class i = 0 , for example, the PCPs p(d 0 = 1 | w m 

) for the interval

1 ≤ m ≤ 80 should be close to one, whereas the PCPs for the in-

terval 81 ≤ m ≤ 320 should be close to zero. We can see that the

basis vectors are estimated to be distinct in terms of the PCP in

general (although p(d 2 = 1 | w m 

) for the interval 1 ≤ m ≤ 80 tend to

be close to one since the Pedestrian noise contains a lot of speech

components), which implies that the basis vectors of each source

will be less likely to represent each other. Similar patterns were

found when using M i = 60 . 

Fig. 3 shows an example of the noise classification results us-

ing the method introduced in Section V-A. In this particular ex-

ample, a male speech signal was degraded with a noise at 0 dB

input SNR. Specifically, the noise was generated by concatenat-

ing the Bus ( i = 1 ), Street ( i = 3 ) and Pedestrian ( i = 2 ) noises

where each noise signal was 3 s in duration. As we can see, the

noise type is well estimated. The magnitude spectra of the clean

speech, noisy speech and the enhanced speech using the proposed
NCP-BC method, for this particular example, are illustrated in

ig. 4 . As it can be observed, the background noise has been sig-

ificantly reduced. 

The average results over all utterances for the additive noises

re shown in Tables 3 –8 , where the values in bold indicate the best

erformance along the corresponding row. Most of all, we can see

hat the proposed VNCP-BC method provided better enhancement

erformance than the benchmark algorithms in general for both

he matched and mismatched noise cases. Specifically, the pro-

osed VNCP-BC method resulted in better performance compared

o using the algorithms introduced in our previous works, i.e., the

CP and NBC methods. Moreover, the VNCP-BC method provided
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Table 3 

Average results for additive Bus noise (matched). 

Input Eval. Noisy STSA NMF NCC NCP NBC NBC NBC BNMF VNCP VNCP 

SNR -NMF -NCC -NCP -BC 

−5 dB PESQ 1.83 2.08 2.07 2.08 2.08 2.17 2.17 2.16 2.11 2.11 2.27 

SDR −4.89 0.17 2.83 2.63 2.80 6.60 6.50 6.80 3.44 3.70 7.54 

SSNR −13.57 −7.10 −4.50 −4.58 −4.49 −1.24 −1.22 −1.00 −3.54 −3.29 −0.29 

0 dB PESQ 2.20 2.43 2.41 2.42 2.42 2.49 2.49 2.48 2.42 2.42 2.57 

SDR 0.05 5.25 7.70 7.51 7.67 10.39 10.33 10.51 8.05 8.28 11.13 

SSNR −8.56 −2.75 −0.78 −0.85 −0.85 1.57 1.58 1.73 0.06 0.25 2.30 

5 dB PESQ 2.55 2.76 2.74 2.74 2.74 2.78 2.78 2.77 2.74 2.74 2.87 

SDR 5.03 9.99 11.96 11.79 11.98 13.62 13.56 13.55 12.48 12.64 14.27 

SSNR −3.56 1.43 2.38 2.31 2.21 4.12 4.13 4.20 3.62 3.74 4.75 

10 dB PESQ 2.90 3.07 3.04 3.04 3.05 3.04 3.04 3.03 3.06 3.06 3.15 

SDR 10.03 14.33 15.05 15.04 15.19 16.22 16.12 15.96 16.51 16.58 17.07 

SSNR 1.45 5.54 4.87 4.84 4.65 6.36 6.39 6.34 6.86 6.91 7.09 

Table 4 

Average results for additive Pedestrian noise (matched). 

Input Eval. Noisy STSA NMF NCC NCP NBC NBC NBC BNMF VNCP VNCP 

SNR -NMF -NCC -NCP -BC 

−5 dB PESQ 1.22 1.34 1.33 1.35 1.33 1.30 1.33 1.32 1.36 1.37 1.39 

SDR −4.88 −3.61 −4.19 −3.96 −3.93 −3.55 −3.44 −3.58 −3.71 −3.76 −3.18 

SSNR −13.88 −9.02 −9.22 −9.21 −9.25 −6.51 −6.53 −6.50 −9.21 −9.27 −5.97 

0 dB PESQ 1.51 1.70 1.70 1.71 1.70 1.73 1.75 1.74 1.75 1.76 1.86 

SDR 0.06 1.95 1.11 1.31 1.33 2.09 2.16 2.05 1.94 1.90 2.76 

SSNR −8.87 −4.70 −4.78 −4.80 −4.82 −2.67 −2.65 −2.66 −4.22 −4.28 −1.70 

5 dB PESQ 1.85 2.09 2.09 2.10 2.09 2.13 2.15 2.14 2.16 2.16 2.26 

SDR 5.04 7.07 6.02 6.18 6.26 6.86 6.94 6.85 7.37 7.31 7.84 

SSNR −3.87 −0.43 −0.80 −0.86 −0.86 0.92 0.95 0.90 0.85 0.76 1.93 

10 dB PESQ 2.20 2.44 2.46 2.48 2.46 2.45 2.47 2.45 2.54 2.53 2.61 

SDR 10.03 11.88 10.00 10.16 10.28 10.69 10.76 10.59 12.36 12.25 12.30 

SSNR 1.14 3.87 2.47 2.38 2.39 4.02 4.05 3.91 5.11 4.99 5.20 

Table 5 

Average results for additive Street noise (matched). 

Input Eval. Noisy STSA NMF NCC NCP NBC NBC NBC BNMF VNCP VNCP 

SNR -NMF -NCC -NCP -BC 

−5 dB PESQ 1.39 1.68 1.63 1.64 1.64 1.84 1.86 1.86 1.77 1.81 2.06 

SDR −4.89 −0.35 0.76 1.06 0.89 4.07 3.80 4.72 4.05 4.58 7.11 

SSNR −13.72 −6.80 −6.11 −6.05 −6.16 −2.73 −2.89 −2.40 −3.11 −2.65 −0.21 

0 dB PESQ 1.67 2.02 1.98 1.99 1.98 2.20 2.21 2.21 2.10 2.14 2.40 

SDR 0.05 4.87 5.77 6.06 5.91 8.37 8.18 8.83 8.32 8.71 10.30 

SSNR −8.72 −2.61 −1.97 −1.89 −2.02 0.42 0.36 0.65 0.43 0.72 2.10 

5 dB PESQ 2.00 2.37 2.35 2.36 2.36 2.52 2.53 2.53 2.44 2.47 2.67 

SDR 5.03 9.63 10.17 10.43 10.37 11.83 11.81 12.13 12.32 12.55 13.27 

SSNR −3.72 1.43 1.58 1.69 1.54 3.30 3.38 3.47 3.76 3.85 4.31 

10 dB PESQ 2.36 2.70 2.71 2.72 2.72 2.77 2.79 2.78 2.76 2.77 2.92 

SDR 10.03 14.03 13.49 13.76 13.80 14.46 14.59 14.59 16.06 16.15 16.18 

SSNR 1.29 5.41 4.39 4.57 4.38 5.67 5.94 5.80 6.66 6.63 6.69 

Table 6 

Average results for additive Cafe noise (mismatched). 

Input Eval. Noisy STSA NMF NCC NCP NBC NBC NBC BNMF VNCP VNCP 

SNR -NMF -NCC -NCP -BC 

−5 dB PESQ 1.30 1.38 1.38 1.38 1.38 1.29 1.32 1.32 1.37 1.37 1.39 

SDR −4.89 −3.40 −2.98 −2.99 −2.78 −2.22 −2.23 −1.86 −3.29 −3.20 −1.89 

SSNR −14.48 −10.93 −10.08 −10.19 −9.75 −7.99 −8.37 −8.09 −10.68 −10.53 −8.01 

0 dB PESQ 1.56 1.68 1.69 1.70 1.71 1.67 1.69 1.68 1.70 1.71 1.76 

SDR 0.06 2.07 2.13 2.17 2.37 3.32 3.33 3.61 2.29 2.36 4.07 

SSNR −9.47 −6.26 −5.56 −5.65 −5.27 −3.74 −4.06 −3.90 −5.82 −5.70 −3.26 

5 dB PESQ 1.87 2.00 2.03 2.04 2.06 2.04 2.05 2.04 2.09 2.10 2.15 

SDR 5.04 7.18 6.88 6.93 7.13 7.99 8.07 8.25 7.91 7.95 9.16 

SSNR −4.47 −1.72 −1.46 −1.54 −1.25 0.06 −0.11 −0.09 −0.44 −0.40 1.02 

10 dB PESQ 2.20 2.35 2.37 2.39 2.41 2.39 2.40 2.38 2.50 2.51 2.53 

SDR 10.03 11.96 10.72 10.81 10.94 11.63 11.85 11.80 13.10 13.08 13.31 

SSNR 0.54 2.74 1.96 1.91 2.08 3.35 3.34 3.21 4.55 4.51 4.68 
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Table 7 

Average results for additive Factory 1 noise (mismatched). 

Input Eval. Noisy STSA NMF NCC NCP NBC NBC NBC BNMF VNCP VNCP 

SNR -NMF -NCC -NCP -BC 

−5 dB PESQ 1.23 1.44 1.33 1.34 1.33 1.47 1.49 1.48 1.40 1.41 1.57 

SDR −4.90 −1.44 −3.33 −2.59 −3.17 0.56 0.51 0.83 −1.12 −0.92 2.07 

SSNR −14.33 −8.33 −9.82 −9.22 −9.76 −5.36 −5.49 −5.13 −8.48 −8.56 −4.15 

0 dB PESQ 1.50 1.77 1.67 1.68 1.67 1.84 1.86 1.85 1.73 1.74 1.97 

SDR 0.05 3.96 1.92 2.64 2.12 5.53 5.51 5.73 4.21 4.32 7.16 

SSNR −9.32 −4.05 −5.31 −4.75 −5.25 −1.81 −1.87 −1.64 −3.95 −4.04 −0.56 

5 dB PESQ 1.83 2.12 2.05 2.06 2.04 2.20 2.22 2.21 2.11 2.12 2.34 

SDR 5.03 8.83 6.68 7.34 6.90 9.52 9.57 9.59 9.44 9.51 11.13 

SSNR −4.32 0.14 −1.32 −0.83 −1.28 1.50 1.53 1.58 0.71 0.56 2.63 

10 dB PESQ 2.18 2.48 2.43 2.44 2.42 2.51 2.53 2.51 2.50 2.50 2.67 

SDR 10.03 13.40 10.42 10.94 10.72 12.38 12.56 12.35 14.08 14.19 14.52 

SSNR 0.68 4.40 1.88 2.27 1.90 4.28 4.41 4.27 4.88 4.68 5.44 

Table 8 

Average results for additive Babble noise (mismatched). 

Input Eval. Noisy STSA NMF NCC NCP NBC NBC NBC BNMF VNCP VNCP 

SNR -NMF -NCC -NCP -BC 

−5 dB PESQ 1.33 1.45 1.44 1.44 1.44 1.40 1.43 1.43 1.46 1.46 1.53 

SDR −4.89 −2.72 −3.75 −3.67 −3.68 −1.94 −1.91 −1.71 −3.95 −3.97 −1.63 

SSNR −14.26 −9.90 −10.85 −10.90 −10.82 −7.53 −7.85 −7.70 −12.06 −12.09 −8.09 

0 dB PESQ 1.63 1.79 1.78 1.78 1.78 1.77 1.78 1.79 1.80 1.80 1.90 

SDR 0.05 2.77 1.48 1.55 1.54 3.54 3.50 3.67 1.45 1.43 4.44 

SSNR −9.25 −5.39 −6.17 −6.17 −6.12 −3.49 −3.69 −3.61 −6.83 −6.87 −3.15 

5 dB PESQ 1.96 2.12 2.14 2.15 2.14 2.12 2.13 2.14 2.19 2.19 2.29 

SDR 5.03 7.78 6.47 6.58 6.51 7.97 8.01 8.11 7.21 7.14 9.54 

SSNR −4.24 −1.02 −1.84 −1.78 −1.81 0.18 0.12 0.10 −1.19 −1.29 1.39 

10 dB PESQ 2.31 2.46 2.50 2.50 2.50 2.45 2.46 2.46 2.58 2.57 2.64 

SDR 10.03 12.41 10.68 10.92 10.69 11.27 11.45 11.43 12.80 12.69 13.38 

SSNR 0.77 3.31 1.82 1.94 1.80 3.32 3.38 3.24 4.26 4.11 4.97 

Table 9 

Average results for filtered noisy speech. 

Input Eval. Noisy STSA NMF NCC NCP NBC NBC NBC BNMF VNCP VNCP 

SNR -NMF -NCC -NCP -BC 

BUS (mat.) PESQ 1.70 1.97 1.94 1.95 1.94 2.05 2.06 2.05 1.98 2.00 2.16 

SDR −1.34 2.79 3.62 4.18 4.00 6.45 6.39 6.66 5.48 5.53 7.98 

SSNR −10.75 −7.35 −6.61 −6.36 −6.44 −4.75 −4.88 −4.67 −5.63 −5.65 −3.58 

PED. (mat.) PESQ 1.50 1.72 1.67 1.67 1.67 1.76 1.78 1.76 1.72 1.72 1.86 

SDR 0.13 3.26 1.47 1.58 0.89 4.33 4.37 4.41 2.27 2.29 5.40 

SSNR −10.58 −7.54 −7.32 −7.30 −7.36 −5.48 −5.60 −5.53 −7.12 −7.17 −4.54 

STR. (mat.) PESQ 1.51 1.76 1.73 1.74 1.74 1.85 1.86 1.85 1.81 1.82 2.00 

SDR −1.76 2.08 1.77 2.10 1.98 4.69 4.69 4.96 3.64 3.67 6.45 

SSNR −10.81 −7.40 −6.96 −6.89 −6.92 −5.10 −5.30 −5.02 −5.90 −5.94 −3.64 

CAF. (mis.) PESQ 1.52 1.71 1.68 1.69 1.67 1.72 1.74 1.73 1.72 1.72 1.83 

SDR −0.18 2.54 1.02 0.80 0.74 3.41 3.52 3.56 2.13 2.03 4.73 

SSNR −10.64 −7.80 −7.48 −7.57 −7.53 −5.84 −5.99 −5.91 −7.37 −7.43 −4.84 
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better results than the VNCP method, which further validates that

implementing the basis compensation scheme improves the per-

formance. 

Regarding the matched noises, the results of the VBEM-based

VNCP method were found to be better than the MAP-based NCP

method. Comparing between the VBEM-based methods, the class-

conditioned model-based VNCP method exhibited better perfor-

mance than the independent source training-based BNMF method

in general, whereas the BNMF method provided slightly better re-

sults for the Pedestrian noise. Among the NBC methods with differ-

ent types of basis vectors, we can see that using the basis vectors

obtained via the NCP method provided better results. We also con-

ducted experiments for all benchmarks and proposed algorithms

assuming that the noise type is known a priori , for the matched

noise case. Although we did not report their objective results in

this paper, we have seen that there were no significant differences

with the results obtained by including the noise classification. That
t  
s, the results increased by about 0.01 in PESQ and SDR for all

ethods when assuming that the noise type is known a priori . 

The effectiveness of using the basis compensation scheme can

e better verified from the results of the mismatched noises. In

eneral, we can see that some NMF-based benchmark algorithms

howed even worse performance than using the STSA estima-

or, whereas the NBC-based methods provided reasonable results.

pecifically, although the NBC methods gave acceptable SDR and

SNR values for the Cafe and Babble noises under low input SNRs,

he proposed VNCP-BC method exhibited better than all bench-

ark algorithms in most cases. 

The average results over all utterances for the filtered data set

re shown in Table 9 . Although the results showed slightly differ-

nt pattern from the additive noise case (e.g., the STSA estima-

or gave even better results than some of the benchmarks for the

edestrian noise), mainly due to the effect of the IR-filtered clean

peech, we can see that the proposed VNCP-BC method provided

he best results for all types of noises. Hence, it is verified that the
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roposed VNCP-BC method performs well under a more realistic

nvironment. 

. Conclusion and future works 

We introduced a training and compensation algorithm of the

lass-conditioned basis vectors in the NMF model for single-

hannel speech enhancement. We considered the PGM for both the

MF and classification models. The former is specified by a Pois-

on observation model, whereas the latter is specified by Gamma

lass-conditional densities, which are used as a priori distribution

or the basis vectors. During the training stage, the basis matri-

es for the clean speech and noises were estimated jointly by con-

training them to belong to different classes. The parameters of

he NMF model and PGM of classification were obtained by using

he VBEM algorithm, which guarantees convergence to a stationary

oint. During the enhancement stage, we performed a noise clas-

ification followed by a basis compensation. The latter was imple-

ented by using extra free basis vectors to capture features which

re not included in the training data. The PGM parameters for clas-

ification were employed while estimating the free basis vectors

s well as during the noise classification. Experiments showed that

he proposed VNCP-BC method provided better enhancement per-

ormance than the benchmark algorithms in general. 

Finally, we comment on some interesting research avenues for

urther improving the enhancement performance of our proposed

ethod. Firstly, we can consider modeling the basis vectors using

 more accurate multimodal distribution, e.g., the Gamma mixture

odel [22] . This extended prior modeling may also offer the po-

ential of a noise-independent application by handling highly cor-

elated noise sources (i.e., one universal basis matrix covering all

oise types). Secondly, we can take into account the convolutive

ature of the acoustic medium (e.g., room impulse response) be-

ween the sound source and the microphone, in order to deal with

ore realistic reverberant environments. A possible approach to

his end is to model the latent variables in the NMF model via

uto-regressive moving average (ARMA) processes [36] . 

ppendix A. Variational lower bound 

Based on (5), (6), (10) and (12) , the logarithm of the full joint

istribution is given by 

n p(V , C , W , H ; θR ) 

= ln p(V | C ) + ln p(C | W , H ) + ln p(W ; θC ) + ln p(H ; a , b ) 

= 

I−1 ∑ 

i =0 

K ∑ 

k =1 

L i ∑ 

l=1 

ln δ

( 

v i kl −
M i ∑ 

m =1 

c m,i 
kl 

) 

+ 

I−1 ∑ 

i =0 

K ∑ 

k =1 

M i ∑ 

m =1 

L i ∑ 

l=1 
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ml − ln (c m,i 

kl 
!) 
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k =1 

(
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km 

− w 
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km 

βk 

− ln �(αi 
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(
(a i − 1) ln h 

i 
ml −

a i 

b i 
h 

i 
ml − ln �(a i ) −a i ln 

(
b i 

a i 

))
.

(A.1)

he energy L V (q ( θL ) ; θR ) in (13) is simply found by evaluating the

xpectations of (A.1) with respect to q ( C, W, H ) in (15) –(17) , where

he sufficient statistics are given by (23) –(25) . 

Based on (18), (20) and (22) , and using the sufficient statistics

n (23) –(25) , the entropy L E (q ( θL )) = −E q [ ln q ( θL )] can be written

s 

 E (q ( θL )) 
= 

I−1 ∑ 

i =0 

K ∑ 

k =1 

L i ∑ 

l=1 

( 

− ln (v i kl !) −
M i ∑ 

m =1 

v i kl p̄ 
m,i 
kl 

ln p̄ m,i 
kl 

− E q 

[ 

ln δ

( 

v i kl −
M i ∑ 

m =1 

c m,i 
kl 

) ] 

+ 

M i ∑ 

m =1 

E q [ ln (c m,i 
kl 

!)] 

) 

−
I−1 ∑ 

i =0 

K ∑ 

k =1 

M i ∑ 

m =1 

(
( ̄αi 

km 

− 1)�( ̄αi 
km 

) − ln β̄ i 
km 

− ᾱi 
km 

− ln �( ̄αi 
km 

) 
)

−
I−1 ∑ 

i =0 

M i ∑ 

m =1 

L i ∑ 

l=1 

(
( ̄a i ml − 1)�( ̄a i ml ) − ln ̄b i ml − ā i ml − ln �( ̄a i ml ) 

)
. 

(A.2) 

The lower bound on the marginal LLF, ln p ( V ; θR ), is obtained

y summing the energy and entropy terms as given by (13) . Note

hat the terms in E q [ ·] in the third line in (A.2) , which are analyt-

cally intractable, are canceled by their corresponding terms in the

nergy L V (q ( θL ) ; θR ) [28] . 
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