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In recent years, multicarrier modulation techniques have stirred great interest among

researchers. One specific form of multicarrier modulation, referred to as orthogonal

frequency division multiplexing (OFDM), has been deployed in many applications.

Despite their huge popularity, OFDM systems have a few, but important, drawbacks. In

particular, OFDM relies on the inverse fast Fourier transform (FFT) for modulation

purposes, which leads to a poor spectral containment and, consequently, to a high

susceptibility to narrowband noise. To mitigate this problem, we propose to employ

over-interpolated perfect reconstruction (PR) discrete Fourier transform (DFT) filter

banks. The design of such filter banks is addressed using a novel method that guarantees

the PR property to be satisfied while the spectral containment is being maximized. The

equalization of frequency-selective channels exploits the fact that the filter banks do not

contribute to any distortion due to its PR nature. A simple scheme, taking the form of an

one-tap per subcarrier equalizer, is considered. Experimental results indicate that the

spectral containment of the proposed PR DFT filter bank transceiver is indeed superior

to the OFDM system. Moreover, simulations conducted in a digital subscriber line (DSL)-

like environment contaminated by a narrowband noise show that the achievable bit rate

of the proposed transceiver is significantly higher than that of a conventional OFDM

system.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Multicarrier modulation (MCM) techniques have been
used during the past years in many applications. MCM
essentially employs several subcarriers, each of them
corresponding to a particular subchannel, to transmit a
block of symbols in parallel [1]. These symbols are obtained
using standard techniques such as quadrature amplitude
modulation (QAM). The constellation size may change from
one subcarrier to the other, and this capability can be
exploited to either maximize the bit rate or the noise
margin [2]. Contrary to frequency-division multiplexing
ll rights reserved.
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(FDM), the frequency content of adjacent subchannels is
allowed to overlap. Even with overlapping frequencies, the
transmitted symbols can be recovered perfectly (in noise-
less conditions) provided that the block of symbols is
modulated using an orthogonal transformation, such as the
discrete Fourier transform (DFT).

The DFT or its efficient implementation, the fast Fourier
transform (FFT), is the most widely used transform for
MCM. For example, it is currently employed in digital
subscriber line (DSL) modems [2] and in wireless local area
network (LAN) routers [3]. In the literature, DFT-based MCM
is commonly referred to by two acronyms, namely, DMT
(discrete multitone) or OFDM (orthogonal frequency divi-
sion multiplexing), depending whether the context is
wireline (e.g. DSL technology [2]) or wireless communica-
tions [3], respectively. To simplify the terminology, we use
in the paper the term ‘‘OFDM’’ regardless of the application.
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Despite its popularity, OFDM suffers from a few, but
important, drawbacks. Chiefly among them is the con-
siderable overlap between adjacent subchannels, which
leads to a very poor spectral containment, and makes
OFDM highly sensitive to impairments such as narrow-
band interference [4]. In DSL, for instance, narrowband
noise in the form of radio frequency interference (RFI)
arises due to the local loops which can pick up nearby
radio transmissions. Amateur radio (or ham) emissions
are particularly damaging to OFDM-based DSL modems
because of their frequency bands, which overlap those
used in DSL, and their high allowable power.

In order to improve the spectral containment of MCM
systems and their robustness against narrowband noise,
one may consider alternatives to the DFT. Existing solutions
include wavelet packet schemes, such as the ones found in
[5,6], and offset QAM-based OFDM (OFDM-OQAM) systems
[7]. Another very promising option, which has been the
focus of many recent publications, is the modulated filter
bank-based transceiver [8–25]. In this regard, both the
cosine function [8–15], or the complex exponential, via the
DFT or the FFT, can be employed [16–25]. In this work, we
focus on the DFT filter bank instead of the cosine modulated
filter bank. This choice can be explained by the fact that,
due to the nature of the cosine transform, only real symbol
constellations may be employed. This severely complicates
the equalization process, since any phase rotation caused by
a non-linear phase channel may not be addressed directly,
and the use of computationally expensive post-combiners
must then be considered [10]. There exist many approaches
for designing DFT filter banks which are appropriate
for multicarrier transceivers. Various heuristic methods,
using e.g. windowing techniques, are suggested in [22–25].
In [18–21], different techniques are proposed to minimize
the intersymbol interference (ISI) caused by the filter bank
itself and/or the channel.

The main objective of this paper is to propose a novel
method for the design of DFT filter banks suitable for
multicarrier transceivers. The aim is to provide better
spectral containment to combat impairments such as
RFI present in DSL systems. Unlike earlier works (e.g.
[16–25]), we design the DFT filter bank using an approach
that enforces the perfect reconstruction (PR) criterion. In
PR transceivers, equalization is simplified, since one does
not need to worry about any distortion generated by the
filter bank itself. It might be argued that the performance
loss due to a non-PR filter bank is negligible compared to
the one introduced by the channel. However, a previous
study established that, to properly equalize a non-PR DFT
filter bank transceiver, the transmit filters should be
equalized using per-subchannel decision-feedback equal-
izers (DFEs), whereas the channel-induced ISI could solely
be mitigated by a one-tap per subcarrier equalizer,
provided that the number of subcarriers is high enough
[26]. Based on this fact, the computational complexity of a
PR DFT filter bank transceiver is greatly reduced compared
to a non-PR one since equalization only requires the use
of a simple one-tap per subcarrier equalizer instead of
expensive per-subcarrier DFEs. Furthermore, computer
simulations presented in this paper confirm that the filter-
bank-induced distortion present in non-PR filter banks is
too severe to be mitigated by a one-tap scheme. Note that
the design of the PR filter bank itself is carried out offline,
and the computational complexity is the same as the non-
PR one if equalization is not taken into account.

The design problem is formulated as an unconstrained
minimization problem where the objective is to minimize
the stopband energy of the prototype filter. For PR to be
theoretically feasible, we consider over-interpolated DFT
filter banks, i.e. filter banks where the interpolation factor
K is greater than the number of subcarriers M (K4M). The
minimization process is carried out over a set of real
parameters that parametrize the filter coefficients in such
a way that PR is automatically achieved. Unlike the similar
parametrization-based method proposed in [27], we do
not necessarily assume that K is a multiple of M, i.e.
K ¼ 2M;3M; . . . . The freedom provided by our method in
terms of choosing M and K is a key feature that allows the
proposed transceiver to have a good bandwidth efficiency.
The latter is achieved by keeping the excess bandwidth
ratio K=M close to 1, i.e. K=M � 1.

Results presented in this paper indicate that the
spectral containment of the resulting PR DFT filter bank
transceiver is much higher than that of an OFDM system.
For instance, one particular design with M ¼ 128 and
K=M ¼ 1:25 is characterized by a stopband energy which
is 9 dB lower than the stopband energy of a conventional
OFDM system, a notable improvement. Results also show
that, under a DSL-like environment, the proposed trans-
ceiver outperforms the conventional OFDM transceiver
when RFI is present. Indeed, for a 200-m local loop, the
achievable bit rate can be improved by a factor of 10 Mbps.

This paper is organized as follows. Background informa-
tion concerning the PR DFT filter bank transceiver and its
polyphase representation is given in Section 2. We present
in Section 3 a method to parametrize the prototype filter
coefficients such that the resulting filter bank is character-
ized by the PR property. In Section 4, we explain how this
parametrization can be used for the design of a suitable
prototype filter. Channel equalization is then discussed in
Section 5, where we consider the use of a one-tap per
subcarrier equalizer. In Section 6, experimental results are
presented. Finally, a conclusion is given in Section 7.

The following notation is used throughout this work.
The superscripts T, H and �, respectively, stand for the
transpose, the Hermitian transpose and the conjugate of a
vector or a matrix. All vectors considered in this paper are
column vectors, and are denoted by lowercase bold letters,
e.g. x. We reserve the use of uppercase bold letters for
matrices, e.g. A. The ði; kÞ entry of a matrix is represented
by ½A�i;k. The M �M identity matrix and the M � N zero
matrix are denoted by IM and 0M�N , respectively. Finally,
we use the operator diagðxÞ to represent a diagonal matrix
whose diagonal is given by x.
2. Proposed transceiver structure

2.1. Time-domain representation

The proposed PR DFT filter bank transceiver is
illustrated in Fig. 1. Parameters M and K represent the
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number of subcarriers and the upsampling factor, respec-
tively. In this paper, we consider over-interpolated filter
banks, where K4M. Over-interpolation is necessary if we
want to satisfy the PR property (see Section 3).

The transceiver operates as follows. M QAM symbols,
x0½n�; . . . ; xM�1½n�, where n denotes the discrete-time frame
index, are obtained from constellation diagrams. For
baseband systems such as DSL modems, to ensure that a
real signal is sent through the physical channel, these
symbols must be conjugate symmetric, i.e. we must have
xi½n� ¼ x�M�i½n� for i ¼ M=2þ 1; . . . ;M � 1, whereas x0½n�

and xM=2½n� must be chosen from a constellation of real
symbols. Each symbol xi½n�, i ¼ 0; . . . ;M � 1, is first
expanded by a K-fold expander. The resulting signal,
xE

i ½m�, where m denotes the discrete-time index at the
channel rate, can thus be expressed as

xE
i ½m� ¼

xi½m=K� if m=K is an integer;

0 otherwise.

(

The expanded signal xE
i ½m� is then filtered by a DFT

modulated filter F0ðzWi
Þ, W9ð1=

ffiffiffiffiffi
M
p
Þe�j2p=M , yielding

ui½m� ¼ F0ðzWi
ÞxE

i ½m�,

where z (or z�1) represents the unit advance (or delay)
operator, and

F0ðzÞ ¼
XD�1

m¼0

f 0½m�z
m

is the Z-transform of the so-called prototype filter, a D-tap
finite impulse response (FIR) filter with real coefficients
f 0½m�. Note that for convenience in analysis, F0ðzÞ is non-
causal; in practice, causality can be ensured simply
by adding a delay of D� 1 samples. The expanded and
filtered signals ui½m� are finally added together to form the
transmitted signal u½m�, i.e. u½m� ¼

PM�1
i¼0 ui½m�.

During transmission, the signal is sent through a
channel, modelled here by a Q-tap FIR filter CðzÞ with
coefficients c½m�, i.e. CðzÞ ¼

PQ�1
m¼0 c½m�z�m, and an additive

noise Z½m�. The received signal v½m�,

v½m� ¼ CðzÞu½m� þ Z½m�

is processed by the receiving filter bank, whose filters are
given by eF0ðzW0

Þ; . . . ;eF0ðzWM�1
Þ. The tilde operator de-

notes paraconjugation, which is defined as eF0ðzÞ9F�0ð1=z�Þ

for a scalar function and as eGðzÞ9GHð1=z�Þ for a poly-
nomial matrix [28]. The resulting signals, i.e. vi½m� ¼eF0ðzWi

Þv½m�, are then decimated by a K-fold decimator,
yielding yi½n� ¼ vi½Kn�. Equalization is then carried out via
Fig. 1. The proposed PR DFT
a one-tap per subcarrier scheme, and the received
symbols x̂i½n� are given by x̂i½n� ¼ eiyi½n�.
2.2. Polyphase matrix representation

The polyphase representation can be used to conve-
niently express the filter banks as a polyphase matrix
[29,30], which will prove to be highly useful in the
following sections. We shall assume that D is a multiple of
K and M, i.e. D ¼ k1K and D ¼ k2M, where k1 and k2 are
two integers. Let us consider the polyphase representation
of F0ðzWi

Þ, i ¼ 0; . . . ;M � 1, i.e.

F0ðzWi
Þ ¼

XK�1

k¼0

zkGk;iðz
K Þ,

where

Gk;iðzÞ ¼
XD=K�1

n¼0

f 0½Knþ k�WiðKnþkÞzn. (1)

We then define the K �M transmitting polyphase matrix
GðzÞ as a polynomial matrix whose ðk; iÞ-th entry is given
by ½GðzÞ�k;i ¼ Gk;iðzÞ.

The transmitting polyphase matrix GðzÞ can be factor-
ized as described here, using the ideas presented in [31].
Let giðzÞ be the i-th column of GðzÞ. From (1), giðzÞ can be
expressed as

giðzÞ ¼ eL0ðzÞf i, (2)

where eL0ðzÞ ¼ ½IK zIK . . . zD=K�1IK � and f i ¼ ½f 0½0�W
�0i . . .

f 0½D� 1�W�ðD�1Þi
�T. Using the fact that WMþl

¼Wl, we can
write

f i ¼ Kf LT
1

W�0i

..

.

W�ðM�1Þi

2664
3775, (3)

where Kf ¼ diagðf 0½0�; . . . ; f 0½D� 1�Þ and

L1 ¼ ½IM IM . . . IM�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
D=M times

.

From (2) and (3), GðzÞ can thus be factorized as follows:

GðzÞ ¼ ½g0ðzÞ . . . gM�1ðzÞ� ¼ eL0ðzÞKf LT
1W�,

where W is the DFT matrix, i.e. ½W �i;k ¼Wik. Note that it is
convenient to express GðzÞ as

GðzÞ ¼ eUðzÞW�, (4)
filter bank transceiver.
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where

UðzÞ9L1Kf L0ðzÞ. (5)

In the case of the receiving filter bank, a factorization
similar to (4) can be established. We can show that the
receiving polyphase matrix is given by eGðzÞ ¼WUðzÞ.
Using the transmitting and receiving polyphase matrices
and with the help of the noble identities, the proposed
filter bank transceiver illustrated in Fig. 1 can be
represented as shown in Fig. 2.

In this work, we assume that the DFT filter banks in
the proposed transceiver are paraunitary. The polyphase
matrix of a paraunitary DFT filter bank satisfies the
following relation:

eGðzÞGðzÞ ¼ IM . (6)

In the presence of an ideal channel, i.e. with CðzÞ ¼ 1 and
Z½m� ¼ 0, we thus have yi½n� ¼ xi½n� d�, where d is an
integer delay. Such property is referred to as PR and is a
direct consequence of the paraunitaryness of the system
[28]. The design of paraunitary (and thus, PR) DFT filter
banks is fully discussed in Sections 3 and 4.
3. Parametrization of the prototype filter

We define in this section the necessary mathematical
relations to parametrize the prototype filter coefficients
f 0½m� such that the transmitting polyphase matrix GðzÞ is
paraunitary and, thus, characterized by the PR property.
The design of the prototype filter itself is addressed in
Section 4. The parametrization requires that D, the
prototype filter length, be a multiple of P, where P is
defined as the least common multiple of M and K. We also
define the quantities J and L as J9P=M and L9P=K ,
respectively.
1 We say that two integers a and b are congruent modulo M, denoted

here by a � b ðmod MÞ, if and only if a� b is divisible by M.
3.1. The two-step parametrization method

From (6), since WW� ¼ IM , one can observe that
the paraunitaryness of GðzÞ can be guaranteed by letting
UðzÞ to be paraunitary. The matrix UðzÞ, defined in (5),
exhibits a particular structure. Each entry of UðzÞ, denoted
by Ui;kðzÞ, i ¼ 0; . . . ;M � 1, k ¼ 0; . . . ;K � 1, is given by
(see Appendix A for a proof):

Ui;kðzÞ ¼ z�ai;k Gbi;k
ðzLÞ, (7)
where Gbi;k
ðzÞ is the P-fold polyphase component of f 0½m�,

i.e.

Gbi;kðzÞ9
XD=P�1

n¼0

f 0½Pnþ bi;k�z
�n,

bi;k9ai;kK þ k, and ai;k 2 f0; . . . ; L� 1g is an integer that
depends on ði; kÞ. As specified in Appendix A, ai;k must
satisfy the congruence relation1

ai;kK þ k � i ðmod MÞ. (8)

Note that ai;k may—or may not—exist depending on the
given ði; kÞ. When ai;k does not exist, we have Ui;kðzÞ ¼ 0.

As an aside, let us now prove the critical importance of
over-interpolation, i.e. having K4M, for the PR property to
be feasible in a DFT filter bank. When M ¼ K (implying
that P ¼ M and L ¼ 1), (8) can only be satisfied for i ¼ k, in
which case we have ai;k ¼ 0. The matrix UðzÞ is thus
diagonal with the following entries:

Ui;iðzÞ ¼ GiðzÞ; i ¼ 0; . . . ;M � 1.

To satisfy the PR property, i.e. UðzÞeUðzÞ ¼ IM , we must
have

GiðzÞeGiðzÞ ¼ 1,

which is only possible if f 0½m� ¼ 1 for m ¼ 0; . . . ;M � 1.
Accordingly, the only possible choice for UðzÞ is the
identity matrix IM . This situation is that of OFDM, where
the ‘‘prototype filter’’ is a rectangular window. Over-
lapping non-rectangular windows, such as the ones in DFT
filter banks, can have the PR property only if over-
interpolation is allowed.

The parametrization of f 0½m� is based on the idea that if
we can generate a polyphase matrix Uðz; hÞ which is
paraunitary, then we can find the parametrized filter
coefficients f 0½m; h� via the relation in (7). We thus
proceed in two steps:
(1)
 From a vector of parameters h 2 RS, we compute a
polyphase matrix Uðz; hÞ such that it is paraunitary
and obeys the structure in (7). This operation can be
represented by the mapping p, which is defined as

p : RS
�!U; h 7�!

p
Uðz; hÞ,

where U is the set of all M � K paraunitary matrices
which comply with the form outlined in (7).
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(2)
 Using the relation in (7), we obtain the filter
coefficients f 0½m;h� by inspecting the entries of
Uðz; hÞ. Formally, this relation can be represented by
the mapping q, given by

q : U�!RD; Uðz; hÞ 7�!
q

f 0ðhÞ,

where f 0ðhÞ denotes the vector of the parametrized
filter coefficients, i.e.

f 0ðhÞ ¼ ½f 0½0; h� . . . f 0½D� 1; h��T.
In short, the filter coefficients are obtained via the
composition of the mappings p and q, i.e.

f 0ðhÞ ¼ q � pðhÞ.

Once a suitable polyphase matrix Uðz; hÞ has been
obtained via Step 1, finding the corresponding filter
coefficients, i.e. Step 2, is straightforward. The proper
mapping is given by (7). However, Step 1 requires a less
direct approach, as summarized here. An arbitrary para-
unitary matrix, which we denote by Vðz; hÞ, can be
parametrized using a dyadic-based factorization [32].
Unfortunately, the entries of such matrix will not
correspond to the proper polyphase components as given
in (7). While preserving its paraunitaryness, Vðz; hÞ must
thus be transformed so that its entries are compatible
with those of Uðz; hÞ. The exact relation between Vðz; hÞ
and Uðz; hÞ depends on whether M and K are coprime or
not. Both situations are considered below.

3.2. Parametrization of the polyphase matrix for M and K

coprime

Let us first consider the case where M and K are
coprime, i.e. we have L ¼ M and J ¼ K . We first compute a
L� J paraunitary matrix Vðz; hÞ using the following
dyadic-based factorization [28,32]:

Vðz; hÞ ¼
YD=P�3

l¼0

Aðz; hlÞ
YD=PþJ�4

l¼D=P�2

BðhlÞ, (9)

where

C ¼ ½IL 0L�ðJ�LÞ�,

Aðz; hlÞ ¼ I J �
hlh

T
l

hT
l hl

þ z�1hlh
T
l

hT
l hl

,

BðhlÞ ¼ I J � 2
hlh

T
l

hT
l hl

,

and hl are J-length vectors given by

hl ¼ ½1 ylðJ�1Þ ylðJ�1Þþ1 . . . ylðJ�1ÞþJ�2�
T.

The entries of hl are taken from the vector of parameters
h ¼ ½y0 . . . yS�1�

T with S ¼ ðD=P þ J � 3ÞðJ � 1Þ. When M

and K are coprime, we can observe that, regardless of i and
k, there always exists an integer ai;k 2 f0; . . . ; L� 1g such
that (8) is satisfied. In this case, each entry of UðzÞ is non-
zero. However, we cannot simply let Uðz; hÞ to be equal to
the paraunitary matrix Vðz; hÞ due to the terms z�ai;k and zL

in (7). In general, the structure of Uðz; hÞ is not compatible
with that of Vðz; hÞ. We thus have to transform Vðz; hÞ such
that the paraunitaryness is preserved and its entries can
be mapped directly to those given in (7).

In order to find a suitable transformation for Vðz; hÞ, as
proposed in [33], we consider two paraunitary matrices
D0ðzÞ and D1ðzÞ such that

D0ðzÞ ¼ diagð½za0;0 za1;0 . . . zaL�1;0 �Þ,

D1ðzÞ ¼ diagð½za0;0 za0;1 . . . za0;J�1 �Þ.

By pre-multiply and post-multiplying UðzÞ by D0ðzÞ and
D1ðzÞ, respectively, we can show that

½D0ðzÞUðzÞD1ðzÞ�i;k ¼ zāi;k Gbi;k
ðzLÞ,

where āi;k ¼ ai;0 þ a0;k � ai;k. Let us consider two expres-
sions derived from (8), where we, respectively, let ði; kÞ ¼
ð0; kÞ and ði; kÞ ¼ ði;0Þ. Using the properties of congruences
[34], adding these two expressions together and subtract-
ing from it relation (8) yield

ðai;0 þ a0;k � ai;kÞJ � 0 ðmod LÞ.

The above expression indicates that āi;k can only take two
different values, 0 or L, since we have 0pai;kpL� 1 for all i

and k. Based on this information, we note that the entries
of D0ðzÞUðzÞD1ðzÞ are solely given in terms of zL. Hence, we
can now let

D0ðzÞUðz; hÞD1ðzÞ ¼ VðzL; hÞ,

or, equivalently,

Uðz; hÞ ¼ eD0ðzÞVðz
L; hÞeD1ðzÞ. (10)

Since Vðz; hÞ is paraunitary, then so is Uðz; hÞ, as the
product of two paraunitary matrices preserves parauni-
taryness [28].

In essence, we have shown that the first step of the
parametrization, i.e. to obtain a proper paraunitary matrix
Uðz; hÞ, first consists in generating a generic paraunitary
matrix Vðz; hÞ via the dyadic-based factorization given in
(9). As shown in (10), we then apply a transformation to
Vðz; hÞ to make its entries compatible with those of Uðz; hÞ.
Once Uðz; hÞ has been obtained, we may easily carry out
the second step of the parametrization by retrieving the
filter coefficients via mapping (7).

3.3. Parametrization of the polyphase matrix for M and K

non-coprime

When M and K are not coprime, it is not always
possible to find an integer ai;k which satisfies (8) for a
given ði; kÞ. Hence, UðzÞ will have zero and non-zero
entries. It turns out that the paraunitaryness of UðzÞ is
equivalent to the paraunitaryness of L� J submatrices
U lðzÞ, l ¼ 0; . . . ;K=J � 1, of UðzÞ [33]. These submatrices are
constructed as follows:

U lðzÞ ¼

Ul;lðzÞ . . . Ul;lþðJ�1ÞK=J

UlþM=L;lðzÞ . . . UlþM=L;lþðJ�1ÞK=J

..

. . .
. ..

.

UlþðL�1ÞM=L;lðzÞ . . . UlþðL�1ÞM=L;lþðJ�1ÞK=J

2666664

3777775, (11)

where each entry is given by (7).
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Notice that, for any entry of U lðzÞ, the congruence
relation (8) can be written as

ai;kK þ lþ k
K

J
� lþ i

M

L
ðmod MÞ,

which is equivalent to

ai;kJ þ k � i ðmod MÞ,

since, by definition, K=J ¼ M=L. By comparing the above
expression with (8), we may conclude that the distribu-
tion of the term ai;k in the L� J matrix U lðzÞ is identical to
the one found in the coprime case. Hence, the same
transformation as in (10) can be used, and we can write

U lðz; hÞ ¼ eD0ðzÞV lðz
L;hÞeD1ðzÞ, (12)

where V lðz
L; hÞ is a L� J paraunitary matrix, generated via

the same dyadic-based factorization used in the coprime
case.

The procedure to obtain f 0ðhÞ can now be generalized
as follows. Initially, the factorization theorem of para-
unitary matrices, i.e. (9), is used to generate K=J matrices
V lðz; hÞ. These matrices are then mapped to U lðz; hÞ via the
transformation shown in (12). Finally, we retrieve the
filter coefficients by inspecting each entry of U lðz; hÞ, using
the information contained in (11) and in (7).

4. Design of the prototype filter

In this section, we use the parametrization of the filter
coefficients described in Section 3 to propose a design
methodology for PR DFT filter banks with good spectral
containment.

4.1. Optimization problem

In order to provide good spectral containment, among
all parameter vectors h, it is desirable to select the
one that minimizes the stopband energy of f 0½m; h�. The
prototype filter design problem can thus be cast as the
following unconstrained optimization problem:

h0 ¼ arg min
h

JðhÞ, (13)

where the cost function, JðhÞ, corresponds to the stopband
energy of the prototype filter. The stopband energy can be
expressed as

JðhÞ ¼

Z 2p�os

os

jF0ðe
jo; hÞj2 do, (14)

where F0ðe
jo;hÞ represents the discrete-time Fourier

transform (DTFT) of f 0½m; h�, i.e.

F0ðe
jo; hÞ ¼

XD�1

m¼0

f 0½m; h�e
�jom,

and os denotes the stopband frequency, which is given by

os ¼
p
M

.

Note that this approach is similar to the one suggested in
[35] for unstructured filter banks. Thanks to the para-
metrization of f 0½m�, one is certain that f 0½m; h�will always
yield a PR prototype filter regardless of the outcome of the
minimization process. It is not necessary to constrain the
passband of the prototype filter to be flat to obtain a good
frequency response. Due to the paraunitaryness of GðzÞ,
one can show, using the power complementary property,
that the passband region of jF0ðe

jo; hÞj2 will be constant,
even if the cost function does not explicitly take this into
account [28].

Minimization of the cost function can be carried out
using any algorithm suitable for large-scale non-linear
unconstrained optimization problems. In this work, we
propose to use the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm, which is appropriate for solving such
problems [36]. To implement the BFGS algorithm, we
employ the L-BFGS-B (Bound constrained2 Limited mem-
ory BFGS) software [37,38]. The required gradient of the
cost function, rJðhÞ, can be approximated numerically
using the standard difference-based approach. The i-th
entry of the gradient is thus obtained as follows:

½rJðhÞ�i �
Jðhþ �eiÞ � JðhÞ

�
,

where � is a small positive real number, and ei is an all-
zero vector, except at the i-th entry where it is one. Note
that the convergence towards a global minimum cannot
be guaranteed since the cost function is not convex. To
find a ‘‘good’’ minimum, the algorithm should be run
several times with a different set of initial values, and the
solution yielding the lowest minimum should be kept.
4.2. Computation of the stopband energy

The cost function in (14) can be evaluated without
resorting to approximate numerical integration methods.
The main idea is to consider the autocorrelation of the
impulse response of the prototype filter [39], defined for
�Dþ 1ptpD� 1 as

rf ½t; h�9
XD�1

m¼0

f 0½m; h�f 0½mþ t; h�. (15)

Using basic properties of the DTFT [40], the cost function
can be re-written in terms of the autocorrelation function
as follows:

JðhÞ ¼

Z 2p�os

os

Rf ðe
jo; hÞdo, (16)

where Rf ðe
jo;hÞ is the DTFT of rf ½t; h�, i.e.

Rf ðe
jo; hÞ ¼

XD�1

t¼�Dþ1

rf ½t;h�e�jot. (17)

Finally, substituting (17) in (16) and carrying out the
integral yields

JðhÞ ¼
XD�1

t¼0

b½t�rf ½t; h�, (18)
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Table 1
Computation of the autocorrelation function using the FFT

Instructions Flops

1: Let D0 ¼ 2E , where E ¼ dlog2 De þ 1 Negligible

2: Let B½k� be the D0-point FFT of b½t� (this can be computed

offline)

3: Compute F0½k�, the D0-point FFT of f 0½m; h�, by zero-

padding the sequence

5D0 log2 D0

4: Let H½k� ¼ jF0½k�j
2 for k ¼ 0; . . . ;D0 � 1 3D0

5: Compute JðhÞ ¼
1

D0
PD0�1

k¼0 B½k�H�½k� 2D0
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where

b½t� ¼

1�os=p if t ¼ 0;

�
2

pt sinðtosÞ if t ¼ 1; . . . ;D� 1;

0 elsewhere:

8>><>>:
The stopband energy can thus be computed analytically
via a finite sum, as shown in (18).

Computing the stopband energy of f 0½m; h� can be a
costly operation if one implements (15) and (18) directly.
In fact, even if we take into account the symmetry of
rf ½t; h�, i.e. rf ½�t; h� ¼ rf ½t; h�, its computation requires 2D2

flops (floating point operations). For a 512-tap filter, this
amounts to 0:52 Mflops, which makes the optimization
problem a relatively time-consuming and a resource-
demanding process. Instead, we can carry out the
computation in the frequency domain, as described in
Table 1, where a FFT-based algorithm is presented. If we
consider again a 512-tap filter, the FFT-based method
necessitates 0:05 Mflops, a reduction by almost a factor
of 10 compared to the direct approach. Computing the
stopband energy via the FFT thus decreases the computa-
tional burden of the optimization problem significantly.

The design method presented in this section is
illustrated in Fig. 3.
3 Typically, FMT systems employ shorter filters with D=M ¼ 10 [18],

whereas our solution requires 20 taps per subchannel due to the PR

constraint which needs to be satisfied.
5. Channel equalization

Many schemes have been proposed to equalize the
channel in a DFT filter bank transceiver. Systems employ-
ing non-PR DFT filter banks usually rely on a set of DFEs
which compensate for both the channel attenuations and
the distortion introduced by the filter banks [26]. In PR
DFT filter bank transceivers, the use of DFEs would be an
overly complex solution since it is then unnecessary to
mitigate the filter-bank-induced distortion.

As an alternative to the use of DFEs, a simple one-tap
per subcarrier equalizer can be considered, as illustrated
in Figs. 1 and 2. The computational complexity of the one-
tap equalizer is minimal, requiring only one complex
multiplication per subcarrier. To operate properly, how-
ever, the prototype filter must exhibit ‘‘good’’ spectral
characteristics, i.e. a narrow passband, a sharp transition
band and a high out-of-band rejection. Provided that
these conditions can be satisfied, each subchannel can
then be modelled as a simple complex gain which can be
compensated by a single tap.
The equalizer coefficients ei, i ¼ 0; . . . ;M � 1, can be
computed from the channel impulse response c½m�. Using
a zero-forcing approach, ei corresponds to the inverse of
the channel attenuation at frequency oi ¼ 2pi=M, i.e.

ei ¼
1

Cðej2pi=MÞ
, (19)

where CðejoÞ is the DTFT of c½m�.

6. Computer experiments

6.1. Prototype filter design

We first attempt to design a PR prototype filter using
the steps outlined in Section 4. Various combinations of K,
the upsampling factor, and D, the prototype filter length,
are considered for a 128-subcarrier transceiver (M ¼ 128).
The frequency responses of the resulting filters are
illustrated in Fig. 4. The stopband energy and the
attenuation of the first sidelobe of these filters, represent-
ing important spectral features, are given in Table 2. Note
that we normalize the total energy of the filters to 30 dBm.

From Table 2, we can conclude that, for a given number
of subcarriers M, better spectral features are obtained if
the upsampling factor K and the length of the prototype
filter D are increased. However, one must be careful as a
higher K will reduce the bandwidth efficiency of the
system. Likewise, a higher D will introduce more latency
in the system and increase its computational complexity.
These factors must be balanced carefully in order to
maintain a low latency, a low computational complexity,
and a high bandwidth efficiency while benefiting from
good spectral features.

Fig. 5 shows the frequency responses of an OFDM
prototype filter with M ¼ 128 and a PR prototype filter
with M ¼ 128, K=M ¼ 1:25 and D=M ¼ 20. Three key
observations must be pointed out. We first note that the
transition from passband to stopband, i.e. the rolloff, is
much steeper with the PR DFT filter bank than with
OFDM. Moreover, the stopband energy and the attenua-
tion of the first sidelobe are, respectively, about 15 and
43 dB, whereas the stopband energy and the attenuation
of the first sidelobe of the OFDM system are, respectively,
24 and 13 dB. These observations confirm that PR DFT
filter banks offer considerably better spectral containment
than OFDM.

If the prototype filter is not subject to the PR
constraint, as it is the case in filtered multitone (FMT)
[18], the spectral containment can be further improved.
We show in Fig. 6 an example of a non-PR (or near-PR)
prototype filter which is designed with the windowing
method, as proposed in [23]. We follow the advice given in
[23], and, for best performance, we employ a Kaiser
window with parameter b ¼ 8:96 and a cutoff frequency
of oc ¼ pð1þ dÞ=K , d ¼ 0:15. Despite its impressive
spectral properties,3 the non-PR system requires the use
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Fig. 3. Outline of the prototype filter design process.
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Fig. 4. Frequency responses of PR DFT filter bank prototype filters: (a) M ¼ 128, K=M ¼ 1:125 and D=M ¼ 18; (b) M ¼ 128, K=M ¼ 1:125 and D=M ¼ 27;

(c) M ¼ 128, K=M ¼ 1:25 and D=M ¼ 20; and (d) M ¼ 128, K=M ¼ 1:25 and D=M ¼ 30.
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Table 2
Spectral features of several PR prototype filters

M K=M D=M Stopband energy (dBm) Attenuation of the first sidelobe (dB)

128 1.125 18 26 �29

128 1.125 27 23 �32

128 1.25 20 15 �43

128 1.25 30 10 �49
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Fig. 5. Frequency responses of the PR DFT filter bank with M ¼ 128,

K=M ¼ 1:25 and D=M ¼ 20 and of the OFDM prototype filter with

M ¼ 128.
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Table 3
International amateur radio frequency bands (below 11 MHz)

Category Start (MHz) End (MHz)

160 m 1.81 2.00

80 m 3.50 3.80

40 m 7.00 7.10

30 m 10.10 10.15
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of a computationally demanding equalization scheme, in
the form of per-subcarrier DFEs, to mitigate the inter-
ference due to the non-PR of the filter banks [26]. As we
will see below, the performance of non-PR systems using
simple one-tap equalizers is unacceptable.
6.2. Achievable bit rates

We now assess the performance of our proposed
system in a DSL-like environment. A sampling rate f s of
22.08 MHz is selected. We consider two local loops,
consisting in a 100- and a 200-m UTP-3 copper wire,
whose frequency response is taken from [18]. In DSL, the
impulse response of the local loops is normally infinite,
and a time-domain equalizer is usually employed to
shorten the channel to a finite length [41]. However, for
simulation purposes, the frequency response of the local
loops is conveniently approximated via two 17-tap FIR
filters (i.e. Q, the channel length, is 17) as shown in Fig. 7.

Two different noisy conditions are considered, corre-
sponding to additive white Gaussian noise (AWGN) and
RFI. To facilitate comparison, both types of noise are set to
the same power. RFI can be modelled as a narrowband
noise located in one of the possible frequency bands
reserved for amateur radio usage, which are enumerated
in Table 3 [42]. The power is generally limited to 400 W or
56 dBm [42]. Under unfavourable conditions, e.g. when
the antenna and the local loop are separated by 10 m and
run parallel to each other, an ingress power of about �4 dB
can be measured [42]. We thus consider here a �4 dBm
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narrowband noise, centred at 1.8113 MHz and located in
the first amateur radio band. The narrowband noise is
generated using a second-order autoregressive process,
and its power spectral density (PSD) is illustrated in Fig. 8.

Performance is evaluated by computing the theoretical
achievable bit rate in order to maintain an error
probability of 10�7. To do so, we first determine the
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Fig. 8. Power spectral density of the radio frequency interference.
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number of bits bi allocated for each subcarrier using the
relation proposed in [43]:

bi ¼ log2 1þ
SNRi

G

� �
; i ¼ 0; . . . ;M � 1, (20)

where SNRi is the signal-to-noise ratio at the output of the
i-th subcarrier and G is the SNR ‘‘gap’’. By assuming an
error probability of 10�7 and the use of coded QAM
symbols, the gap can be obtained as follows [43]:

G ¼ 9:8þ gm � gc ðin dBÞ,

where gm is the margin, whose purpose is to ensure good
performance under unforeseen conditions, and gc is the
coding gain. Here, we select gm ¼ gc and G ¼ 9:8. We also
assume that the available power budget is divided equally
among all subcarriers. Finally, the overall achievable bit
rate is given by

R ¼
f s

K

XM�1

i¼0

bi, (21)

where K is the length of the transmitted multicarrier
frame, taking into account the length of the cyclic prefix in
the case of OFDM.

Fig. 9 shows the bit rate obtained by varying the signal
power of the following transceivers: the proposed PR
DFT filter bank transceiver, a similar transceiver using a
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non-PR prototype filter, and an OFDM system. We employ
the PR and the non-PR prototype filters that are depicted
in Fig. 6.

Fig. 9 confirms that a non-PR prototype filter is not
suitable for one-tap equalization schemes, since the
achievable bit rate of the transceiver employing such a
filter is very poor. As reported in [26], non-PR filter banks
generally produce too much ISI to be mitigated by a single
tap. The PR DFT filter bank transceiver, however, exhibits a
performance comparable to that of the OFDM system
when AWGN contaminates the communication channel.
Under a RFI impairment, the proposed PR DFT filter bank
transceiver outperforms the OFDM system, with a differ-
ence of about 10 Mbps between the two.

6.3. Computational complexity

Implementing an over-interpolated DFT filter bank
requires 5M log2 M þ 2D flops per received frame of
symbols according to the implementation described in
[31]. Combined with the one-tap equalizer, the total
number of flops is thus 5M log2 M þ 2Dþ 6M if we assume
that one complex multiplication is equivalent to six
real ones. In contrast, the OFDM receiver necessitates
5M log2 M þ 6M flops. Hence, by employing the PR proto-
type filter shown in Fig. 6, our proposed transceiver is
approximately 2 times more complex than a conventional
OFDM system. Depending on the situation, the increase
in complexity can largely be offset by the increase in
performance.

7. Conclusion

In this paper, we considered PR DFT filter banks for
multicarrier transceivers. PR DFT filter banks were
designed using a novel method, which was based in part
on the parametrization of the impulse response of the
prototype filter by a set of real parameters. The parame-
trization was carried out such that the resulting polyphase
matrix of the DFT filter bank was paraunitary, which
guaranteed that the PR property is satisfied. To select the
proper set of real coefficients, we formulated the problem
as an unconstrained optimization problem where the goal
was to maximize the spectral containment of the filter
bank, or, equivalently, to minimize the stopband energy of
the prototype filter. The stopband energy was computed
via the autocorrelation of the prototype filter’s impulse
response. Experimental results showed that the spectral
containment of the resulting filter bank was considerably
better than that of the OFDM system. It also turned out
that the achievable bit rate of our proposed transceiver in
a DSL-like environment contaminated by radio frequency
interference was significantly higher than the bit rate
achieved by an OFDM system.

As a follow-up to this work, we could investigate the
use of other methods to solve the unconstrained optimi-
zation problem (13). We observed that designing a
prototype filter using the BFGS algorithm posed some
difficulties with M4128 due to the number of parameters
involved. We could, for instance, reduce the number of
parameters in (9) by arbitrary assigning a fixed value to
some of the vectors hl. Another possibility would be to
consider other optimization strategies such as genetic
algorithms [44].
Appendix A. Entries of the polyphase matrix UðzÞ

We prove in this appendix that the entries of UðzÞ are
given by (7), provided that ai;k, given in (8), exists. Let us
first recall that UðzÞ can be written as

UðzÞ ¼ L1Kf L0ðzÞ.

Let us consider M � K matrices F l, l ¼ 0; . . . ;D=K � 1, as a
partition of L1Kf , i.e.

½F0 . . . FD=K�1� ¼ L1Kf . (22)

Then, the matrix UðzÞ in (4) can also be written as

UðzÞ ¼ ½F0 . . . FD=K�1�L0ðzÞ ¼
XD=K�1

l¼0

F lz
�l. (23)

Let us now consider the expression

l ¼ nLþ a,

where a 2 f0; . . . ; L� 1g and n 2 f0; . . . ;D=P � 1g. We can
then re-write (23) as

UðzÞ ¼
XD=P�1

n¼0

XL�1

a¼0

FnLþaz�nL�a, (24)

where, according to (22), we have

½FnLþa�i;k ¼
f 0½nP þ aK þ k� if aK þ k � i ðmod MÞ;

0 otherwise:

(

We may notice that ½FnLþa�i;k can only be non-zero for a
specific value of a since aK þ k � i ðmod MÞ can only be
satisfied for a given a 2 f0; . . . ; L� 1g. We denote this value
of a by ai;k. This implies that

XL�1

a¼0

½FnLþa�i;k ¼ ½FnLþa�i;k,

and, using (24), we have

Ui;kðzÞ ¼ z�a
XD=P�1

n¼0

½FnLþa�i;kz�nL. (25)

Finally, from (25), we can observe that if there exists ai;k 2

f0; . . . ; L� 1g such that

ai;kK þ k � i ðmod MÞ,

then

Ui;kðzÞ ¼ z�ai;k

XD=P�1

n¼0

f 0½nP þ ai;kK þ k�z�nL.

Otherwise,

Ui;kðzÞ ¼ 0.

Note that if ai;k exists, we can show that it is unique.
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